概率论与数理统计实验2:抛硬币实验的随机模拟实验报告
概率论与数理统计投币实验报告

实验所用软件及版本: Excel 2003
实验过程:
1. 在第一行和第一列分别填充1、2、…、9,利用对单元格的相对引用构造九九乘法表;
2. 在[-3,3]区间内以0.1为间距填充数据,分别计算各点x处的函数x2,19sinx和ex的值,并作图;
实验一、Excel基本操作和投币试验模拟
实验序号:1日期:2013年3月27日
班级
数学学院2011级B班
学号
104200339
姓名
朱佩珍
实验名称
Excel基本操作和投币试验模拟
问题的背景:
掌握Excel中的一些基本命令的使用是后面的实验和今后实际工作所必须的;
频率的稳定性在实际生活中随处可见,如投币试验中正面出现的频率、英文文献中各个字母的使用频率都具有稳定性;又如一个地区人口中男女所占的比例、一个城市居民每天的用水量、用电量等都相对稳定,这些现象均是频率稳定性的体现。
教师评语与成绩:
实验目的和内容:
1.在Excel中利用对单元格的相对引用构造九九乘法表;
2.利用数据自动填充、数据变换和作图工具作出幂函数、三角函数和指数函数的图形;
3.在Excel中利用随机数发生器产生10000个伯努利随机数(即0-1随机数来模拟10000次投币试验,用1和0分别表示每次试验出现正面和反面,统计事件A={出现正面}正面出现的频率。观察体会事件频率的稳定性。
4产生(0,1)上的均匀分布可采用类似“3”的方法。
实验结果与实验总结(体会):
九九乘法表
1
2
概率论与数理统计实验2抛硬币实验的随机模拟实验报告

《
实验名称
实验2:抛硬币实验的随机模拟
编号
姓名
班级
学号
同组人姓名
同组人学号
4.部分实验截图
四、实验中的问题、建议及体会(实验总结)
概率论与数理统计的研究对象都是随机事件,所以产生的数必须是随机数数,而且需要通过大量的实验数据才能统计出实验结果,所以随机数应尽量大一些,实实验数组也该多一些才能得到相对正确的答案。
实验成绩:
指导教师签字
批改日期
long double c,g,ave ;
for(i=0;i<a;i++)
{
m=rand();
n=m%2;
b+=n ;
}
f=a-b;
c=(double)a;
g=(double)b;
ave=g/c;
printf("\n 试验的总次数为 %ld \n 其中正面向上的次数为 %ld \n 反面向上的次数为 %ld \n 正面出现的频率为 %20.15f \n ",a,b,f,ave);
任课教师
指导教师
实验地点
课外
实验时间
一、实验目的
(1)了解均匀分布随机数的产生
(2)理解掌握随机模拟的方法.
(3)体会频率的稳定性.
二、实验内容及要求
1.实验背景
对于一枚均匀的硬币,每次投掷出现正面与反面的机会是均等的。于是我们可以用数字1代表出现的是正面,数字0代表出现的是反面。而可以利用计算机等可能的产生0和1这两个随机数。于是,计算机每次产生一个随机数0或1,代表一次投硬币实验。这样,就可以用计算机快速模拟大量投硬币实验的结果。
抛掷硬币实验报告

抛掷硬币实验报告一、实验目的本实验的目的是通过抛掷硬币的方式,研究硬币的正反面出现的概率问题,并验证硬币正面向上的概率是否为0.5二、实验过程1.实验器材:硬币、纸板、直尺。
2.实验步骤:a.使用直尺将纸板分割成一个正方形小块。
b.抛掷硬币,记录硬币正反面的出现情况。
c.根据实验数据计算硬币正反面出现的概率。
三、实验结果本次实验我们进行了100次抛掷硬币的实验,记录了每次实验的结果,具体记录如下:正面向上:50次反面向上:50次四、数据统计与分析1.抛掷100次硬币,得到50次正面向上,50次反面向上。
2.正面向上的概率等于正面出现的次数除以总次数,即50/100=0.53.反面向上的概率也等于反面出现的次数除以总次数,也为50/100=0.54.实验结果表明,抛掷硬币的正面和反面出现的概率均为0.5,确认了硬币正面向上的概率是0.5的结论。
五、实验误差与改进六、实验结论通过本次抛掷硬币的实验,我们得出以下结论:1.抛掷硬币的正面和反面出现的概率均为0.52.实验结果与理论值相符,验证了硬币正面向上的概率是0.5的结论。
七、实验应用硬币抛掷实验是概率论中的一个基础实验,其结果可以用于解决许多实际问题,例如在赌场中可用于赌博游戏的设计、在统计学中可用于样本的抽样等。
此外,硬币抛掷实验还可以用于教育教学中,帮助学生理解概率的基本概念和原理。
总之,硬币抛掷实验是学习概率论中重要的实验之一,在实验中我们验证了硬币正面向上的概率是0.5的结论,同时也加深了我们对概率概念和原理的理解。
投掷硬币实验报告

一、实验目的本次实验旨在通过投掷硬币的方式,验证硬币正反面出现的概率是否相等,从而了解随机事件的基本性质。
二、实验原理硬币投掷实验是一个典型的概率实验。
在理想情况下,一枚公平的硬币在投掷时,正面和反面出现的概率应该是相等的,均为50%。
通过大量投掷硬币的实验,我们可以观察到正反面出现的频率,并与理论概率进行比较。
三、实验材料1. 公平硬币一枚2. 投掷工具(如尺子)3. 记录表格4. 计算器四、实验步骤1. 准备实验材料,确保硬币公平。
2. 将硬币放置在投掷工具上,确保投掷过程中硬币的稳定性。
3. 每次投掷后,记录硬币的正反面结果。
4. 重复投掷硬币100次,确保样本数量足够大,以减少偶然性。
5. 将每次投掷的结果记录在表格中,包括正面和反面出现的次数。
6. 计算正面和反面出现的频率。
7. 利用计算器计算正面和反面出现的概率。
五、实验结果经过100次投掷硬币的实验,我们得到了以下结果:| 投掷次数 | 正面次数 | 反面次数 | 正面频率 | 反面频率 ||----------|----------|----------|----------|----------|| 100 | 51 | 49 | 0.51 | 0.49 |六、实验分析从实验结果可以看出,在100次投掷硬币的过程中,正面出现的次数为51次,反面出现的次数为49次。
正面频率为0.51,反面频率为0.49。
虽然实际频率与理论概率略有偏差,但两者非常接近,这表明在大量实验下,随机事件的结果会逐渐趋近于理论概率。
七、实验结论1. 在大量实验下,公平硬币投掷实验中正面和反面出现的频率基本相等,与理论概率相符。
2. 随机事件的结果具有偶然性,但在大量实验中,偶然性会被平均,使结果趋近于理论概率。
3. 本实验验证了随机事件的基本性质,为后续研究提供了参考。
八、实验反思本次实验中,由于实验次数有限,实验结果可能与理论概率存在一定偏差。
在今后的实验中,我们可以增加实验次数,以进一步提高实验结果的准确性。
抛硬币实验

——毕达哥拉斯
①抛硬币100次,抛硬币时用力均匀, 高度适中,3分钟完成;
②小组成员分工协作,一位同学做记
录,其他同学抛;
③用画正字的方法分别统据统计表
实验者 抛硬币 正面朝 反面朝 抛硬币次 总次数 上次数 上次数 数的一半
7
德•摩 根
蒲丰
4092 4040
2048 2048
2044 2048 1992 2020
费勒 10000 4979 5021 5000
皮尔逊 24000 12012 11988 12000
出现正面和出现反面的可能
性是 相同的,都是 。
1
1
2
12
2
1 2
结论
判断公平性就是看可 能性是否相等。
以上有不当之处,请大家给与批评指正, 谢谢大家!
概率论实验报告_2

概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。
记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。
2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。
这充分说明模拟情况接近真实情况,频率接近概率0.5。
试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。
,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。
在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。
每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。
概率论与数理统计实验

整理课件
3、指数分布随机数
1) R = exprnd(λ):产生一个指数分布随机数 2)R = exprnd(λ,m,n)产生m行n列的指数分布随机数
例3、产生E(0.1)上的一个随机数,20个随机数, 2行6列的随机数。
整理课件
在Matlab命令行中输入以下命令: binomoni(0.5,1000)
整理课件
在Matlab命令行中输入以下命令: binomoni(0.5,10000)
整理课件
在Matlab命令行中输入以下命令: binomoni(0.3,1000)
整理课件
二、常用统计量
1、表示位置的统计量—平均值和中位数
概率论与数理统计实验
实验2 随机数的产生
数据的统计描述
整理课件
实验目的
学习随机数的产生方法 直观了解统计描述的基本内容。
实验内容
1、随机数的产生 2、统计的基本概念。 3、计算统计描述的命令。 4、计算实例。
整理课件
一、随机数的产生 定义:设随机变量X~F(x),则称随机变量X的 抽样序列{Xi}为分布F(x)的随机数 10常用分布随机数的产生
整理课件
例6 生成单位圆上均匀分布的1行10000列随机数,并 画经验分布函数曲线。
Randnum=unifrnd(0,2*pi,1,10000); %(0,2pi)上均匀分布随机数 xRandnum=cos(Randnum);%横坐标 yRandnum=sin(Randnum);%丛坐标 plot(xRandnum,yRandnum);
例9:产生5组指数分布随机数,每组100个, 计算样本偏度和峰度。
统计和可能性

练习:2
(1)指针停在这四种 颜色区域的可能性 各是多少?
(2)如果转动指针100 次,估计大约会有多 少次指针是停在红色 区域?
6名同学玩“老鹰捉小鸡”的 游戏。小强在一块长方体橡皮的 各面分别写上1,2,3,4,5,6。 每人选一个数,然后任意掷出橡皮, 朝上的数是几,选取这个数的人 就来当“老鹰”。你认为小强设 计的方案公平吗?
摸到红球 的可能性 比黄球大。
摸到黄球 的可能性 比红球大。
摸到红球 和黄球的 可能性差 不多。
每次摸到 的都是红 球。
快乐大转盘
文具店进行优惠 活动,一次消费满 20元,可以在“快 乐大转盘”上摸奖 一次,以此类推。
小亮在这家店买 了23元钱文具,就 有了一次摸奖机会。
快乐大转盘
想一想:
摸到什么奖品的可 能性最大?
骰子每一个面的大小不同,它出现的可 能性也就不同。而只有在可能性相等的 情况下游戏才能公平、公正。
游戏规则: 一个小正方体,6个面上分别是1、2、3、4、5、6 如果抛到1、2、3、4、5中的一个数字,老师就向 前一格;如果抛到6,学生就向前一格。
游戏规则要怎样订,对双方才 公平呢?
每次摸一个球,根据摸球的结果,连一 连,是哪袋球?
正面
反面
阅读材料:数学家抛硬币试验情况:
数• 学家
总次数 正面朝上 反面朝上
德·摩根
4092
2048
2044
蒲丰
4040
2048
1992
费勒
10000
4979
5021
皮尔逊
24000
12012
11988
罗曼列夫斯基 80640
39699
40941
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10000000
5000153
4999847
0.5000153
2.数据处理
实验编号
频率
3.数据分析
(1)对于每次实验,实验之前,实验的结果是不确定的;
(2)对于每次实验,正面向上的频率有时大于0.5,有时小于0.5,正面向上的频率并不是确定值;
(3)随着实验次数的增加,正面出现的频率逐渐趋近于0.5
30000
15088
14912
0.502933333
14
50000
24124
25876
0.48248
15
100000
50145
49855
0.50145
16
200000
100208
99792
0.50104
17
500000
249955
250045
0.49991
18
1000000
500198
499802
0.500198
《
实验名称
实验2:抛硬币实验的随机模拟
编号
姓名
班级
学号
同组人姓名
同组人学号
任课教师
指导教师
实验地点
课外
实验时间
一、实验目的
(1)了解均匀分布随机数的产生
(2)理解掌握随机模拟的方法.
(3)体会频率的稳定性.
二、实验内容及要求
1.实验背景
对于一枚均匀的硬币,每次投掷出现正面与反面的机会是均等的。于是我们可以用数字1代表出现的是正面,数字0代表出现的是反面。而可以利用计算机等可能的产生0和1这两个随机数。于是,计算机每次产生一个随机数0或1,代表一次投硬币实验。这样,就可以用计算机快速模拟大量投硬币实验的结果。
2.投硬币实验编程源代码
#include<stdio.h>
#include<math.h>
#include<stdlib. long int a ,i,m,b=0,n,f;
printf("请输入实验的次数a=: \n");
scanf("%ld",&a);
long double c,g,ave ;
4.部分实验截图
四、实验中的问题、建议及体会(实验总结)
概率论与数理统计的研究对象都是随机事件,所以产生的数必须是随机数数,而且需要通过大量的实验数据才能统计出实验结果,所以随机数应尽量大一些,实实验数组也该多一些才能得到相对正确的答案。
实验成绩:
指导教师签字
批改日期
for(i=0;i<a;i++)
{
m=rand();
n=m%2;
b+=n ;
}
f=a-b;
c=(double)a;
g=(double)b;
ave=g/c;
printf("\n试验的总次数为%ld \n其中正面向上的次数为%ld \n反面向上的次数为%ld \n正面出现的频率为%20.15f \n ",a,b,f,ave);
scanf("%d,&m"); //无用输入函数,只是为了让此程序直接可以在win7系统上以dos窗口运行
}
三、实验结果及分析
1.实验数据
投硬币实验
实验编号
实验次数
正面向上的次数
反面向上的次数
正面向上的频率
1
10
3
7
0.3
2
30
15
15
0.5
3
50
28
22
0.56
4
100
48
52
0.48
5
1000
507
493
0.507
6
2000
1001
999
0.5005
7
4000
1997
2003
0.49925
8
5000
2505
2495
0.501
9
8000
4026
3974
0.50325
10
10000
4965
5035
0.4965
11
15000
7542
7458
0.5028
12
20000
9988
10012
0.4994
13