最全的热电效应 名词解释

合集下载

传感器名词解释

传感器名词解释
15、热释电效应:在某些绝缘物质中,由于温度的变化引起极化状态改变的现象。
8、电涡流效应 电涡流的产生要消耗一部分能量,从而使产生磁场的线圈阻抗发生变化的物理现象。
9、零点残余电压 指衔铁位于中间位置时的差动输出电压。
10、应变效应:导体和半导体材料在外力作用下产生机械变形,其电阻发生变化的现象
11、热电效应:两种不同的金属导体组成闭合回路,用酒精灯加热其中一个接触点(结点),发现放在回路中的指南针发生了偏转,如果用两个酒精灯对两个结点同时进行加热,指南针偏转的角度反而减小,由此可知闭合回路中存在电动势并且有电流产生。电流的强弱与两个结点的温度有关的现象
6、正压电效应:又称顺压电效应,指某些电介质,当沿一定方向对其施加压力而其变形时,它的内部就会产生极化的现象,同时在它的两个表面会产生极性相反的电荷,当施加的压力去掉后,他又重新恢复不带电的状态;当压力的作用方向改变时。它内部的极性也随着改变。
7、逆压电效应:又称电致伸缩效应,是指当在电解质的极化方向施加电场,这些电解质就会在一定的方向上产生机械变形或机械压力,当施加的电场撤去时,这些机械变形或机械压力也随之消失的现象。
一、名词解释
1、传感器:指能感受规定的被测量并按一定的规律转换成可用输出信号的元件或装置。
2、绝对误差:指被测量的测量值与被测量的真值之间的差值。
3、外光电效应:指在光线的作用下使电子逸出物体表面的光电效应。
4.、内光电效应:指在光的作用下使物体的电阻率发生改变的光电效应。
5、光生伏特效应:指在光线照射下,半导体材料吸收光能后,引起PN结两端产生电动势的现象。
12、霍尔效应:把霍尔元件置于磁感应强度为B的磁场中时,磁场方向垂直于霍尔元件,当有电流I流过霍尔元件时,在垂直于电流和磁场的方向上将产生感应电动势,这种现象称为霍尔效应。

材料物理性能名词解释

材料物理性能名词解释

铁电性:电偶极子由于它们的相互作用而产生的自发平行排列的现象。

屈服极限:中档应力足够大,材料开始发生塑性变形,产生塑性变形的最小应力。

延展性:指材料受塑性形变而不破坏的能力。

构建的受力模型:拉伸、压缩、剪切、扭转、弯曲塑性形变:指外力移去后不能恢复的形变。

热膨胀:物体的体积或长度随着温度的升高而增加的现象称为热膨胀,本质是点阵结构中质点的平均距离随温度升高而增大。

色散:材料的折射率随入射光频率的减小而减小的性质。

抗热震性:是指材料承受温度的剧烈变化而抵抗破坏的能力。

蠕变:对材料施加恒定应力时。

应变随时间的增加而增加,这种现象叫蠕变。

此时弹性模量也将随时间的增加而减少。

弛豫:对材料施加恒定应变,应力随时间减少的现象,此时弹性模量也随时间而降低。

滞弹性:对于理想弹性固体,作用应力会立即引起弹性形变,一旦应力消除,应变也随之消除。

对于实际固体,这种应变的产生和消除需要一定的时间,这种性质叫滞弹性。

粘弹性:有些材料在比较小的应力作用下可以同时表现出弹性和粘性。

虎克定律:材料在正常温度下,当应力不大时其变形是单纯的弹性变形,应力与应变的关系由实验建立。

晶格滑移:晶体受力时,晶体的一部分相对于另一部分发生平移滑动。

应力:单位面积上所受的内力。

形变:材料在外力作用下,发生形状和大小的变化。

应变:物质内部各质点之间的相对位移。

本征电导:由晶体点阵的基本离子运动引起。

离子自身随热运动离开晶格形成热缺陷,缺陷本身是带电的,可作为离子电导截流子,又叫固有离子电导,在高温下显著。

杂质电导:由固定较弱的离子的运动造成,主要是杂质离子。

在低温下显著。

杂质电导率要比本征电导率大得多。

离子晶体的电导主要为杂质电导。

热电效应:自发极化电矩吸附异性电荷,异性电荷屏蔽自发极化电场而自发极化对温度影响当温度变化时释放出电荷。

极化:在外电场作用下,介质内质点政府电荷重心的分离,并转变为偶极子,即电介质在电场作用下产生感应电荷的现象.自发极化:这种极化状态并非由外加电场所引起而是由晶体内部结构特点所引起。

热电效应

热电效应

热电效应“温差发电将热能直接转化为电能,只有微小温差存在的情况下也能应用,是适用范围很广的绿色环保型能源——它甚至能利用人的体热,为各种便携式设备供电,真正做到…变废为宝‟。

”华东理工大学机械工程学院涂善东教授、栾伟玲副教授认为,温差电技术正重新成为全球研究的热点,值得我国科学技术研究部门的重视。

就温差电技术的机理、该领域最新研究进展、进行推广应用的紧迫性和当前可能取得进展的突破点等问题,两位从事能源材料与设备技术研究的专家接受了本报记者的专访。

Seebeck效应 “温差发电通过热电转换材料得以实现,而检定热电转换材料的标志,在于它的三个基本效应:Peltier效应、Seebeck效应和Thomson效应。

”栾伟玲副教授说,正是这三个效应,奠定了热力学中热电理论的基础,也为热电转换材料的实际应用展示了广阔前景。

其中,Seebeck效应是温差发电的基础。

1821年,德国人Seebeck发现,在两种不同金属(锑与铜)构成的回路中,如果两个接头处存在温度差,其周围就会出现磁场,又通过进一步实验发现回路中存在电动势。

这一效应的发现,为测温热电偶、温差发电和温差电传感器的制作奠定了基础。

栾伟玲介绍,热电转换材料直接将热能转化为电能,是一种全固态能量转换方式,无需化学反应或流体介质,因而在发电过程中具有无噪音、无磨损、无介质泄漏、体积小、重量轻、移动方便、使用寿命长等优点,在军用电池、远程空间探测器、远距离通讯与导航、微电子等特殊应用领域具有“无可替代”的地位。

在21世纪全球环境和能源条件恶化、燃料电池又难以进入实际应用的情况下,温差电技术更成为引人注目的研究方向。

栾伟玲描述了温差发电的工作原理说,将两种不同类型的热电转换材料N和P的一端结合并将其置于高温状态,另一端开路并给以低温时,由于高温端的热激发作用较强,空穴和电子浓度也比低温端高,在这种载流子浓度梯度的驱动下,空穴和电子向低温端扩散,从而在低温开路端形成电势差;如果将许多对P型和N型热电转换材料连接起来组成模块,就可得到足够高的电压,形成一个温差发电机。

期末资料化工仪表自动化 名 词 解 释

期末资料化工仪表自动化 名 词 解 释

名词解释1、自动控制答:自动控制就是指在没有人直接干预的情况下,利用自动控制装置时被空对象的工作状态按照预定的规律运行。

为了实现上述的目的,由相互制约的各部分按一定规律组成的具有特定功能的整体,称为自动系统。

自动系统主要由两大部分组成。

一部分是其控制作用了全套自动化装置,对于常规仪表来说,它包括检测元件及变送器,控制器、执行器等;另一部分是受自动化装置控制的被控对象。

2、节流现象答:流体在管道中流动时,在节流装置前后的管壁处,流体的静压力产生差异的现象称为节流现象。

其中节流装置包括节流件和取压装置。

节流件是使管道中的流体产生局部收缩的元件。

在管道通路上安装孔板、喷嘴或文丘利管等节流件。

当流体流过节流元件时,流束局部收缩。

其流速增加,静压降低,使节流元件前后产生静压差。

3、热电效应答:热电偶是由两种不同材料的导体A 和B 焊接而成,当组合成闭合回路,若导体A和B的连接处温度不同,则在此闭合回路中就有电流产生,也就是说回路中有电动势存在,这种现象叫做热电效应。

4、热电势答:热电偶是由两种不同材料的导体A 和B 焊接而成,当组合成闭合回路,若导体A和B的连接处温度不同,则在此闭合回路中就有电流产生,也就是说回路中有电动势存在,这个电动势叫热电势。

5、零点迁移问题答:在使用差压式变压器测量液位时,一般压差△P与液位高度H之间的关系为:△P=Hgρ.这就是一般的"无迁移"的情况。

当H=0时,作用在正、负压室的压力是相等的。

实际应用中,由于安装有隔离罐、凝液罐,或由于差压变送器安装位置的影响等,使得在液位测量中,当被测液位H=0时,差压变送器的正、负压室的压力并不相等,即ΔP≠0,这就是液位测量时的零点迁移问题。

6、简单控制系统答:由一个测量元件、变送器、一个控制器、一个控制阀和一个对象所构成的单闭环控制系统。

也称单回路控制系统。

7、复杂控制系统答:在单回路控制系统基础上,再增加计算环节、控制环节或其他环节的称之为复杂控制系统。

热电势的概念

热电势的概念

热电势的概念热电势(thermoelectric potential)是热电效应(thermoelectric effect)的一种表现,指的是在两个不同温度的导体相接触时产生的电势差。

热电效应是热和电之间相互转换的重要现象,被广泛应用于热电传感器、温度测量、能量转换等领域。

当两种不同导电性质的导体或半导体相接触时,由于热电效应的存在,电子在两个导体之间会产生运动。

这种现象可以通过热电势来描述,热电势正比于两个导体之间的温度差。

热电势可以分为两种类型:Seebeck效应和Peltier效应。

首先是Seebeck效应,根据Seebeck效应的原理,当两个不同温度的导体相接触时,导体中的自由电子会在热电力的作用下从高温端向低温端移动。

这种电子的移动产生了电势差,即热电势。

热电势的大小与导体的热电系数有关,热电系数是导体材料的一个物理特性,它衡量了导体在温度变化下产生的电势差。

其次是Peltier效应,Peltier效应是Seebeck效应的逆过程。

当外加电压施加在两个不同温度的导体之间时,会产生热流从高温端向低温端,导体中的自由电子也会跟随热流的方向移动。

这种移动同样会产生电势差,即热电势。

此时热电势与导体的热电系数、电流密度和温度差有关系。

热电势可以通过热电偶(thermocouple)进行测量。

热电偶由两种不同材料的导体组成,当两个导体的连接点处于不同温度时,会产生电势差。

热电偶的原理就是利用Seebeck效应将温度差转化为电势差,并通过测量这个电势差来测量温度变化。

热电偶广泛应用于工业领域,例如温度控制系统、热处理过程监控等。

热电势的大小受到许多因素的影响,其中最主要的因素是导体的热电系数、导体材料的物理特性、电流强度和温度差。

一般来说,热电势与温度差成正比,而与电流强度成反比。

此外,导体材料的选择也对热电势的大小有明显的影响。

不同的导体材料具有不同的热电系数,因此在实际应用中需要选择适合的材料来满足不同的需求。

热电效应的名词解释

热电效应的名词解释

热电效应的名词解释
热电效应是一个电导体和半导体诸如金属时,热流的热能量和电流的电能彼此会相互影响通用的。

所谓的热电效应,是当受热物体中的电子,因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。

热电效应原理
由于不同的金属材料所具有的自由电子密度不同,当两种不同的金属导体接触时,在接触面上就会发生电子扩散。


子的扩散速率与两导体的电子密度有关并和接触区的温度成正比。

热电效应的作用
热电效应可制成温差电偶来测量温度。

只要选用适当的金属做热电偶材料,就可轻易测量到从-180℃到2000℃的温度,如此宽泛的测量范围,令酒精或水银温度计望尘莫及。

现在,通过采用铂
和铂合金制作的热电偶温度计,甚至可以测量高达2800℃的温度。

热电效应包括
热电效应包括西伯克效应,帕尔贴效应,汤姆孙效应等,定义为温度与电压相互转化的现象。

西伯克效应:有两种不同的导体组成的开路中,如果导体的两个结点存在着温度差,这开路中将产生感应电动势,这就是西伯克效应。

帕尔贴效应:电流流过两种不同导体的界面时,将从外界吸收热量或向外界放出热量,这就是帕尔贴效应。

汤姆孙效应:电流通过具有温度梯度的均匀导体时,导体将吸收或放出热量,这就是汤姆孙效应。

化工仪表及自动化名词解释 (1)

化工仪表及自动化名词解释 (1)

名词解释1.电流强度:在电场的作用下单位时间内通过某一导体的截面的电量.2.电阻:导体对于它所通过的电流呈现一定的阻力,这种阻力称为电阻.3.电容:电容器储存电荷的能力称为电容.4.敏感元件:直接影响被测变量,并将它转换成适于测量形式的元件或器件.5.变送器:输出为标准信号的传感器.6.显示仪表:指示、记录被测量值大小的仪表.7.调节阀:由控制信号调整流体通路的口径,以改变流量的执行器.8.绝对误差:测量值与真实值之差.9.精度:反映误差大小的术语,精度越高,误差越小.10.灵敏度:仪表在稳定状态下输出的变化量与最小输入的变化量之比值.11.压力:垂直作用在单位面积上的力.有时也称压强.12.流量:在单位时间内,流体流过管道中某截面的数量.13.料位:固体、粉状或颗粒物在容器中堆积的高度.14.校验:检查和试验仪表或部件是否符合规定技术性能的过程.15.信号:一种载有信息的物理变量.16.量值:由数值和单位所表示的量的大小.17.测量上限:仪表能按规定精度进行测量的被测变量的最高值.18.电动势:在外力作用下,单位正电荷从电源的一端移到另一端所做的功,称为该电源的电动势.19.电压:单位电荷在电场力的作用下,从电场的一点移到另一点时电场力所做的功,定义为这两点间的电压.20.摄氏温标:在标准大气压下的纯水的冰点为零摄氏度,沸点为一百摄氏度.将水银温度计此两点间的长度分为100等分,每等分代表1摄氏度.21.表压:绝对压力与大气压力的差值称为表压.22.真空度:当绝对压力低于大气压力时,大气压力减去绝对压力所得之差称为真空度.23.变差:在外界条件不变的条件下,仪表对某一参数进行正反行程测量时,仪表的示值之差叫变差.24.报警器:用声、光或两者同时显示不正常状态,以引起人们注意的仪表.25.调节器:根据被测参数的测量值与给定值的偏差,以一定的规律运算以后,向执行器发出调节信号,使被调参数稳定在给定值上的仪表设备.26.数字调节器:以微处理机为核心器件的新型调节器.27.工艺流程图:描述从原料投入到生产出产品的全过程示意图.28.回路联校:从现场一次表送入模拟信号观察控制室二次表的显示、报警以及从调节器输出信号到调节阀的全过程是否符合要求的试验过程.29.反馈:把对象的输出量送到输入端并与输入量进行比较的过程称为反馈.30.调节阀的流通能力:当调节阀全部打开,阀门前后压力差为0.1MPa,流体重度为1t/m3时,每小时所通过流体的立方米数.31.安全火花:火花的能量不足以引燃周围可燃性介质的火花.32.弹性特性:弹性元件的线位移或角位移变形和作用力之间的关系.33.复现性:在同一条件下,对同一被测量进行多次测量时,其示值不一致的程度.34.稳定性:仪表示值不随时间和使用条件变化的性能.35.连锁系统:当生产过程出现某些危险或非正常情况时,由检测仪表自动发出指令信号,使其各个保护环节产生一系列的响应动作,从而避免发生事故的自动保护系统.36.热电效应:把两种不同的导体或半导体连接成闭合回路,如果将两个节点分别置于温度不同的热源中,则在该回路中产生热电动势,这种现象叫热电效应.37.稳定:在规定的时间内,量值、速率、周期、振幅等特性的变化都可以忽略不计的状态.38.动态特性:输入输出随时间变动的关系称为动态特性.39.灵敏度限:仪表能响应的输入信号的最小变量.40.串级调节:由一个调节器的输出值作为另一个调节器给定值的组合调节方式.41.比例带:衡量比例调节作用的范围和强弱的数,其值等于比例放大倍数的倒数.42.积分作用:输出变量的变化率与输入变量对应的值成比例的连续作用.43.微分作用:输出变量之值与输入变量的变化率成比例的连续作用.44.漂移:在一段时间内,不是由外界影响而产生的仪表输出与输入关系非所期望的逐渐变化.45.程序:机器解题的工作顺序.46.指令:迫使机器执行给定运算和操作的控制信号.47.负向迁移:如果测量的起始点由零变为某负值时称为负向迁移.48.自动跟踪:当系统处在外部手动操作时,调节器的自动输出始终能自动地与执行机构的输入保持同步.49.两位作用:输出变量为两个值得位式作用.50.系统:为实现规定功能以达到某一目的而构成的一组相互关联的单元.51.调节阀的可调比:调节阀所能控制的最大流量与最小流量之比.52.输入阻抗:仪表输入之间的阻抗.53.负载阻抗:与仪表输出端连接的所有装置及连接导线的阻抗的总合.54.调制器:把直流信号转换为交流信号的器件.55.扰动:过程中出现的非所期望的,难以预料的对被控变量产生不利影响的变化.56.滞后:在调节对象中,被调参数的变化落后于干扰的变化,即输出量的变化落后于输入量的变化称为对象的滞后.57.死区:输入变量的变化不致引起输出变量有任何可察觉的变化的有限区间.58.标准节流装置:有关计算数据都经系统试验而有统一的图表,按统一标准规定进行设计制作的,不必经过个别标定就可使用的节流装置.59调节阀的流量特性:流体流过阀门的相对流量与阀门的相对开度之间的关系.60.集中分散型综合型控制系统:以微处理机为核心器件,实行分散控制和集中显示操作管理的综合控制装置.。

热电效应塞贝克效应

热电效应塞贝克效应
EAB(T,T0)=EAC(T,T0)+ECB(T,T0)
三种导体分别组成 的热电偶
返回
上页
下页
连接导体定律和中间温度定律
连接导体定律:在热电偶回路中,如果热电极A、B分别与
连接导线A’、B’相连接,结点温度分别为T、Tn、T0 ,那么回 路的热电势将等于热电偶的热电势EAB(T,Tn ) 与连接导线A’、B’ 在温度Tn、T0 时热电势 EA’B’(T,Tn ) 的代数和,即 :
当导体两端的温度分别为T、T0时,温差电势可由下
式表示:
T
EA T T0 T0σ AdT
式中A—A导体的汤姆逊系数。
对于两种金属A、B组成的热电偶
回路,汤姆逊电势等于它的代数和, 即:
温差电势
EABT T0
T
T0 σ A σ B dT
返回
上页
下页
综上所述,对于匀质 导体A、B组成的热电 偶,其总电势为接触电 势与温差电势之和,用 式子可表示为:
热电偶回路的总热电势
EABT T0 EABT EABT0
T
T0 σ A σ B dT
返回
上页
下页
讨论:
①如果热电偶两电极材料相同,则虽两端温度不同(T≠T0)。 但总输出电势仍为零(均质导体定律)。因此必须由两种 不同的材料才能构成热电偶。
②如果热电偶两结点温度相同,则回路中的总电势必等于 零。
在热电偶回路中,只要中间 导体两端的温度相同,那么接入 中间导体后,对热电偶回路的总 热电势无影响。可用式子表示为:
EABC(T,T0)=EAB(T,T0)
具有中间导体的 热电偶电路
返回
上页
下页
标准电极定律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塞贝克效应:1821年,德国物理学家塞贝克发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,此所谓“塞贝克效应”。

塞贝克后来还对一些金属材料做出了测量,并对35种金属排成一个序列(即Bi-Ni-Co-Pd-U-Cu-Mn-Ti-Hg-Pb-Sn-Cr-Mo-Rb-Ir-Au-Ag-Zn-W-Cd-Fe-As-Sb-T e-……),并指出,当序列中的任意两种金属构成闭合回路时,电流将从排序较前的金属经热接头流向排序较后的金属。

1834年,法国实验科学家帕尔帖发现了它的反效应:珀尔帖效应。

珀尔帖效应:当有电流通过不同的导体组成的回路时,除产生不可逆的焦耳热外,在不同导体的接头处随着电流方向的不同会分别出现吸热、放热现象。

这是J.C.A.珀耳帖在1834年发现的。

如果电流由导体1流向导体2,则在单位时间内,接头处吸收/放出的热量与通过接头处的电流密度成正比。

12称为珀耳帖系数[1],与接头处材料的性质及温度有关。

这一效应是可逆的,如果电流方向反过来,吸热便转变成放热。

汤姆孙效应:汤姆逊利用他所创立的热力学原理对塞贝克效应和帕尔帖效应进行了全面分析,并将本来互不相干的塞贝克系数和帕尔帖系数之间建立了联系。

汤姆逊认为,在绝对零度时,帕尔帖系数与塞贝克系数之间存在简单的倍数关系。

在此基础上,他又从理论上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。

或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。

这一现象后叫汤姆逊利用他所创立的热力学原理对塞贝克效应和帕尔帖效应进行了全面分析,并将本来互不相干的塞贝克系数和帕尔帖系数之间建立了联系。

汤姆逊认为,在绝对零度时,帕尔帖系数与塞贝克系数之间存在简单的倍数关系。

在此基础上,他又从理论上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。

或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。

这一现象后叫汤姆孙效应(Thomson effect),成为继塞贝克效应和帕尔帖效应之后的第三个热电效应(thermoelectric effect)。

汤姆逊效应是导体两端有温差时产生电势的现象,帕尔帖效应是带电导体的两端产生温差(其中的一端产生热量,另一端吸收热量)的现象,两者结合起来就构成了塞贝克效应。

汤姆逊效应的物理学解释是:金属中温度不均匀时,温度高处的自由电子比温度低处的自由电子动能大。

像气体一样,当温度不均匀时会产生热扩散,因此自由电子从温度高端向温度低端扩散,在低温端堆积起来,从而在导体内形成电场,在金属棒两端便形成一个电势差。

这种自由电子的扩散作用一直进行到电场力对电子的作用与电子的热扩散平衡为止。

(Thomson effect),成为继塞贝克效应和帕尔帖效应之后的第三个热电效应(thermoelectric effect)。

汤姆逊效应是导体两端有温差时产生电势的现象,帕尔帖效应是带电导体的两端产生温差(其中的一端产生热量,另一端吸收热量)的现象,两者结合起来就构成了塞贝克效应。

汤姆逊效应的物理学解释是:金属中温度不均匀时,温度高处的自由电子比温度低处的自由电子动能大。

像气体一样,当温度不均匀时会产生热扩散,因此自由电子从温度高端向温度低端扩散,在低温端堆积起来,从而在导体内形成电场,在金属棒两端便形成一个电势差。

这种自由电子的扩散作用一直进行到电场力对电子的作用与电子的热扩散平衡为止。

帕尔帖系数:电流的方向决定了吸收还是产生热量,发热(制冷)量的多少与电流的大小成正比,比例系数称为“帕尔帖系数”。

Q=л·I=a·T c·I,其中л=a·T c式中:Q——放热或吸热功率π——比例系数,称为珀尔帖系数I——工作电流a——温差电动势率Tc——冷接点温度热力学三大定律:热力学第一定律是能量守恒定律。

热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。

热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。

或者绝对零度(T=0K)不可达到。

热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡。

热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。

熵表述随时间进行,一个孤立体系中的熵总是不会减少。

N型半导体也称为电子型半导体。

N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。

在纯净的硅晶体中掺入Ⅴ族元素(如磷、砷、锑等),使之取代晶格中硅原子的位置,就形成了N型半导体。

这类杂质提供了带负电(Negative)的电子载流子,称他们为施主杂质或n型杂质。

在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电,由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。

自由电子主要由杂质原子提供,空穴由热激发形成。

掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。

P型半导体也称为空穴型半导体。

P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。

无杂质半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。

在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。

由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。

空穴主要由杂质原子提供,自由电子由热激发形成。

掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。

半导体中的杂质对电阻率的影响非常大。

半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。

例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。

杂质能级位于禁带上方靠近导带底附近。

杂质能级上的电子很易激发到导带成为电子载流子。

这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。

施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多(图2)。

在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。

价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。

价带中由于缺少一个电子而形成一个空穴载流子(图3)。

这种能提供空穴的杂质称为受主杂质。

存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。

半导体掺杂后其电阻率大大下降。

加热或光照产生的热激发或光激发都会使自由载流子数增加而导致电阻率减小,半导体热敏电阻和光敏电阻就是根据此原理制成的。

对掺入施主杂质的半导体,导电载流子主要是导带中的电子,属电子型导电,称N型半导体。

掺入受主杂质的半导体属空穴型导电,称P型半导体。

半导体在任何温度下都能产生电子-空穴对,故N型半导体中可存在少量导电空穴,P型半导体中可存在少量导电电子,它们均称为少数载流子。

在半导体器件的各种效应中,少数载流子常扮演重要角色。

氧化物半导体(oxide semiconductor)具有半导体特性的一类氧化物。

氧化物半导体的电学性质与环境气氛有关。

导电率随氧化气氛而增加称为氧化型半导体,是p型半导体;电导率随还原气氛而增加称为还原型半导体,是n型半导体;导电类型随气氛中氧分压的大小而成p型或n型半导体称为两性半导体。

非单晶氧化物可用纯金属高温下直接氧化或通过低温化学反应(如金属氯化物与水的复分解反应)来制备。

氧化物单晶的制备有焰熔法、熔体生长法和气相反应生长法。

氧化物半导体ZnO、CdO、SnO2等常用于制造气敏元件,Fe2O3、Cr2O3、Al2O3等常用于制造湿敏元件;SnO2膜用于制做透明电极等。

非晶半导体amorphous semiconductor[1]具有半导体特性的非晶体组成的材料,如α-硅、α-锗、α-砷化镓、α-硫化砷、α-硒等非晶材料。

这类材料,原子排列短程有序,长程无序。

又称无定形半导体。

部分称作玻璃半导体。

非晶半导体按键合力的性质分为共价键非晶半导体和离子键非晶半导体两类。

可用液相快冷方法和真空蒸发或溅射的方法制备。

工业上用于制备非晶半导体件,如太阳能电池、传感器、光盘、薄膜晶体管等。

:非晶材料英文名称:amorphous materials 结构长程无序、没有晶体周期性的固体材料。

施主指掺入半导体中能提供导电电子而改变其导电性能的一类杂质.其能级应该叫做施主能级。

例如,掺入半导体锗和硅中的五价元素砷、磷等原子都是施主.如果在某一半导体的杂质总量中,施主的总量占多数,则这类半导体是N型半导体。

受主掺入半导体中的一类杂质或缺陷,它能接受半导体中的价带电子,产生同数量的空穴,从而改变半导体的导电性能.例如,掺入半导体锗和硅中的三价元素硼、镓等原子都是受主.如果某一半导体的杂质总量中,受主的数量占多数,则这半导体是P型半导体.,这种杂质或缺陷叫做受主[1],其能级叫做受主能级。

价带中的电子如获得一定能量,可以跳到受主能级上,同时价带中出现一个空穴。

这一过程也可以理解为:束缚在受主能级上的空穴获得一定能量后进入价带,成为自由空穴,这一能量叫做空穴的电主取胜。

电离能小的受主能级是浅受主能级,电离能大的是深受主能级。

在能级图上空穴能量是向下增加的,受主能级在价带顶上方。

硼、铝、铟、镓是锗、硅中的浅受主能级杂质。

硼、铝、铟、镓也称为锗、硅中的P型杂质。

深能级受主可能成为电子陷阱或复合中心。

价带(valence band)或称价电带,通常是指半导体或绝缘体中,在绝对零度下能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不能在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

价带中电子的自由运动对于与晶体管有关的现象是很重要的。

被价电子占据的允带(低温下通常被价电子占满)。

能带结构在固体物理学中,固体的能带结构[1](又称电子能带结构)描述了禁止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍射引起的。

相关文档
最新文档