常用电器元器件选型及依据
电子元器件选型规范

元器件选型规范一,元器件选型原则:a)普遍性原则:所选的元器件要是被广泛使用验证过的,尽量少使用冷门、偏门芯片,减少开发风险。
b)高性价比原则:在功能、性能、使用率都相近的情况下,尽量选择价格比较好的元器件,降低成本。
c)采购方便原则:尽量选择容易买到、供货周期短的元器件。
d)持续发展原则:尽量选择在可预见的时间内不会停产的元器件。
e)可替代原则:尽量选择pin to pin兼容芯片品牌比较多的元器件。
f)向上兼容原则:尽量选择以前老产品用过的元器件。
g)资源节约原则:尽量用上元器件的全部功能和管脚。
二主要元器件选型1,处理器选型要求:要选好一款处理器,要考虑的因素很多,不单单是纯粹的硬件接口,还需要考虑相关的操作系统、配套的开发工具、仿真器,以及工程师微处理器的经验和软件支持情况等。
嵌入式微处理器选型的考虑因素在产品开发中,作为核心芯片的微处理器,其自身的功能、性能、可靠性被寄予厚望,因为它的资源越丰富、自带功能越强大,产品开发周期就越短,项目成功率就越高。
但是,任何一款微处理器都不可能尽善尽美,满足每个用户的需要,所以这就涉及选型的问题。
(1)应用领域一个产品的功能、性能一旦定制下来,其所在的应用领域也随之确定。
应用领域的确定将缩小选型的范围,例如:工业控制领域产品的工作条件通常比较苛刻,因此对芯片的工作温度通常是宽温的,这样就得选择工业级的芯片,民用级的就被排除在外。
目前,比较常见的应用领域分类有航天航空、通信、计算机、工业控制、医疗系统、消费电子、汽车电子等。
(2)自带资源经常会看到或听到这样的问题:主频是多少?有无内置的以太网MAC?有多少个I/O口?自带哪些接口?支持在线仿真吗?是否支持OS,能支持哪些OS?是否有外部存储接口?……以上都涉及芯片资源的问题,微处理器自带什么样的资源是选型的一个重要考虑因素。
芯片自带资源越接近产品的需求,产品开发相对就越简单。
(3)可扩展资源硬件平台要支持OS、RAM和ROM,对资源的要求就比较高。
常用电器元件选型

常用电器元件选型在选择常用电器元件时需要考虑以下几个方面:1.工作电压:在选型时需要确认元件能够承受的最大工作电压,同时需要确定实际工作中的电压范围。
2.工作电流:需要确定电路中的电流,以保证元件能够承受电路中的电流,尽量使元件工作在额定电流以下。
3.功率:元件的功率不宜过小,应能够承受电路中的功率,同时应注意元件自身的散热问题。
4.精度和频率响应:在一些需要高精度、高频率响应的电路中需要选择能够满足要求的元件。
5.温度特性:元件的性能随着温度变化而变化,需要确认元件能够在实际工作环境中正常工作。
常用电器元件的选型如下:1.电阻电阻是电路中最基本的元件之一,用于阻止电流通过,降低电压等。
选型时需要根据电阻值、精度、耐功率和温度系数等指标进行选择。
2.电容电容用于储存电荷,用于调整电路中的频率响应等。
选型时需要考虑电容值、耐压和容差等指标。
3.电感电感用于储存能量和抵抗电流变化。
选型时需要考虑电感值、耐电流和Q值等指标。
4.二极管二极管具有单向导通性,用于将交流信号转化为直流信号等。
选型时需要考虑额定电压、额定电流、正向压降和反向电压。
5.晶体管晶体管是一种具有放大作用的半导体元件,广泛用于放大、开关等电路中。
选型时需要考虑正向电压和最大电流等指标。
6.放大器放大器可将电路中的信号增大,用于音频、射频等应用中。
选型时需要考虑增益、输入和输出阻抗等指标。
7.开关开关用于控制电路中电流的通断,如继电器、MOS管、IGBT等。
选型时需要考虑额定电压、最大电流和速度等指标。
8.传感器传感器可将物理量转换为电信号输出,如温度传感器、压力传感器、光敏传感器等。
选型时需要考虑测量范围、输出信号和精度等指标。
9.电源电源用于为电路提供稳定的工作电压,如稳压器、开关电源等。
选型时需要考虑输入电压、输出电压和最大输出电流等指标。
以上是常用电器元件选型的基本原则和常用元件的选型指标,需要根据具体应用场景进行选型。
电子元器件选型与应用技术手册

电子元器件选型与应用技术手册随着电子科技的快速发展和广泛应用,电子元器件的选择和应用技术成为了一个重要的课题。
为了帮助读者更好地理解和掌握电子元器件的选择方法以及应用技巧,本手册将详细介绍一些常用的电子元器件,并提供选型和应用方面的建议,以期能够对读者有所帮助。
一、电阻器电阻器是电子电路中最基本也是最常用的元器件之一。
它的作用是通过阻碍电流的流动来实现电路中的电阻调节。
根据不同的电阻值和功率需求,读者在选择电阻器时应注意以下几点:1. 电阻值选取:根据电路的要求选择合适的电阻值,过大或过小的电阻值都会对电路的工作造成影响。
2. 功率选取:电阻器的功率要大于电路中的最大功率,以免发生过载情况。
3. 精度选取:根据电路的精度要求选择相应的电阻器,一般有1%、5%、10%等精度级别可供选择。
二、电容器电容器是储存电荷并能够释放电能的元器件。
在电子电路中,电容器常被用于滤波、耦合、时序控制等方面。
在选取电容器时,需要注意以下几个方面:1. 容值选取:根据电路的需求选择合适的电容值,过大或过小的电容值都会影响电路的性能。
2. 工作电压选取:电容器的工作电压要大于电路中的最大工作电压,以免产生电容器击穿现象。
3. 介质选取:不同的介质具有不同的特性,根据电路的需求选择合适的介质类型,如陶瓷、铝电解、塑料薄膜等。
三、二极管二极管是电子元器件中的一种,具有单向导电特性。
它广泛应用于整流、信号调理、保护等电路中。
在选取二极管时,需要注意以下几点:1. 工作电流选取:根据电路的需求选择合适的工作电流,过大的电流会使二极管过载,过小的电流则无法正常工作。
2. 工作电压选取:根据电路的需求选择合适的工作电压,过高的电压会使二极管击穿。
3. 正向压降选择:根据电路的要求选择合适的正向压降,不同的二极管具有不同的正向压降特性。
四、晶体管晶体管是一种主动器件,具有放大、开关等功能。
在电子电路中,晶体管被广泛应用于放大器、开关、振荡电路等。
常用元器件选型指南

常用元器件选型指南在电子产品设计和电路搭建中,常用元器件的选型是非常关键的一步。
正确选择合适的元器件,不仅可以保证电路的性能和可靠性,还可以提高产品的竞争力和市场份额。
本文将为您介绍一些常用元器件的选型指南,以帮助您在设计和搭建电路时做出正确的决策。
1.电源和稳压器件电源和稳压器件是电路中最基础的组成部分之一、正确选择合适的电源和稳压器件可以确保电路接收到充足和稳定的电能。
选型时需要考虑以下几个因素:-输入电压范围:根据应用场景和要求选择适合的输入电压范围,确保电源能够满足电路的供电需求。
-输出电压/电流:根据电路的工作电压和所需的电流选择合适的电源和稳压器件。
-效率和功耗:选择高效率的电源和稳压器件,以减少能源浪费和热量产生。
2.晶振和时钟器件晶振和时钟器件用于提供电路的时钟信号,以确保电路的正常运行和数据同步。
以下是一些选型指南:-频率范围:根据电路工作的频率要求选择合适的晶振和时钟器件。
-稳定性和精度:选择稳定性和精度较高的晶振和时钟器件,以确保电路的准确性和可靠性。
-尺寸和封装:根据电路的尺寸和空间要求选择适合的尺寸和封装类型。
3.传感器和探测器件传感器和探测器件用于感应和检测环境中的物理量和信号。
在选型时需要考虑以下几个因素:-检测范围和精度:根据需要检测的物理量的范围和精度要求选择合适的传感器和探测器件。
-接口和通信协议:选择具有适当接口和通信协议的传感器和探测器件,以便与其他设备和系统进行数据交互。
-环境适应性:根据应用环境的要求选择具有合适环境适应性的传感器和探测器件,例如温度、湿度、压力等等。
4.模拟器件模拟器件用于处理模拟电信号,如放大、滤波、调节等。
在选型时需要考虑以下几个因素:-功能和性能:根据电路的功能要求选择合适的模拟器件,如放大器、滤波器、运算放大器等。
-带宽和频率响应:根据电路的工作频率范围选择合适的模拟器件,以确保信号传输的准确性和稳定性。
-噪声和失真特性:选择噪声和失真特性较低的模拟器件,以提高电路的信号质量和准确度。
电子行业电子元器件选型与电路设计原则

电子行业电子元器件选型与电路设计原则随着科技的不断发展和进步,电子行业也得到了快速的发展和壮大。
而在电子设备的开发和制造过程中,电子元器件的选型和电路设计是至关重要的环节。
本文将介绍电子行业电子元器件选型和电路设计的原则、步骤和注意事项。
一、电子元器件选型原则电子元器件是电子产品中最基本的组成部分,包括电阻、电容、电感、二极管、三极管等等。
在选择电子元器件时,应遵循以下原则:1. 了解产品需求:在选型之前,需要充分了解所需产品的功能和性能要求。
明确产品的功能、性能指标以及工作环境等因素,才能更好地选择适合的电子元器件。
2. 参考数据手册:对于每一种电子元器件,都有相应的数据手册提供各项参数和性能指标。
选型过程中,应仔细阅读和比较不同厂家的数据手册,选择性能最合适的电子元器件。
3. 可靠性和稳定性:电子元器件的可靠性和稳定性对产品的性能和寿命有直接影响。
选择具有高可靠性和稳定性的电子元器件,能够提高产品的质量和可靠性。
4. 成本和供应商可靠性:在选型过程中,需要综合考虑电子元器件的成本和供应商的可靠性。
选择价格适中且有良好信誉的供应商,能够保障电子元器件的质量和供货的稳定性。
二、电路设计原则电路设计是实现电子产品功能的关键步骤,合理的电路设计能够提高产品性能和稳定性。
以下是一些电路设计的原则和注意事项:1. 功能需求与结构划分:在设计电路之前,应明确产品的功能需求,将电路划分为各个模块,进行逻辑和结构上的合理组织。
2. 选用合适的电子元器件:根据产品的功能需求和选型原则,选择合适的电子元器件,并遵循元器件的规格和参数要求。
3. 电路拓扑和信号传输:合理的电路拓扑可以减少电路中的噪声和干扰,提高信号的传输质量。
应采用合适的布局和线路连接方式,降低电路的交叉干扰。
4. 控制和保护电路设计:在设计电路时,应考虑到产品的控制和保护功能。
合理设置电路的控制系统和保护电路,保证电路的正常工作和防止意外损坏。
5. 散热与敏感部位处理:一些功耗较大的电子元器件会产生热量,需设计合理的散热系统,确保元器件的正常工作温度。
常用电气元件及选型依据

常用电气元件及选型依据电气元件是电路中不可缺少的重要组成部分,任何一个电路都需要电气元件来支持其正常工作。
在电子学领域中,电气元件的品种非常多,本文将着重介绍常用的电气元件及其选型依据,以帮助读者更好地了解和应用电气元件。
1. 电阻电阻是电路中最简单的电气元件之一,它是控制电流的流动和电势差的作用。
在一般情况下,电阻的阻值越大,电路中的电流就越小,反之亦然。
电阻的选型主要取决于阻值、功率和精度等因素。
常用的电阻有碳膜电阻、金属膜电阻和金属氧化物膜电阻等。
选型依据1.阻值:根据电路的要求选择合适的阻值,注意单位是欧姆(Ω);2.功率:根据电路的功率需求选择适当的功率,功率单位是瓦特(W);3.精度:根据电路的要求选择相应精度,通常用%表示。
2. 电容电容是一种储存电荷的元件,电容器是由导电板、电介质和电极组成的。
电容器极板上积累的电荷量与电容值成正比。
电容的选型主要考虑电容值、承压能力和工作频率等因素。
常用的电容有陶瓷电容器、铝电解电容器和钽电容器等。
选型依据1.电容值:根据电路的要求选择适当的电容值,电容的单位是法拉(F);2.承压能力:根据电路的电压需求选择电容器的承压能力;3.工作频率:选择合适的电容以确保在电路的工作频率范围内电容器的性能稳定。
3. 电感电感是电流通过时,产生磁场并储存磁能的元器件,通常由线圈和介质材料组成。
电感器的电感值表示单位电流通过时管道内磁通量的变化量。
电感的选型主要考虑电感值、额定电流和电感器材质等因素。
常用的电感有铁氧体电感、有机磁芯电感和铁磁芯电感等。
选型依据1.电感值:根据电路的要求选择适当的电感值,电感的单位是亨利(H);2.额定电流:根据电路的额定电流选择合适的电感器;3.材质:选择合适的电感器材质,通常分为铁氧体、有机磁芯和铁磁芯。
4. 二极管二极管是一种半导体元器件,可以只允许电流单向通行。
正向电压大于零时,二极管呈导通状态,电流可以通过;反向电压大于反向击穿电压时,二极管呈不导通状态。
电子元器件的选用与匹配原则

电子元器件的选用与匹配原则随着科技的飞速发展,电子元器件在我们日常生活中扮演着越来越重要的角色。
无论是我们使用的电子设备,还是各种科技创新的推动者,都离不开电子元器件。
如何正确选用和匹配电子元器件,将直接影响到电路的性能和稳定性。
本文将介绍电子元器件的选用与匹配原则,帮助读者更好地应对实际应用中的电子元器件选择问题。
一、了解电子元器件的基本类型和功能在选用和匹配电子元器件之前,我们首先要了解各类电子元器件的基本类型和功能。
常见的电子元器件包括电阻、电容、电感、二极管、三极管、集成电路等。
1. 电阻:用于调节电路电流和阻止电流流过的元器件。
2. 电容:用于储存和释放电荷的元器件,可以存储和释放电能。
3. 电感:用于储存和释放磁能的元器件,主要影响交流信号的变化。
4. 二极管:用于电流的单向导通的元器件,常用于整流和信号检测电路。
5. 三极管:用于放大电流的元器件,常用于放大电路和开关电路。
6. 集成电路:将多种电子元器件集成在一起组成功能更为复杂的元器件。
了解各类电子元器件的类型和功能,有助于我们在后续选用和匹配过程中更加准确地满足电路对元器件的要求。
二、根据电路需求选用电子元器件在选用电子元器件时,我们需要根据具体的电路需求选择合适的元器件。
以下是一些选用电子元器件的原则和步骤:1. 理解电路的功能和设计要求:在选用电子元器件之前,我们首先需要理解电路的功能和设计要求。
比如,是需要放大信号还是需要滤波,是需要进行数字处理还是需要进行模拟处理等。
2. 查阅相关资料和规格书:在选用电子元器件之前,我们可以查阅相关的资料和规格书,了解不同元器件的性能指标和参数。
比如,电阻的阻值、功率耐受能力,电容的电容值和电压耐受能力等。
3. 根据性能指标进行筛选:根据电路的功能和设计要求,我们可以根据元器件的性能指标进行筛选。
比如,如果需要放大信号,就要选择具有较高增益的放大器件;如果需要进行数字处理,就要选择具有高速处理能力的元器件。
电气工程中的电子元器件选型与应用

电气工程中的电子元器件选型与应用电气工程广泛应用于各种工业和民用领域,离不开电子元器件的选型与应用。
电子元器件是电路中的基本构成要素,正确的选型与应用可以确保电路的性能和可靠性。
本文将从电气工程中的电子元器件选型和应用两个方面进行论述。
一、电子元器件选型在电气工程中,正确选择电子元器件至关重要。
电子元器件的选型需要根据电路的要求和特性来决定,主要包括以下几个方面:1. 电气参数:电气参数是评价电子元器件性能的重要指标,例如电阻器的电阻值、电容器的容量、电感器的电感等。
在选型时,需要根据电路的工作电压、电流大小和频率等参数来选择合适的电子元器件。
2. 工作环境:不同的工作环境对电子元器件有不同的要求。
例如,工业领域的电子元器件需要具有较高的耐高温、耐振动、耐腐蚀等性能;而在民用电器中,电子元器件的体积和重量可能是一个考虑因素。
3. 可靠性:电子元器件的可靠性是评价其使用寿命和性能稳定性的指标。
在选型时,需要选择具有较高可靠性的电子元器件,以确保电路的正常运行和长期稳定性。
4. 成本:成本是电子元器件选型的重要考虑因素。
不同品牌和型号的电子元器件可能有不同的成本,需要综合考虑性能与成本之间的关系,选择合适的电子元器件。
二、电子元器件应用电子元器件在电气工程中有多种应用场景,下面将介绍几个典型的应用示例:1. 滤波器:滤波器是电子电路中常用的元器件,用于去除非期望频率的信号,保留期望频率的信号。
在电气工程中,滤波器广泛应用于音频设备、通信设备和电源等领域,以确保信号的准确传输和干净的电源供应。
2. 变压器:变压器是电气工程中常见的元器件,用于实现电压的变换和传输。
在电力系统中,变压器用于将高电压的电能传输到远距离并降低损耗;在电子设备中,变压器用于将电源高压转换为适合电路工作的低压。
3. 集成电路:集成电路是电子工程领域中应用广泛的元器件,它将大量的电子功能集成到一个芯片中。
在电气工程中,集成电路可用于控制系统、计算机硬件、嵌入式系统等,提供复杂的功能和高效的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接主触点极数 分
a.用于控制单相负载,如照明、电焊机等 b.能耗制动 a.交流电动机的动力制动 b.在绕线转子电动机的转子回路中,短接起动电阻 直接起动及控制交流电动机,应用最为广泛
按灭弧介质分
按有无触点分
空气式
真空式 有触点式 无触点式
用于一般用途的接触器
用于煤矿、石油化工企业以及电压660V及1140V的场合 前面所述均为有触点式交流接触器,用途广泛 殊场所,如冶金和化工等行业
3
适用于额定工作电压交流至660V,直流到440V的配电电路,作不频繁转换 一般用途万 DW17(ME) 之用。对线路及电气设备的过载、欠电压和短路进行保护,并具有分级保 能式 护作用,能直接起动电动机
4
DW (3WE)
适用于交流40~60Hz、电压至1000V、电流至的输配电网络,作为发电机、 一般用途万 电动机、变压器、整流器和电缆等设备和线路的控制和保护开关。在正常 能式 条件下,还可作为电路的不频繁转换及电动机的不频繁起动之用
8
DZ10
9
DZ10
10
DZ
11
DZ15
一 般 用 途 小型,通用性强。在电路中作为配电、电动机、照明线路和过载、短路保护用, 塑壳式 同时还可作为线路的不频繁切换及电动机的不频繁起动
4.接触器
接触器:接触器是用来频繁地远距离接通或断开交直 流主电路及大容量控制电路的控制电器。它不同于刀 开关类手动切换电器,因为它具有手动切换电器所不 能实现的远距离操作功能,同时又具备手动切换电器 所没有的失压保护功能;它也不同于自动开,因为它 虽然具有一定的过载能力,但却不能切断短路电流, 也不具备过载保护的功能。接触器由于生产方便,成 本低廉,用途广泛,所以在各类低压电器当中,它是 生产量最大、使用面最广的一种产品,据统计,电力 系统的能量有一半以上通过接触器分配到各种受电器 ——电动机、电热设备、电焊机、电容器组等,但接 触器最主要的用途还是控制电动机。
2 3
4
RM7 由无填料纤维密闭熔管及底座组成,分 500V、1000A以下电 RM10 断能较大 路,作过载和短路保护 RLS RS0 R1 分断能力大,熔断速度快 由装有熔丝的玻璃管,底座组成 硅半导体器件过载。短 路保护 二次电路过载及短路保
5 6
断路器
作用:用于电路中发生过载、短路和欠电压等不正常情况时,能自动 分断电路的电器;也可用作不频繁地起动电动机或接通、分断电路。 它是低压交、直流配电系统中的重要保护电器之一。断路器按结构型 式可分为框架式(也称万能式)和塑料外壳式(也称装置式)两种。 断路器的基本参数特性:额定电压Ue;额定电流In;过载保护(Ir 或Irth)和短路保护(Im)的脱扣电流整定范围。 额定运行短路分断能力(Ics):额定极限短路分断能力(Icu)或( Icn)是断路器能成功分断而不会被损害的最高故障电流。产生这种 电流的可能性非常低,普通环境下,故障电流比断路器额定分断能力 (Icu)低得多。另一方面,大电流(可能性较低)在良好状态下被分断 非常重要,这样在故障电路被修复以后,断路器能够立即合闸。
6
7
DZ5
一 般 用 途 外形尺寸小,复式脱扣,按钮操作,板前接线。作为电动机及其它用电设备的过 塑壳式 载和短路保护用,亦可作为不频繁操作的小容量电动机的直接起动用
具有多种脱扣器,可附分励脱扣和欠压脱扣,手动或电动操作,板前或板后接线; 一般用途 作为不频繁地接通与断开电路用,可保护电气设备、电动机和电缆不因短路、过 塑壳式 载而损坏,应用最广 具有单极、2极、3极多种形式,压板式或插入式接线,使用方便。主要用于宾馆、 一般用途 公寓、公共场所和工矿企业等处的照明线路中,作为线路和过载、短路以及线路 塑壳式 转换用 漏电保护 用塑壳式 特点同DZ12,还可作为漏电保护用
四川科陆新能电气有限公司
常用电气元件及选型依据
主要电气元件的作用
电气名称
刀开关
主要品种
大电流刀开关 熔断器式刀开关 开关板用刀开关 负荷开关 组合开关 换向开关 框架式(万能式)断路器 塑料外壳式断路器 限流式断流器 漏电保护断路器
用途
主要用于电路隔离,也能不频繁地 接通和分断容量不大的低压电路或 直接启动小容量电机 用于两种以上电源或负载的转换和 通断电路 用于线路过载、短路或欠压保护, 也可用作不频繁接通和分断电路
主令电器 电流互感器 电压互感器 电流传感器 电压传感器
常用电气元件及选型依据
主要介绍以下电器的作用,分析电路分析进行选型
1.隔离开关 2.熔断器 3.断路器 4.接触器 5.热继电器 6.电流互感器 7.电压互感器 8.电流传感器 9.电压传感器 10.电抗器
1.隔离开关
隔离开关即在分位置时,触头间有符合规定要求的绝缘距离和明显的断开标 志;在合位置时,能承载正常回路条件下的电流及在规定时间内异常条件( 例如短路)下的电流的开关设备。 主要作用:断开无负荷的电流电路.使所检修的设备与电源有明显的断开点, 以保证检修人员的安全,隔离开关没有专门的灭弧装置不能切断负荷电流和短 路电流,所以必须在电路在断路器断开电路的情况下才可以操作隔离开关。 隔离开关选型: (1)额定电压:额定电压=回路标称电压*1.2/1.1 倍 (2)额定电流:额定电流标准值应大于最大负荷电流的150%。 (3)额定热稳定电流:大于系统短路电流的额定热稳定电流值 低压隔离开关型号:HD、HS系列隔离开关,HR系列熔断时式隔离开关 。
接触器分类
分类原则 按主触点所控 制的电路种类 分 按主触点的位 置分(当励磁 线圈无电时) 分类名称 交流 主要用途 作为远距离频繁地接通与分断交流电路用
交直流
动合 动断 一部分动合另 一部分动断 单极 双极 三极
作为远距离频繁地接通与分断交流或直流电路用
广泛用于控制电动机及电阻负载等 用于能耗制动或备用电源的接通 用于发电机励磁回路的灭磁或备用电源的接通
2.熔断器
作用:当电路发生过载或短路时,电流大于溶体允许的正常发热电流,使 溶体温度急剧上升,超过其熔点而熔断,从而分断电路,保护了电路和设 备。 特点:1.选择性好,上级熔断体额定电流不小于下级熔断体额定电流的 1.6倍,就视为上下级能有选择性的断开故障电流;2.限流特性好,分段 能力高。3.相对尺寸小,价格便宜。 缺点:1.故障熔断后必须更换熔断体;2.保护功能单一,只有一段反时限 保护特性。3.发生一相熔断时,对三相电机将导致两相运行的后果,可用 带发报警信号的熔断器弥补。4.不能远程操作,需要与电动刀开关,负荷 开关组合才可能。 主要技术参数:额定电压(V) 额定电流(A) 额定分段能力(KA) 熔 断体额定耗散功率(W) 熔断器的选择:熔断器的额定电流与熔体的额定电流是不同的,某一额定 电流等级的熔断器可以装入几个不同额定电流等级的熔体,所以选择熔断 器作线路和设备的保护时,首先要明确选用熔体的规格,然后再根据熔体 去选定熔断器。
部分常用低压断路器的基本特点及主要用途
序号 5 型号 类型 特点及用途 DW18 一 般 用 途 适用于额定频率50HZ、额定电压660V、额定电流量及以下的配电电路中,作过 (AE-S) 万能式 载、失压和短路保护,以及在正常条件下,作为线路的不频繁转换之用 DW914 (AH) 引进日本寺崎公司产品。适用于额定频率50HZ(60HZ)、交流电压660V及以下、 一般用途 直流电压440V及以下,电流600A的配电系统中,作过载、负压和短路保护,以 万能式 及在正常条件下,作为线路的不频繁转换之用
熔断器的选择
(1)良好的配合,使其在整个曲线范围内获得可靠的保护。(2) 熔断器的极限分断电流应大于或等于所保护电路可能出现的短路冲击 电流的有效值,否则就不能获得可靠的短路保护。 (3)由于熔断器 的保护特性是不稳定的,因此在配电系统中,各级熔断器必须相互配 合以实现选择性,一般要求前一级熔体比后一级熔体的额定电流大 1.6倍以上,或者上一级熔断器根据标准特性曲线查出的熔断时间至 少应为后一级熔断器根据标准特性曲线查出的熔断时间的3倍以上, 这样才能避免因发生越级动作而扩大停电范围。 熔体电流的选择:(1)照明电路 熔体额定电流≥被保护电路上所 有照明电器工作电流之和。 (2) 电动机:①单台直接起动电动机 熔体额定电流=(1.5~2.5)×电动机额定电流。 ②多台直接起动电 动机 总保护熔体额定电流=(1.5~2.5)×各台电动机电流之和。 ③降压起动电动机 熔体额定电流=(1.5~2)×电动机额定电流。 ④绕线式电动机 熔体额定电流=(1.2~1.5)×电动机额定电流 。 (3) 配电变压器低压侧 熔体额定电流=(1.0~1.5)×变压器低 压侧额定电流。 (4) 并联电容器组 熔体额定电流=(1.43~ 1.55)×电容器组额定电流。
低压断路器的基本特性
序号 项目 含义及要求
1
额定电压和 常 用 的 额 定 电 压 UN 为 : 交 流 220,380,660,1140; 直 流 额定绝缘电 110,220,440,750850,1000,1500。绝缘电压大于或等于额定电压 压/V 常用的额定电流IN为:6,10,16,20,32,40,(60),100,(150), 额定电流/A 160,200,250,315,400,(600),630,800,1000,1250,(1500), 1600,2000,(3000),3150等 短 路 通 断 能 在规定的操作条件下,开关按通与分断短路电流的能力,一般用KA(有效值) 力 表示
转换开关 断路器
熔断器
有填料熔断器 讲解大纲 无填料熔断器
快速熔断器 自复熔断器
用于线路或电气设备的短路和过载 保护
接触器
交流接触பைடு நூலகம் 直流接触器
主要用于远距离频繁起动或控制电 动机,以及接通和分断正常工作的 电路
主要电气元件的作用
控制继电器 电流继电器 电压继电器 时间继电器 中间继电器 热继电器 按钮 限位开关 微动开关 万能转换开关 测量用电流互感器 保护用电流互感器 主要用于远距离频繁起动或 控制其它电器或作主电路的 保护 主要用于接通和分断控制电 路 交流大电流检测 交流高压检测 交、直流电流检测 交、直流电压检测