大坝安全监测自动化系统的设计与实施(精)

合集下载

水库大坝GNSS位移自动监测系统方案

水库大坝GNSS位移自动监测系统方案

水库大坝GNSS位移自动监测系统方案一、方案背景我国已拥有水库大坝9.8万余座,其中95%以上为土石坝,95%以上是上个世纪80年代以前建设的老坝。

虽然近10年来我国进行了大规模的病险水库除险加固,但水库大坝数量多,土石坝多,出险的几率非常高。

大坝作为一种大型水工建筑物,其投资和建成后产生的效果都是巨大的,同时由于其结构、运行环境等因素的复杂性,加上设计、施工、运维的不确定性,如果发生意外变形,失事后造成的灾难也是极其严重的。

因此对水利水电大坝运行状态进行持续的实时监测,是十分有必要的,不仅可以为大坝提供安全评估,保证大坝的安全运行,对水库大坝安全自动化监测预警意义重大。

二、系统组成水库大坝GNSS位移自动监测系统采用无人值守自动化监测,以物联网、互联网、北斗+等技术为理论基础,以自主研发的监测平台及各类传感器为核心,充分利用各种监测手段,建立地表和地下深部的三维立体监测网,对水库大坝坡进行系统、可靠的变形监测。

实时监测水库大坝不同部位各类型裂缝的发展过程,岩土体松弛以及局部坍塌、沉降、隆起活动;地下、地面变形动态(包括滑坡体变形方向、变形速速、变形范围等);地下水水位、水量、水化学特征变化;倾斜和大坝各种建筑物变形状况;降雨以及地震活动等外部环境变化等,据此对水库大坝滑坡变形发展和变形趋势作出预测,判断其稳定状态给出水库大坝失稳预警值,指导施工,反馈设计和检验治理效果,了解工程实施后的变化特征,为设计施工及灾害预警提供科学依据。

可以把高水库大坝综合在线监测分为四层:感知层、网络层、平台层、应用层。

感知层:实时感应水库大坝监测参数传感器的状态,如GNSS表面位移监测、地下水位、土壤含水率、土压力、和视频监控摄像机,降雨量等前端感知设备;网络层:支持数据通信,可上、下双向通讯,支持无线蜂窝网络、短信、北斗、PSTN、超短波、ZigBee等通信方式。

感应设备可通过监测预警平台的通讯方式,上行发送至监测控制中心平台。

新丰江大坝自动化安全监测系统的实施及运行情况

新丰江大坝自动化安全监测系统的实施及运行情况

新丰江大坝自动化安全监测系统的实施及运行情况刘光洪!郭洁惠!许岳城(广东省新丰江水电厂9广东省河源市517021)摘要!新丰江大坝自动化安全监测系统自1990年开始9经过分期\分批实施后9现已初具规模9有垂线\引张线\扬压力\部分坝体渗流及两岸绕坝渗流监测5个项目O 目前9整个系统采用南京南瑞公司的DA M S -N 型模块化智能分布式大坝监测系统9投运后经历了高低气温\高湿度及强雷击的考验9运行情况良好9未出现系统故障9而且自动化仪器的观测精度高于人工观测精度O 文中主要介绍了整个系统的分期实施过程及运行情况9对大坝自动化监测系统的组成\配置和主要功能做了简要叙述9并对监测成果进行了初步分析O 关键词!大坝安全监测;数据采集单元;资料分析中图分类号!TV698收稿日期I 2003-03-25O1工程概况新丰江水电站位于广东省河源市内东江支流新丰江的最后一个峡谷出口处O 该工程以发电为主9电站总装机容量315MW O 水库控制流域面积5734k m 29总库容139>108m 39库容系数达99%9属完全多年调节水库O新丰江大坝原设计为混凝土单支墩大头坝9由19个18m 宽的坝段及两岸重力坝组成9坝顶高程124m 9坝顶轴线长440m 9最大坝高105m 9坝底最大宽度为102.5m 9上\下游坡比均为1=0.5O2主要监测项目经过1990年至今的分步骤实施9新丰江大坝自动化安全监测系统已初具规模9主要实施了大坝的水平位移及渗压渗流监测项目O 安装的自动化设施有垂线坐标仪\引张线仪\扬压力计\部分坝体量水堰渗流量计及两岸绕坝渗流计O 具体内容如下I 水平位移监测包括11台RZ -25型电容感应式双向垂线坐标仪\4台SRZ -25-10型电容感应式三向垂线坐标仪及27台RY -20型电容感应式单向引张线仪;渗压渗流监测包括49支GY 型扬压力传感器96支YL 型量水堰仪O 系统的布置如图1所示O图1新丰江大坝自动化监测系统立面布置3系统组成"配置和主要功能3.1系统组成和配置整个系统采用了南京南瑞集团公司的DA M S -N 型模块化智能分布式大坝监测系统9由传感器\数据采集单元(DAU )\计算机网络工作组\信息管理软件及通信网络构成O 各监测仪器用信号电缆接入DAU 内9DAU 之间用双绞屏蔽电缆通信9总线通信方式采用RS -485O DAU 与工控机之间采用光纤通信O 系统配置如图2所示O数据采集系统由11台DAU -2000型智能模块化数据采集单元和1套UPS \净化电源组组成O 其中98块NDA1203型模块共接入49支扬压力传感93第27卷第4期2003年8月20日Vol .27No .4Au g .2092003图2新丰江大坝自动化监测系统配置器912块NDA1303型模块共接入11台双向垂线坐标仪\4台三向垂线坐标仪\27台引张线仪及6支量水堰仪O信息管理系统由1台服务器(E40)\2台工作站(一台主要用于数据采集9另一台用于系统备份)\ 1台~P激光打印机\1套UPS\1台净化电源及大坝安全信息管理软件组成O由工控机采集现场数据9用管理机及管理软件分析处理监测信息O3.2系统主要功能系统采用W i ndo ws989W i ndo ws NT工作平台9功能强大9操作简单\方便9主要功能有在线监测\离线分析\数据库管理\成果换算\图形绘制\报表制作和工程档案管理等9基本满足了大坝安全监测的日常管理需要O4系统的实施过程及运行情况新丰江大坝是较早实施自动化监测的大坝之一9其实施过程是分期\分批逐步进行O4.1第1期工程第1期工程于1990年6月安装调试完毕并投入试运行9只安装了1个垂线自动化监测项目O大坝在8号坝段和14号坝段各设置了1条正\倒垂线9在原人工光学测点处安装电容感应式双向垂线坐标仪来监测坝体挠度变化9共11个测点9采用DA M S-i型集中式数据采集系统O限于当时的技术水平9监测数据经常中断O 1994年后对系统做了全面维护9并加强了用户培训9从1994年开始系统取得较为连续的监测数据9相对而言9系统的维护工作量较大O4.2第2期工程第2期工程于1998年7月底安装调试完毕并投入试运行9共有扬压力\两岸绕坝渗流\坝体排水和前期垂线自动化监测升级改造4个项目O扬压力自动化监测只选择1个纵断面和3个横断面9纵断面为每个支墩的1号测点9横断面为5号\8号\14号墩的所有测点9共26个测点;绕坝渗流自动化监测设置在两岸9共4个测点9扬压力和绕坝渗流自动化监测均采用GY型扬压力传感器;坝体排水自动化监测采用量水堰方式9选择了来水量较大的6个测点9堰槽采用混凝土现场浇注而成9安装了YL型量水堰仪O本期工程采用DA M S-I型分布式数据采集系统9其性能优于DA M S-i型集中式数据采集系统O该系统故障率低9测量精度高于人工观测精度9运行情况基本正常9并于2000年4月通过原广东省电力公司组织的验收O但在系统投运8个多月后9因遭受强雷击9整个系统出现了比较严重的故障9造成采集系统及几支扬压力传感器损坏等O南瑞集团公司派技术人员到现场进行了维护9并对系统做了许多特殊的防雷处理9使系统防雷性能得到一定的改善9监测数据较为稳定9但系统的维护工作量仍然较大O1999年8月9南瑞集团公司对垂线和量水堰自动监测进行免费升级改造9采用DA M S-N型监测系统代替原DA M S-I型分布式数据采集系统9即把数据采集单元MCU更换为DAU9并将监测软件进行相应升级O系统升级后9经几次强雷击考验9垂线和量水堰监测系统运行正常9监测数据稳定可靠;而未升级改造的扬压力和绕坝渗流监测系统却没有经受住强雷击考验9仍然出现部分MCU不能测量\部分传感器损坏等故障9系统的维护工作量较大O 2000年5月9南瑞集团公司再次对扬压力和绕坝渗流自动监测进行免费升级改造9至此9整个系统都采用了DA M S-N型监测系统O在硬件升级的同时9软件监测管理系统也进行了升级完善O操作平台由原来的DOS操作系统变为W i ndo ws98操作系统9用户界面友好\直观9操作简便ODA M S-N型监测系统投运至今9经历了高低气温\高湿度及多次强雷击的考验9运行情况良好9未出现系统故障9系统维护简便9基本做到了免维护O 由此可见9DA M S-N型监测系统具有高稳定性\高可靠性\高抗干扰及防雷电感应能力9其性能大大优于DA M S-I型分布式数据采集系统O4.3第3期工程第3期工程是引张线自动化监测项目9于2001年3月安装调试完毕并投入试运行O大坝共设置2条引张线9坝顶引张线布置在坝顶的上游侧9基础廊道引张线布置在廊道的上游侧9测点设置在支墩42003927(4)中间9安装了既可电测又可光测的电容感应式单向引张线仪9坝顶21个测点9廊道6个测点9共27个测点o引张线端点的位移采用倒垂线控制9安装了电容感应式三向垂线坐标仪9共4个测点o引张线采用双管9所有电缆都用钢管保护并接地9钢管与测点箱接合处用橡皮泥封堵;提供了人工观测设备来校核自动化仪器观测的正确性o引张线是实施大坝自动化监测最成功的项目9系统投运至今未出现任何故障9运行情况良好o4.4第4期工程第4期工程增加了第2期工程遗留的扬压力测点19个9以完善扬压力自动监测系统o2002年12月本工程安装调试完毕并投入试运行o从目前运行情况看9各测点测值连续\稳定9系统运行正常o5监测成果及初步分析5.1垂线自动化监测垂线自动化监测系统经过几次升级改造后9所取得的实测资料一次比一次连续\稳定9监测数据的规律性越来越好(如图3所示)9且光测与电测测值过程线的变化趋势一致o图3垂线比测过程线从测值过程线可以看出I坝体的挠度位移受气温影响较大9温度升高9坝体向上游位移9从3月初开始缓慢向上游位移99月初达到最大值;温度降低时9坝体向下游位移9坝体最大年变幅约8mm o5.2引张线自动化监测引张线自动化监测项目运行后9所取得的实测资料连续稳定\规律性好9真实反映了坝体水平位移的变化规律9如图4所示o从测值过程线可以看出I 人工观测与电测结果吻合9过程线的变化趋势非常一致;坝顶水平位移受气温影响较大9温度升高9坝体向上游位移9从3月初开始缓慢向上游位移99月初达到最大值;温度降低时9坝体向下游位移91年多的监测成果表明坝体最大年变幅约9mm;基础廊道水平位移基本不受气温影响9主要受上游水位影响9但影响不明显9测值稳定o图4引张线比测过程线5.3扬压力和绕坝渗流自动化监测扬压力和绕坝渗流自动化监测主要是与人工观测进行比测9由两者的差值情况来判别自动化监测仪器的精度o人工观测无压孔采用测绳测读9具有较高的精度9有压孔采用压力表测读9精度相对较低(小于0.90m9压力表量程60m9精度1.5级);扬压力计给出的相对精度为0.5%满量程9按50m测量范围9电测的精度小于0.25m o扬压力和绕坝渗流监测数据真实可靠9与人工测值的变化趋势一致9其精度均满足设计和规范要求9如图5所示o图5扬压水位比测过程线由图5可知9扬压力孔及绕坝渗流孔水位主要受上游水位和降雨量的影响9并滞后于上游水位和降雨o5.4坝体排水自动化监测坝体排水自动化监测采用量水堰方式9人工观测流量与自动化测量量水堰的堰上水头换算流量结果是一致的9但是9量水堰的流量采用拟合公式计算o我们用容积法测得实际流量9与堰上水头建立关系函数9通过拟合给出流量与堰上水头的经验公式o目前9量水堰的流量与实测流量仍有一些差距9主要是因为实际流量与堰上水头的实测资料还不够全面9待获得更多的实际资料后进一步拟合修正o6精度分析对自动化仪器数据和人工观测数据按照相同的时间和因子进行逐步回归计算分析9结果见表1o14!大坝监测仪器及自动化!刘光洪等新丰江大坝自动化安全监测系统的实施及运行情况表1自动化与人工观测数据回归计算结果比较使用仪器自动化观测复相关系数标准差样本数F 检验值人工观测复相关系数标准差样本数F 检验值PL870.8760.819613811518.790.8850.95375333.95PL850.8870.36751374717.690.8850.95375333.95PL840.9850.0692*******.520.9280.69095966.09PL1460.9800.44096682336.750.9720.495754174.91PL1440.9570.308311472040.500.9580.445825122.70PL1430.8720.3553769346.060.9280.69095966.09G8_030.9650.150315382958.460.9070.03065444.66G 11_010.9650.150315382958.460.9100.03015446.44G19_010.9650.150215392960.390.9600.172660160.79由表1数据可以看出9自动化观测数据测次密集9总体上看9自动化观测数据的复相关系数要大于人工观测数据9说明自动化观测数据规律性强;自动化观测数据的标准差小于人工观测数据9说明自动化仪器的观测精度高于人工观测精度(G 8_039G11_01为无压孔人工用测绳观测9精度高于自动化观测);而自动化观测数据的检验值大于人工观测数据9说明自动化观测数据所建模型的有效性高于人工观测数据所建模型O 7结语新丰江大坝安全自动化监测系统设计先进\设备功能齐全\安装调试符合合同和规范要求9实测资料表明电测精度高于人工观测精度O 系统在分期\分批实施的过程中9无论是设计\安装\调试9还是运行\维护\管理等方面都取得了许多非常实用的经验9为今后新丰江大坝全面实施自动化监测创造了有利条件9也为各兄弟单位实施大坝安全自动化监测提供了宝贵的经验O刘光洪(1971T)9男9助理工程师9长期从事大坝监测工作o E -m ail li u g uan g hon g 001@163.co mI M PLE MENTATI ON AND OPERATI ON OF XI NFENG JI ANGDA M SAFETY MONI TORI NG SYSTE ML i u Guan g hOn g ,GuO j ie hui ,Xu Yuec hen g (Guan g don g X i nf en gj i an g ~y dr o p o wer P l ant ,~e y uan 517021,Chi na )Abstract :S i nce 1990,t he aut o m atic saf et y monit ori n g s y ste m of t he X i nf en gj i an g D a m has been i m p l e m ented b y sta g es and i n batches .lt has taken sha p e w it h 5obser vati on ite m s ,i .e .vertical li ne ,tensi on w ire ,u p lif t p ressure ,p art of see p a g e fl o w f r o m t he da m bod y and t wo bank see p a g e fl o w ar ound t he da m.The whole s y ste m ado p ts t he DA M S -N modularized i ntelli g ent distri buted da m monit ori n g s y ste m.A f ter t he tests of hi g h and l o w air te m p erat ures ,hi g h hu m i dit y and str on g li g hteni n g str okes ,t he s y ste m is still i n g ood conditi on ,moreover ,t he accurac y of aut o m atic obser vati on is hi g her t han t hat of m anual obser vati on .This p a p er m ai nl y i ntr oduces t he i m p le m entati on p r ocess and t he o p erati on conditi ons of t he whol e s y ste m ,descri bes bri efl y t he co m p ositi on ,confi g urati on ,and m ai n f uncti ons of t he s y ste m ,and anal y zes p reli m i naril y t he obser vati on results .K e y words :monit ori n g of da m saf et y ;data ac C uisiti on unit (DAU );data anal y sis(上接第31页)APPLI CATI ON OF SYNCHRONOUS CONTROL RI NG GATE TOXI AOLANGD I HYDROPOW ER PLANTzhan g j ians hen g 1,2,L i u D in gy Ou 2,zhaO Xuc hun 2(1.X i an Uni versit y of T echnol o gy ,X i an 710048,Chi na )(2.X i aol an g di ~y dr o p o wer P l ant ,Ji y uan 454681,Chi na )Abstract :The X i aolan g di ~y dr o p o wer P lant is l ocated on t he ste m of t he silt-laden Yell o w R i ver .The w icket g ate m a y be seri ousl y abraded and severe water leaka g e m a y occur .This f act or must be consi dered i n t he desi g n of t he t ur bi ne .ln t he m eanti m e ,f or ada p ti n g t o t he water C ualit y ,t he ri n g g ate is a pp li ed t o X i aol an g di h y dr o p o wer units .The constr ucti on ,f uncti on ,and contr ol p ri nci p les of t he ri n g g ate are i ntr oduced ,and t he p ractical a pp licati on is anal y zed .K e y words :ri n g g ate ;s y nchr onous contr ol ;f uncti on ;a pp licati on anal y sis ;h y dr o p o wer p l ant242003927(4)。

甘峪水库大坝安全监测自动化系统初步设计

甘峪水库大坝安全监测自动化系统初步设计

⽢峪⽔库⼤坝安全监测⾃动化系统初步设计⽢峪⽔库⼤坝安全监测⾃动化系统初步设计西安理⼯⼤学⽔利⽔电⼟⽊建筑研究设计院⼆O⼀四年⼗⽉2设计原则与依据2.1设计原则(1)监测项⽬选择、仪器埋设、观测读数、资料整编与分析等符合《⼟⽯坝安全监测技术规范》的要求。

(2)密切结合⽢峪⽔库⽬前的实际情况和1999年11⽉⼤坝安全鉴定结论,在监测仪器的布置上突出重点、兼顾全⾯。

(3)在仪器设备的造型上,遵循可靠、耐久、经济、实⽤的原则,⼒求少⽽精,且利于⾃动化系统的实施。

(4)在监测仪器、监测技术以及监测⽅法上⼒求先进。

(5)重要的监测项⽬除了⾃动化采集外,还要有⼈⼯⼿段进⾏对⽐测量,以检验⾃动化测量的正确性和准确性。

(6)系统结构简单、维护⽅便。

2.2设计依据本系统设计主要依据的⽂件有:(1)《⽔库⼤坝安全管理条例》国务院颁发1991.3.23 (2)《⼟⽯坝安全监测技术规范》SL 551-2012 (3)《⼤坝安全⾃动监测系统设备基本技术条件》SL-268-2001 (4)《建筑物防雷设计规范》GB-50027-2010 (5)《⽢峪⽔库⼤坝⼯程地质勘察报告》(6)《⽢峪⽔库⼤坝安全鉴定报告书》(7)《户县⽢峪⽔库除险加固⼯程初步设计报告》西安市⽔利建筑勘测设计院3项⽬总体设计3.1监测项⽬2008年户县⽢峪⽔库除险加固⼯程对⽔库增设了⼤坝的外部监测项⽬,包括外部变形检测和岸边滑坡体位移监测,在⼤坝内部未埋设观测仪器,本次设计增设内观项⽬,依据《⼟⽯坝安全监测技术规范》(SL551-2012),结合⽔库⼤坝的实际情况,拟确定以下⼏⽅⾯作为⼤坝安全监测的主要项⽬:⼀、变形观测(已设)1.垂直、⽔平位移2.坝肩滑坡体变形⼆、渗流监测1.坝体渗流压⼒2.渗流量3.绕坝渗流三、环境量监测1.库⽔位2.⽓温、⽔温四、⼊库站⽔位监测五、放⽔洞⽔位监测3.2系统结构⽢峪⽔库⼤坝安全监测⾃动化系统选⽤分布式数据采集系统,分布式数据采集系统主要具有较好的可靠性,通⽤性强,组态灵活,安装简便,抗⼲扰性能强等优点,能保证监测数据的连续性,同时具有⼀定的扩展性。

某水库大坝安全监测自动化系统设计与施工

某水库大坝安全监测自动化系统设计与施工

某水库大坝安全监测自动化系统设计与施工摘要:本文重点从某水库大坝的安全监测自动化系统的实施,谈到了对测位的布置、信号传输及设计、施工,同时也对防雷等问题做了分析。

关键词:水库大坝;监测;自动化;设计实施0 前言在土石坝安全监测自动化系统中,基础土建是其重要组成部分,往往由于认识的不足和工程应用研究较少,造成系统脆弱,成为水利自动化推广普及以及向深层次发展的屏障。

为此,应重视并研究水利自动化系统的基础土建问题,为新建、改建及扩建的自动化工程建立可行的基础条件。

1测位布置测位的布设原则是在满足大坝安全监测需求的基础上与自动化建设过程及长期稳定运行相适应的综合建设体系。

某水库枢纽工程由土坝、溢洪道、输水洞和水电站等组成。

土坝坝型为粘土心墙坝,最大坝高63m,坝顶长267m。

目前实施的主要测点及监测项目有:大坝渗流压力、浸润线、绕坝渗流、上游坝坡渗透压力、心墙渗透压力、坝基渗透压力、排水导渗降压效能、地下水位、渗流量、库水位、温度场等。

主要监测方法为测压管传感器法。

主要监测设备为测压管、渗压计、投入式压力传感器、超声波水位流量计、电磁流量计、铂电阻温度传感器等。

自动化系统的设计要求是将各测点采集的监测数据传送到监测中心站,由监测中心站完成数据处理与存储过程,实现土坝安全监测的自动化。

2 信号传输大坝安全监测自动化系统是国内外近年来发展较快的应用技术,其系统的土建设计与施工目前还缺乏想应的行业规范,实施中遇到的主要问题有传输路径研究、设备保护、线路防护等,防护过程包括防止人为破坏、气候因素造成的破坏、电磁干扰及雷电轰击等。

过去的水库管理中,曾有过自动化的雏形,如单一的远传水位计或坝体内预埋传感器等,信号传输路径通常是线路直埋或配合部分架空敷设,多数设备不可避免地在外力场、温度及电磁场的作用下很快夭折。

总结其破坏形式,主要是外力破坏(如剪刀、拉力等)、生物破坏(如鼠嗑、虫灾等)、雷击破坏等;而内力破坏则不多见。

水利大坝自动化监测预警系统方案

水利大坝自动化监测预警系统方案

小浪底水利大坝安全自动化监测预警系统设计方案目录1项目背景 (4)1.1 项目概况 (4)1.2 水利大坝监测预警的必要性 (5)2 区域地理环境背景 (6)3大坝安全监测系统 (7)3.1监测内容、方法 (8)3.2系统组成 (10)3.2 大坝监测工程选点 (11)3.2.1 监测点选择原则 (11)3.2.2 监测手段配置 (12)4 监测系统特点和功能 (12)4.1 系统特点 (12)4.2 系统功能 (13)5 预警系统建设 (14)5.1 信息采集监测站建设 (14)5.1.1 前端采集站 (14)5.1.2 坝体表面位移自动监测站 (17)5.1.3 深部位移监测站 (21)5.1.4 雨量监测站 (25)5.1.5 裂缝监测 (26)5.1.7 裂缝报警器 (29)5.1.8无线预警广播站 (30)5.1.9 地灾信息中心建设 (31)5.2 地质灾害自动化监测系统平台建设 (33)5.2.1 预警系统软件设计 (34)5.2.2 预警系统平台设计 (35)5.3 预警信息发布平台 (40)5.3.1预警发布终端 (40)5.3.2 短信预警信息发布终端 (42)5.4 系统通讯网络构建 (43)6 工作部署汇总 (45)7 具体经费预算 (45)8 保障措施 (47)8.1 组织保障措施 (47)8.1 质量保障措施 (48)8.2 技术保障措施 (49)8.3 安全及劳动保护措施 (50)1项目背景1.1 项目概况黄河小浪底水利枢纽工程位于河南省洛阳市孟津县小浪底,在洛阳市以北黄河中游最后一段峡谷的出口处,南距洛阳市40公里。

上距三门峡水利枢纽130公里,下距河南省郑州花园口128公里。

是黄河干流三门峡以下唯一能取得较大库容的控制性工程。

黄河小浪底水利枢纽工程是黄河干流上的一座集减淤、防洪、防凌、供水灌溉、发电等为一体的大型综合性水利工程,是治理开发黄河的关键性工程,属国家“八五”重点项目。

大坝安全监测与控制系统设计与实现

大坝安全监测与控制系统设计与实现

大坝安全监测与控制系统设计与实现近年来,随着国家水利建设的进一步发展,大坝建设也迎来了一个高峰期。

虽然大坝建设方便了人们的生活和经济发展,但是也给社会带来了极大的安全隐患。

因此,建立一套高效的大坝安全监测与控制系统对于保障人民生命财产安全至关重要。

一、大坝安全监测系统的设计与结构大坝安全监测系统是指对大坝水文、水文、水文、结构、周边环境等因素进行实时监控和预报,实现对大坝安全的持续、全面、科学的监测和控制的系统。

大坝安全监测系统包括传感器、数据采集器、通信模块、数据处理与分析、系统控制与管理等几个方面。

(一)传感器传感器是大坝安全监测系统的核心部件之一。

传感器的作用是对大坝周围的各种监测要素进行实时监测和数据采集,并将数据传递给数据采集器。

传感器常用的有测水位传感器、量河流量传感器、渗流传感器、地震传感器、温度传感器、湿度传感器等,通过对这些传感器数据的监测和分析,确定大坝是否存在安全隐患。

(二)数据采集器数据采集器是大坝安全监测系统的数据采集和传输设备。

它的作用是对传感器采集到的数据进行处理后,通过通信模块上传到数据处理中心进行存储和分析。

数据采集器的主要接口有模拟量接口、数字量接口、通讯口、定时口等,数据采集设备的稳定性和可靠性直接关系到系统的可靠性和精确度。

(三)通信模块通信模块的作用是采集到的信息传递给数据处理和分析中心进行处理分析,通信模块一般包括有线通信和无线通信两种。

大坝安全监测系统的通信模块必须保证高速、高带宽、低时延和稳定性。

(四)数据处理与分析数据处理与分析是大坝安全监测系统中的另一个重要的部分。

数据处理与分析是通过大数据处理和机器学习等技术来对大坝周边环境从各个方面进行高精度的评估和预测。

(五)系统控制与管理传感器、数据采集器、通信模块等监测设备的控制和管理是由系统控制与管理模块实现的。

该模块主要完成对监测设备的状态监测及时告警,数据采集周期设置和查询控制,数据传输模式控制等功能。

大坝安全监测自动化解决方案

大坝安全监测自动化解决方案

大坝安全监测自动化解决方案目录第一部分大坝安全监测系统 (1)一. 系统概述 (1)二. 系统组成 (1)三. 系统设计 (1)四. 组网方式及数据流程 (5)五. 大坝安全监控系统功能 (5)5.1用户管理 (5)5.2系统配置管理 (6)5.3运行管理 (6)5.4系统状态管理 (6)5.5数据管理 (6)5.6报表生成 (6)5.8曲线绘制功能 (6)六. 主要设备技术指标 (7)6.1渗压计 (7)6.2量水堰计 (7)6.3库水位计 (7)6.4雨量计 (7)6.5分布式网络测量单元 (8)第二部分GPS坝体变形监测系统 (10)一.系统概述 (10)二.系统结构 (10)三.基准站 (11)四.监测站 (12)五.数据处理中心 (12)二十三.第三章软件系统功能 (12)第一部分大坝安全监测系统一. 系统概述整套系统采用分层分布的优化设计方法,硬件及软件系统均采用模块化、开放式结构设计,以方便系统升级以及与其它系统的连接。

关键部件选国外原装产品,配以国内的成熟技术与产品,系统设计力求较高的稳定性、可靠性、灵活性、可操作性和可扩展性,以利主坝后期子坝和副坝自动化安全监测的扩展设计安装,系统内部的通讯完全采用数字信号的传输。

二. 系统组成测量系统由计算机、安全监测系统软件、测量单元、传感器等组成,可完成各类工程安全监测仪器的自动测量、数据处理、图表制作、异常测值报警等工作。

系统软件基于WINDOWS工作平台,集用户管理、测量管理、数据管理、通讯管理于一身,为工程安全的自动化测量及数据处理提供了极大的方便和有力的支持。

软件界面友好,操作简单,使用人员在短时间内即可迅速掌握并使用该软件;三. 系统设计依据坝体现在状况,分别进行坝体渗流监测、水位监测、降雨量监测,具体配置如下:1.2.1坝体渗流监测(1)坝体浸润线监测一般监测断面不少于3个,监测断面位置一般选择在最具有代表性的、能控制主要渗流情况和估计可能出现异常渗流情况的横断面上,如最大坝高断面、原河床断面、合龙坝段、坝体结构有变化的断面和地质情况复杂的断面等,断面间距一般为100~200m。

大坝北斗自动化监测系统技术方案

大坝北斗自动化监测系统技术方案
大坝北斗自动化监测系 统技术方案
汇报人:xxx 2024-03-14
目录
• 项目背景与目标 • 系统总体设计方案 • 硬件设备选型与配置方案 • 软件平台开发与实现途径 • 系统集成测试、调试与验收标准 • 培训、推广及应用前景展望
项目背景与目标
01
大坝安全监测现状
01
02
03
传统监测方法
目前大坝安全监测主要依 赖人工巡检和传感器监测 ,但存在效率低、实时性 差、精度不足等问题。
探索将北斗自动化监测技术与其他监测技 术融合应用,如与传感器技术、遥感技术 等结合,提高监测的准确性和全面性。
拓展到更广泛的水利工程领域
推动智能化、智慧化发展
将北斗自动化监测系统的应用拓展到更广 泛的水利工程领域,如河道监测、水库监 测等。
积极探索智能化、智慧化技术在北斗自动化 监测系统中的应用,推动系统的智能化、智 慧化发展。
根据系统设备的使用寿命和维护 保养要求,制定合理的维护保养
周期计划。
03
维护保养人员
指定专业的维护保养人员负责系 统的日常维护和保养工作,确保
系统的稳定可靠运行。
02
维护保养内容
明确每次维护保养的具体内容和 工作量,包括设备检查、清洁保
养、润滑调整等。
04
维护保养记录
建立维护保养记录档案,记录每 次维护保养的时间、内容、人员 等信息,方便后期管理和追溯。
确保系统满足当前大坝安全监测的实际需 求,同时兼顾未来技术发展趋势,保持一 定前瞻性。
在系统设计和设备选型时,充分考虑其可 靠性和稳定性,确保系统长期稳定运行。
易扩展性与可维护性
安全性与保密性
采用模块化设计,方便后期功能扩展和系 统升级;提供友好的用户界面和完善的维 护手段,降低维护成本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水利工程管理技术
大坝安全监测自动化系统的设计与实施
系统设计 对照上述对系统功能和性能的要求,根据各水库工程实际,监测自 动化系统在设计时需从组成系统的三大部分入手,综合考虑。
1.监测仪器系统 接入监测自动化系统的各监测仪器应经过严格检验,它们应结构简 单、传动部件少、容易维修,且可靠性高、稳定性好,能在水库工程的 恶劣气候条件下长期、稳定、可靠地工作。 监测仪器的布设应根据规范,结合水库工程实际,有目的的考虑设 计方案,做到重点突出、兼顾全面,满足有效地监控水库工程安全运行 的需要。 各监测仪器的选择应在稳定、可靠的基础上力求其先进性。应优先 选用经过长期运行考验的成熟的产品。为科学研究而设置的新仪器设备 原则上不应纳入自动化监测系统观测。 在老监测系统基础上升级改造为自动化监测时,设计前应对原有监 测仪器进行检验和鉴定,有选择地将老仪器纳入新监测系统。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
⑤系统可靠性(故障率)考核:因系统仪器或设备原因造成系统整体或局部 不能正常工作,导致无法测得正确数据称为系统出现故障。主要考核系 统中传感器和数据采集、传输系统运行的故障率或平均无故障T作时间, 一般要求系统故障率≤1.0%,或系统平均无故障工作时间>8 000h。 其他 实施自动化监测系统时,不能忽视巡视检查和人工监测项目。应考虑 到仪器监测在空间上和时间上的不连续性,不可避免地会使一些工程安 全隐患在自动化监测仪器的范围和时间内漏掉,自动化监测仪器的零位 误差等有时也需要靠人工观测仪器来发现和纠正。相关的监测技术规范 中也明确规定监测自动化系统调试时,应与人工观测数据进行同步比测。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
系统的实施 : 自动化监测系统实施前,需先对原有的监测设施进行全面鉴定和评价, 完善监测设施,配齐必要的监测项目,提高监测精度、稳定性和可靠性, 满足规范的基本要求。在此基础上再考虑对必要的监测项目和测点逐步 稳妥地实现自动化监测。“总体设计、分步实施”是国内水库工程自动 化监测系统实施时目前较普遍的观点。 自动化监测系统的设置要坚持少而精和经济、实用、有效的原则,在 技术经济合理的前提下,采用国内外成熟的先进技术。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
2.数据采集系统 数据采集系统是监测仪器与数据处理分析的中间连接部分,负责数据的 采集和传输。 数据采集装置应满足前面监测自动化系统的基本性能要求,并应具备以下 基本功能: ①数据自动采集:能按用户设定的起始时间、监测周期及条件,对接入系 统的各种监测仪器进行自动巡回检测、选测、定时定点或连续监测,并自 选保存测量结果。 ②数据自动处理:能对测值进行可靠性检查,越限时重测并报警;能对所 采集的数据进行计算,并求得所需的物理量,对计算数据进行存储、建立 数据库;能输出显示、拷贝、打印(绘制)有关监测成果图表等。 ③自动数据采集与人工观测相兼容:在系统发生故障时,可由观测人员用 便携式仪表进行观测。 ④人工键入功能:具有人工键入数据的功能,对人工测量的数据和现场巡 视检查资料可人工进机入库。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
电缆作为监测自动化系统中的数据传输通道,其质量、性能的好坏直 接影响系统数据传输的可靠性和稳定性。根据工程运用的实际经验,电缆 的护套要具有抗老化、耐水压、耐高温差、抗高压等性能;电缆的芯线间 要求电阻差要小,并符合规范要求;电缆还应具有一定的抗拉、抗压等机 械性能;有屏蔽要求的电缆应具有良好的屏蔽效果。 电缆应尽量沿最短路线敷设,并尽可能避开高压线路,以减少干扰。坝外 布置的电缆应尽量少用或不用架空线,宜采用埋线并外套钢管保护,以利 于防雷击;坝内电缆的保技术
大坝安全监测自动化系统的设计与实施
监测自动化系统选型: 监测自动化系统选型时,应全面规划、统一考虑,强调自动化监测 系统三个组成部分的有机结合,保证系统功能的完整性。 系统选型前,可选择类似工程和相关仪器设备厂家进行调研,根据实测 数据和资料来分析和确定系统相关的技术指标、可靠性和测量精度是否 符合工程需要。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
⑤报表制作:按水库工程规范化管理的要求,将监测成果按规定的格 式进行整理,以便存档和上报。 ⑥水库工程安全档案管理:能对安全监测有关的技术文件、工程图纸、 重要图片等进行管理,制作报表、工程安全册等。 ⑦可靠、灵活的通信:可采用一种以上的并存的通信方式。 系统设计时,应充分考虑水库工程管理工作的需要。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
自动化监测系统的考核与验收
目前国内尚无有关自动化监测系统的考核与验收标准。根据已有 的国内自动化监测系统的实践经验,系统的考核验收可从以下两方 面进行: (1)出厂或安装前的验收 在监测仪器设备出厂前或安装前,对仪器的制造、组装等质量进 行细致的检查验收,并对各项技术指标进行复核测试,所有指标合 格后方能投入安装使用。 (2)试运行期的考核 监测自动化系统在现场安装调试成功,经合同双方同意后,系统 可正式投入一年试运行。系统试运行期间应同时进行人工对比观测。 试运行期考核内容主要有: ①系统功能考核:对数据采集、传输系统硬件和数据处理、分析、 管理系统软件进行考核,考察系统功能是否满足设计和合同文件的 要求,对各项功能指标逐项进行测定考核。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
主 讲 人: 张峰 黄河水利职业技术学院
2015.04
大坝安全监测自动化系统的设计与实施
水利工程管理技术
大坝安全监测自动化系统的设计与实施
大坝安全监测自动化系统基本功能要求 系统应具备以下功能: ①数据自动采集功能:能自动采集各类传感器的输出信一号,能把模拟 量转换为数字量;数据采集能适应应答式和自报式两种方式,能按设定 的方式自动进行定时测量,能接收命令进行选点、巡回检测及定时检测。 ②掉电保护功能:在断电情况下确保持续工作3d以上。 ③自检、自诊断功能:能通过系统自身的巡检逐级查找,并找到故障点。 ④现场网络数据通信和远程通信功能。 ⑤防雷及抗干扰功能。 ⑥数据异常报警及故障显示功能。 ⑦数据备份功能。
水利工程管理技术
大坝安全监测自动化系统的设计与实施 数据处理分析与监控管理系统
数据处理分析与监控管理系统主要包括数据通讯设备、监控中心监控 主机、管理计算机及监测自动化系统软件。 为适应水库工程安全管理工作的需要,系统应具备以下基本功能: ①在线实时监控:在数据自动采集的基础上实现在线监控,其核心是在 线快速安全评估,即一次数据采集(包括人工采集后输入的数据)完成后, 利用该次实测数据的变化速率与监控指标(监控模型或某一界限值)进行对 比、检验,若实测值超限,则进行复测和再次对比、检验,最终对实测值 是否异常做简单、快速的评估与判断;用户可以在屏幕上方便地查看到主 要监控测点的具体状况(实测值、预报值、警戒值等)。 ②监测资料管理:建立监测资料整编数据库,可继续保留原始测值数据 库;对整编库中的监测资料可灵活地进行插入、删除、修改、查询等;输 入或修改工程安全巡视检查记录;对数据库进行备份。
水利工程管理技术
• 主持单位: 安徽水利水电职业技术学院 山东水利职业学院
参建单位: 黄河水利职业技术学院 重庆水利电力职业技术学院 福建水利电力职业技术学院
水利工程管理技术
大坝安全监测自动化系统的设计与实施
⑤适应恶劣工作环境:系统运行的环境较为恶劣,有的露天布置,温差大、 湿度高、电磁于扰强、易遇雷击等,因此要求系统具有很好的防潮、防雷等技 术措施,以提高其环境适应能力。
⑥易扩展、易维修和兼容性:系统投入运行后,系统的规模、监测仪器的布 设等可能随着时间推移而变化,有新测点要接入、某些老测点要废弃,这要求 系统要有较好的扩展性和兼容性;系统局部单元故障时,系统维修工作要求在 较短时间内完成,如更换元器件等,这要求有较好的易维修性。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
大坝安全监测自动化系统基本性能要求 系统应符合以下要求: ①采样时间:巡测时小于30 min;单点采样时小于3 min。 ②测量周期为10 min~30 d,可调。 ③监控室环境温度保持20℃~300C;湿度保持不大于85%。 ④系统工作电压为220(1±10%)V。 ⑤系统故障率不大于5%。 ⑥防雷电感应为1 000 V。 ⑦采集装置测量精度不低于规范对测量对象要求的精度。 ⑧采集装置测量范围满足被测对象有效工作范围的要求。 ⑨系统能稳定可靠地工作。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
③监测资料查询:通过设置快速导航树形测点结构、测点表、仪器类型表, 首先能在空间上快速定位欲查询的测点或测点组,在此基础上只要指定查 询的时间区间后,用户就能立刻查到监测数据;用户可将已查到的监测资 料导出保存到本地机处理。 ④监测资料离线分析评价:对长系列历史资料进行全面分析,分析项目包 括变形、渗流、接裂缝、环境量等监测项目;分析模型以统计模型为主, 也可根据需要建立混合模型或确定性模型;模型的候选因子种类包括温度、 水位、降雨、时效,因子数可根据需要自行增加;软件能根据需要用图表 形式醒目地显示分析结果,并能将成果立即打印到纸张上,输出结果主要 应有模型方程、模型参数、各分量分解结果及统计值、监测量的拟合和分 解图等。
水利工程管理技术
大坝安全监测自动化系统的设计与实施
②系统测量精度考核:系统测量精度应在满足有关规范、设计和合同 文件要求的前提下,达到厂家给定的各种精度指标。 ③人工对比观测数据考核:主要对比分析观测资料过程线和观测值的 方差。过程线对比采用在相同时间和测次的二者的观测数据过程线进行 比较,分析其变化规律是否一致(因人工测次少、自动测次多,一般从自 动化数据中挑选与人工测次相同的观测数据进行比较)。方差分析通常采 用2倍均方差作为测值误差的限值,比较同一测次中人工测值与自动化测 值之差是否在允许的误差范围内。 ④数据缺失率考核:以人工测值为基准,统计系统试运行过程中明显的 错误测值、超限测值、缺失数据等的个数,与系统应该有正确观测数据 个数比较而得出的百分率。其中要求人工观测数据精度必须稳定可靠。 系统因人员误操作、非系统本身原因等造成的数据缺失,不计数。
相关文档
最新文档