线性规划习题

合集下载

高中数学线性规划各类习题精选5

高中数学线性规划各类习题精选5

2.已知点 P( x , y) 在不等式组 ⎨ y - 1 ≤ 0 表示的平面区域内运动,则 z = x - y 的最大 ⎪ x + 2 y - 2 ≥ 0 3.若实数 x, y 满足 ⎨ x + y ≥ 0,则 z = 3x +2 y 的最大值是()5.设变量 x, y 满足约束条件 ⎨ y ≥ 3x ,若目标函数 z = x + y 的最大值为 14,则 a 值⎪x + ay ≤ 7 A .1B . 1 6.已知实数 x, y 满足 ⎨ x - y ≤ 0 ,则 2 x - y 的最大值为()1高中数学线性规划各类习题精选 5学校:___________姓名:___________班级:___________考号:___________一、单选题1.设 , 满足约束条件,若目标函数 的最大值为 12,则A .B .的最小值为( )C .D .4⎧ x - 2 ≤ 0 ⎪ ⎩值是()A . -1B . -2C .2D .3⎧ x - y + 1 ≥ 0⎪ ⎪ ⎩x ≤ 0A .13B .9C .1D .34.已知实数 , 满足,如果目标函数 的最小值为 ,则实数 等于()A .6B .5C .4D .3⎧x ≥ 0 ⎪⎩为()1 1 1 或C .D .2 32 3⎧ x + y - 1 ≤ 0 ⎪⎪ ⎩ x ≥ 01⎪ y ≥ 09.若实数 x, y 满足条件 ⎨ y - x ≤ 2 ,则 z = x - 2 y 的最小值为( ) ⎪ y ≥ 0 A .-1 B .-2 C . - 5 12.已知 a > 0 , x, y 满足约束条件 { x + y ≤ 3 ,若 z = 2 x + y 的最大值为 ,y ≥ a (x - 2) A . 113.已知 x 、y 满足约束条件 ⎨ x - y ≤ 0 则 z = x + 2 y 的最大值为( )14.已知 x, y 满足 ⎨ x + y ≤ 4记目标函数 z = 2 x + y 最大值为 a ,最小值为 b ,则⎪x - y - 2 ≤ 0⎧ x - y ≥ 0 ⎪2 x + y ≤ 27.若不等式组 ⎨ ,表示的平面区域是一个三角形,则 a 的取值范围是( )⎪⎩ x + y ≤ a4 4 4A .a≥B .0<a≤1C .1 ≤a≤D .0<a≤1 或 a≥3338.设 x ,y 满足约束条件,则 z=2x-3y 的最小值是( )A .-7B .-6C .-5D .-3⎧ y + x ≤ 1 ⎪⎩7D . -2 2⎧ x ≤ 0 ⎪ y ≥ 010.已知由不等式 ⎨ 确定的平面区域 Ω 的面积为 7,则 k 的值()⎪ y - kx ≤ 2 ⎪⎩ y - x - 4 ≤ 0A . -2B . -1C . -3D . 211.如果实数 x 、y 满足关系,则 的取值范围是( )A .[3,4]B .[2,3]C .D .x ≥ 1112则 a = ( )1 B .C .1D .242⎧ x + y - 1 ≤ 0 ⎪⎪ ⎩x ≥ 0A 、﹣2B 、﹣1C 、1D 、2⎧ x ≥ 1⎪⎪⎩ y ≤ 2 217.若 x, y 满足约束条件 ⎨ y ≥ 0 ,则目标函数 z = 2 x + 3 y 的最大值为________ . ⎪2x + y ≤ 2 18.若实数 x , y 满足 ⎨ x + y ≥ 0 ,则目标函数 z = x + 2 y 的取值范围是_______. ⎪ x ≤ 0 19.实数 x, y 满足 ⎨ x - y ≥ 1 ,则目标函数 z = x + y - 3 的最小值是______.⎪ x - 2 y ≤ 2 21.已知变量 x, y 满足 ⎨ x + y - 4 ≤ 0 ,则点 (x, y )对应的区域面积是 __________, ⎪ x ≥ 1 ( ya +b =A .1B .2C .7D .8⎧ x + y - 2 2 ≥ 0 ⎪⎪15.已知不等式组 ⎨ x ≤ 2 2 表示平面区域 Ω ,过区域 Ω 中的任意一个点 P ,⎪作圆 x 2 + y 2 = 1的两条切线且切点分别为 A ,B ,当 ∆PAB 的面积最小时,cos ∠APB的值为( )A . 7 1 3B .C .D .8 2 43 2二、填空题16.2011•宝坻区一模)设 x , 满足约束条件 则 z=2x+y 的最大值为 .⎧ x ≥ 0 ⎪⎩⎧ x - y + 1 ≥ 0 ⎪⎩⎧2x + y ≤ 4 ⎪⎩20.在直角坐标系中,△的三个顶点坐标分别为 , , ,动点△是内的点(包括边界).若目标函数的最大值为 2,且此时的最优解所确定的点是线段上的所有点,则目标函数 的最小值为.⎧ x - 4 y + 3 ≤ 0⎪⎩x 2 + y 2 u = 的取值范围为__________.xy22.若实数 x ,y 满足 ⎨x > 0,则 的取值范围是_________ .⎪ y ≤ 224.已知实数 x, y 满足 ⎨ y ≥ x ,则 z =x - y2 的最大值为 .⎪2 x + y - 6 ≥ 0 y 1 ⎪ 26.设 x , y 满足约束条件: ⎨ y ≥x 的可行域为 M ,若存在正实数 a ,使函数 2y = 2a sin( + )cos( + ) 的图象经过区域 M 中的点,则这时 a 的取值范围M (a, b )在由不等式 ⎨ y ≥ 0 确定的平面区域内,则点 N (a - b , a + b )所 ⎪x + y ≤ 2 ⎨ x ≤ 2 ⎪ x + y - 1 ≥ 0 29.设 z = x + y ,其中实数 x, y 满足 ⎨ x - y ≤ 0 ,若 z 的最大值为12 ,则 z 的最小值⎪0 ≤ y ≤ k⎧x - y + 1 ≤ 0 ⎪y x ⎩x + y ≤ 723.已知点 P (x, y ) 满足{ y ≥ x,过点 P 的直线与圆 x 2 + y 2 = 50 相交于 A , B 两 x ≥ 2点,则 AB 的最小值为.⎧ x ≥ 0 ⎪⎩25.设 x , 满足约束条件,向量, ,且,则m 的最小值为_____.⎧ x ≥ 1⎪⎪⎪⎩2 x + y ≤ 10x π x π2 4 2 4是.27.已知点⎧ x ≥ 0 ⎪⎩在的平面区域面积是.⎧ x - 2 y + 1 ≥ 0 ⎪28.已知不等式组⎩ 表示的平面区域为 D ,若函数 y =| x - 1| +m 的图像上存在区域 D 上的点,则实数 m 的取值范围是________.⎧ x + 2 y ≥ 0⎪⎩为.30.已知实数 x , y 满足约束条件 ⎨ y ≤ x,时,所表示的平面区域为 D ,则 ⎪2x + y - 9 ≤ 0⎧x ≥ 0, ⎪⎩z = x + 3 y 的最大值等于,若直线 y = a( x + 1) 与区域 D 有公共点,则 a 的取值范围是.试题分析:画出不等式组 ⎨ y - 1 ≤ 0 表示的可行域如图, z = x - y 即 y= x-Z ⎪ x + 2 y - 2 ≥ 0 参考答案1.A【解析】试题分析:作出 , 满足约束条件下平面区域,如图所示,由图知当目标函数经过点取得最大值 12,即,亦即,所以=,当且仅当,即时等号成立,故选 A .考点:1、简单的线性规划问题;2、基本不等式.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值,在哪个端点,目标函数取得最小值;已知 ﹙ ﹚求的最小值,通常转化为= ( ),展开后利用基本不等式求解.2.C【解析】⎧ x - 2 ≤ 0 ⎪ ⎩即 t 增大,由图象得,当直线 y = - x + 过点 A(0,1) 时, t 取得最大值 2 ,即 z = 3x +2 y 的Z 的几何意义是直线 y= x-Z 在 y 轴上的截距的相反数,画直线 y= x ,平移直线 y= x ,当过点 B (2,0)时 z 有最大值 2.故选:C .考点:简单的线性规划及利用几何意义求最值.【名师点睛】本题考查线性规划解题的基本方法,本题属于基础题,要求依据二元一次不等式组准确画出可行域,利用线性目标函数中直线的纵截距的几何意义,令 z= 0 ,画出直线 y = x ,在可行域内平移该直线,确定何时z 取得最大值,找出此时相应的最优解,依据线性目标函数求出最值,这是最基础的线性规划问题.3.B【解析】试题分析:设 t = x + 2 y ,将 t = x + 2 y 化成 y = - 1 tx + ,作出可行域与目标函数基准线2 21 1 t y = - x (如图所示)当直线 y = - x +2 2 2 t向右上方平移时,直线在 y 轴上的截距 增大,21 t2 2最大值是 32 = 9 ;故选 B .考点:1.简单的线性规划;2.指数运算..( (【易错点睛】本题考查简单的线性规划问题以及指数运算,属于中档题;利用简单的线性规划知识求有关线性目标函数的最值时,一般是先画出可行域,再结合目标函数的几何意义进行求解,容易忽视的是不能准确目标函数直线与可行域边界的倾斜程度(通过比较目标函数直线的斜率和某条边界的斜率的大小),导致寻找最优解出错.4.B【解析】试题分析:由下图可得 在 处取得最大值,由,故选 B.考点:线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型 考生应注总结解决线性规划问题的一般步骤: 1)在直角坐标系中画出对应的平面区域,即可行域; 2)将目标函数变形为;(3)作平行线:将直线 平移,使直线与可行域有交点,且观察在可行域中使 最大(或最小)时所经过的点,求出该点的坐标; 4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出 的最大(小)值.5.C【解析】试题分析:首先根据已知约束条件画出其所表示的平面区域,如下图所示,然后由目标函数z = x + y 的最大值为 14,此时目标函数经过点 A(0, 7 ) ,所以14 = 0 + a 7 1,所以 a = ,故应选 C .a 2试题分析:作出不等式组 ⎨2x + y ≤ 2 表示的平面区域,如图 ∆OAB (内部含边界),再作 ⎪ y ≥ 0 B考点:1、简单的线性规划问题.6.A【解析】试题分析:在坐标系内作出可行域,由图可知当目标函数z = 2 x - y 经过可行域内的点1 1 1 1 1A( , ) 时有最大值 z = 2 ⨯ - = ,故选 A .2 2 2 2 2BAO考点:线性规划.7.D【解析】⎧ x - y ≥ 0 ⎪⎩直线 l : x + y = 0 ,过 A , 作与 l 平行的直线 l , l ,由图可知当直线 x + y = a 夹在直线 l 与 l1 21之间或在直线 l 上方时,题设不等式组表示的区域是三角形,计算得0 < a ≤ 1 或 a ≥ 2选 D .4 3.故考点:二元一次不等式组表示的平面区域.8.B【解析】试题分析:由么时候纵截距所求.得,作出可行域如图,平移直线,看什最大,即最小,所以由图可知,过点C时,所得值即为考点:线性规划问题.9.D【解析】试题分析:作出可行域,如图所示.⎪⎪ ⎧ y = x + 2 z = x - 2 y 取得最小值,由 ⎨ 得: ⎨ ,所以点 A 的坐标为 - , ⎪ ,所 ⎪ y = 3 - 3 = - 试题分析:作出不等式组 ⎨ y ≥ 0所表示的平面区域,如图所示,可知其围成的区域 ⎪ y - x - 4 ≤ 0 ⎧ y - kx = 2 2 4k - 2 1 2作直线 l : x - 2 y = 0 ,再作一组平行于 l 的直线 l : z = x - 2 y ,当直线 l 经过点 A 时,0 0⎧1 x =-2 ⎛ 13 ⎫ ⎩ y = - x + 1⎝ 2 2 ⎭ ⎪⎩ 2以 z 1 7min = - 2 2 ,故选 D .考点:线性规划.10.B【解析】⎧ x ≤ 0 ⎪⎩是等腰直角三角形且面积为 8 .由于直线 y = kx + 2 恒过点 B(0, 2) ,且原点的坐标恒满足y - kx ≤ 2 ,当 k = 0 时,y ≤ 2 ,此时平面区域 Ω 的面积为 6 ,由于 6 < 7 ,由此可得 k < 0 .由⎨可得 D( , ) ,依题意应有 ⨯ 2⨯ | |= 1 ,解得 k = -1 或 k = 3 ⎩ y - x - 4 = 0k - 1 k - 1 2 k - 1 (舍去),故选 B .考点:简单的线性规划问题.11.D【解析】试题分析:由题意得,画出不等式组表示的可行域(如图所示),又范围,其中,当取点大值.,此时可看出可行域内点与点时,目标函数取得最小值;当取点之间的连线的斜率的取值时,目标函数取得最考点:二元一次不等式组表示的平面区域及其应用.【思路点晴】本题主要考查了二元一次不等式组表示的平面区域及其应用求最值,属于基础题,解答的关键是把目标函数化简为,转化为可行域内点和点12.C之间的连线的斜率的取值,其中认真计算是题目的一个易错点.目标函数z=2x+y经过点A ⎛2a+3a⎫,⎝a+1a+1⎭2⨯2a+3+=,解得a=1,故选C.【解析】试题分析:根据题意作出x,y满足约束条件下的平面区域,如图所示,由图知,当a11 a+1a+12⎪11时取得最大值,所以2考点:简单的线性规划问题.13.D【解析】试题分析:根据约束条件可作出可行域如图,作出直线y=-1x,经过平移得当直线过点2A(0,1)时,z取到最大值2.考点:线性规划.14.D【解析】(⎪⎩y≤2212+12=2,OA=1,OA⊥AP,所以∠APO=30︒,∠APB=2∠APO=60︒,试题分析:不等式组表示的平面区域如图所示,由图易得目标函数z=2x+y在A(3,1)处取得最大值7,在B1,-1)处取得最小值1,则a+b=8,故答案为D.考点:线性规划的应用.15.B【解析】⎧x+y-22≥0⎪⎪试题分析:不等式⎨x≤22表示平面区域Ω为下图所示的∆DEF边界及内部的点,⎪由图可知,当点P在线段DE上,且OP⊥DE时,∆P AB的面积最小,这时OP=-22所以cos∠APB=12,故选B.y DB OPAFE x考点:1.线性规划;2.直线与圆的位置关系.【方法点睛】本题主要考查的是线性规划以及直线与圆的位置关系,属中档题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误;画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.16.2【解析】试题分析:先画出对应的可行域,结合图象求出目标函数取最大值时对应的点,代入即可求出其最值.解:约束条件对应的可行域如图:由图得,当z=2x+y位于点B(1,0)时,z=2x+y取最大值,此时:Z=2×1+0=2.故答案为:2.(考点:简单线性规划.17.6【解析】试题分析:如图画出可行域,目标函数 z = 2 x + 3 y 平移到 (0, 2)处有最大值 0 + 3⨯ 2 = 6 .考点:1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”: 1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最有解);(3)将最优解坐标代入目标函数求出最值.18. [0,2]【解析】试题分析:线性约束条件对应的可行域为直线 x - y + 1 = 0, x + y = 0, x = 0 围成的三角形及其内部,顶点为 (0,0 ), (0,1), - 1 , 1 ⎫,当 z = x + 2 y 过点 (0,0 )时取得最小值 0,过点 (0,1)(0, -1), (2,0 ), ⎛ 5 , 2 ⎫⎪ ,当 z = x + y - 3 过点 (0, -1) 时取得最小值 -4⎢⎣2, 3 ⎥⎦⎝ 2 2 ⎭时取得最大值 2,所以其范围是[0,2]考点:19. -4【解析】试题分析:线性约束条件对应的可行域为直线2 x + y = 4, x - y = 1, x - 2 y = 2,顶点为⎝ 3 3 ⎭考点:线性规划问题20.【解析】试题分析:先根据约束条件画出可行域,设 z=ax+by ,将最大值转化为 y 轴上的截距,当直线 ax+by=z 与可行域内的边 BC 平行时,z=ax+by 取最大值时的最优解有无数个,将 等价为斜率, 数形结合,得,且 a×1+b×0=2,∴a=2,b=1,z=2x+y当直线 z=2x+y 过点 B 时,z 取最小值,最小值为-2考点:简单线性规划的应用21.8⎡ 10 ⎤ 5【解析】A B x y y x x 13 x t 13试题分析:不等式组表示的可行域是如图所示的三角形 ABC 边界及其内部,(1,3),(1,1),C (13 7 5, 5 1 13 8 y ) 故所求面积为 ⨯ (3 - 1)⨯ ( - 1) = , u = + ,其中 表示可行域上任2 5 5 x一点与原点连线的斜率, 函数性质得 u ∈ [2, 10]3y 7 y 1 7∈ [k , k ] = [ ,3] , t = , u = t + , t ∈ [ ,3] 故根据对勾 OC O A考点:线性规划,对勾函数.22. [2, +∞)【解析】试题分析:作出实数 x ,y 满足的平面区域,如图所示,由图知,斜率 y的取值范围是[2, +∞) .x考点:简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以便确定在哪个端点处,目标函数取得最大值;在哪个端点处,目标函数取得最小值.23. 2 21【解析】试题分析:作出约束条件 ⎨ y ≥ x表示的可行域如图阴影部分(含边界), ⎪2 x + y - 6 ≥ 0 联立 ⎨,解得 A (2,2), 2 x + y - 6 = 0-x + y ≤ 7试题分析:不等式组{ y ≥ x 所表示的平面区域为如下图所示的 ∆DEF ,且 ∆DEF 在圆x ≥ 2x 2 + y 2 = 50 的内部,在 ∆DEF 区域内,其中点 D 到圆心 O 的距离最远,所以过点 D 且垂直于 OD 的弦 AB 最短,考点:1.线性规划;2.直线和圆的位置关系.【名师点睛】本题主要考查的是线性规划,属于容易题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误.24.-2【解析】⎧ x ≥ 0 ⎪⎩⎧ y = x⎩ 化目标函数 z = x - 2 y 为 y = x z,2 2由图可知,当直线y=x z-过A时,直线在y轴上的截距最小,z有最大值为2﹣2×2=﹣222.考点:简单的线性规划问题.25.-6【解析】试题分析:先根据平面向量共线(平行)的坐标表示,得m=2x-y,根据约束条件画出可行域,再利用m的几何意义求最值,只需求出直线m=2x-y过可行域内的点A时,从而得到m值即可.由向量向量,,且,得,根据约束条件画出可行域,设,将m最小值转化为y轴上的截距,当直线经过点(,)时,m最小,最小值是:2×1-8=-6.故答案为:-6.考点:平面向量共线的坐标表示;简单的线性规划26.[1,+∞).2cos1【解析】试题分析:如下图所示,画出不等式组所表示的区域,即可行域,而xπxπy=2a sin(+)cos(+)=2424π1a sin(x+)=a cos x,故可知问题等价于点(1,)不在函数y=a cos x的上方,即22111a cos1≥⇒a≥,+∞).22cos12cos1,∴正实数a的取值范围是[试题分析: M (a, b )在由不等式 ⎨ y ≥ 0 确定的平面区域内, ⎪x + y ≤ 2 ⎧a ≥ 0 ⎪⎪ 2 ∴ ⎨b ≥ 0 ,设 x = a - b , y = a + b ,则 ⎨ ⎪a + b ≤ 2 ⎪b = y - x ⎪⎩ 2 ⎩ ≥ 0 ,即 ⎨ y - x ≥ 0 ⎪ y ≤ 2 作出不等式组对应的平面区域如图:则对应区域为等腰直角三角形 AOB ,则 ⎨,y = 2 同理 B (- 2,2),则 ∆AOB 的面积为 S = ⨯ 4 ⨯ 2 = 4 .⎧考点:1.三角函数的图象和性质;2.线性规划的运用.27.4【解析】⎧ x ≥ 0 ⎪ ⎩⎪ ⎩⎧ y - x = 0⎩ 得 ⎨ x = 2 ⎩ y = 21 2考点:简单的线性规划.28.[-2,1].【解析】试题分析:如下图所示,画出不等式组所表示的平面区域,考虑极端情况,函数图象经过点(2,-1),此时m=-2,函数图象经过点(1,1),此时m=1,∴实数m的取值范围是[-2,1].考点:线性规划的运用.29.-6【解析】试题分析:可行域如图:⎧ ∴由 ⎨ x - y ≤ 0 得 A (k, k ) ,目标函数 z = x + y 在 x = k. y = k 时取最大值,即直线 z = x + y ⎩ y = k在 y 轴上的截距 z 最大,此时,12 = k + k , k= 6 ∴得 B (-12,6 ),目标函数 z = x + y 在x = -12, k = 6 时取最小值,此时, z 的最小值为 z = -12 + 6 = -6考点:简单的线性规划3 30.12 , (-∞, ] . 4【解析】试题分析:如下图所示,画出不等式组所表示的可行域,作直线 l : x + 3 y = 0 ,平移 l ,即可知,当 x = y = 3 时,z 3 的取值范围是 (-∞, ] . 4 max = 3 + 9 = 12 ,直线 y = a( x + 1) 恒过点 (-1,0) ,∴可知实数 a考点:线性规划的运用.。

线性规划练习题

线性规划练习题

1.已知实数x,y满足2x 则2x y 2的最小值为()xA. 1B. 3C. 4D. 62x 2.设关于x, y的不等式组0表示的平面区域内存在点P(x o, y o),满足X。

2y o2,贝y m的取值范围是() -)B.1 2(,3)C(,严3.已知a 0,x,y满足约束条件5,3)1x y 3,若zy a(x 2)2x y的最大值为1,则a()A.1B.!C .4 21D. 22x8x 4 .设x, y满足约束条件xyyy0,若目标函数z1-y(a 0,b 0)的最大值b为2,则 a b的最小值为()A. 9B.25.当实数x,y满不等式组: y2x 00 时,恒有axy 2y 3成立,则实数a的取值范围是x 6.设实数x, y满足xy2 0,y2y 5 0,则z2 0,乂 -的取值范围是.x y2x y 1 0,7.设x,y满足约束条件x y 0,,若目标函数z ax by a 0,b 0的最大值x 0, y 0,为i,贝y丄4的最小值为__________ .a b8.已知方程x2ax 2b 0 (a R,b R),其一根在区间(0,1)内,另一根在区间(1,2) 内,则L2的取值范围为.a 1x y > 0,9.已知实数x, y满足条件x y > 0,则y x的最小值为二x < 1,10.若x,y满足条件y 2|x| 1,则z=x+3y的最大值为.y x 111.如图,直三棱柱ABC ABG的底面是边长为4正三角形,AA1 2、、6,M为A1B1的中点.(I)求证:AB MC ;(U)在棱CC1上是否存在点P,使得MC 平面ABP ?若存在,确定点P的位置;若不存在,说明理由.12.如图,在三棱锥P—ABC中,PA= PB= AB= 2,BC= 3,Z ABC= 90°平面PABL平面 ABC D E分别为AB AC中点.(1)求证:DE//平面PBC(2)求证:AB丄PE;(3)求二面角A— PB- E的大小.13.如图,已知四棱锥P- ABCD底面ABCD为边长为2对的菱形,PA!平面ABCD/ ABC=60,E,F分别是BC, PC的中点.(1)判定AE与PD是否垂直,并说明理由;(2)若PA=2求二面角E-AF- C的余弦值.14.如图,在四棱锥 P ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE 与棱PD交于点F .(I)求证:AB // EF ;(U)若PA AD,且平面PAD 平面ABCD,试证明AF 平面PCD ;(川)在(U)的条件下,线段PB上是否存在点M ,使得EM 平面PCD?(请说明理由) 15.如图,在长方体ABCD A I B I C I D i中,面BMD.N与棱CC i, AA i分别交于点M , N,且M,N 均为中点.(1)求证:AC// 面BMD i N;(2)若AD CD 2,DDi厶2'。

线性规划练习题

线性规划练习题

线性规划练习题一、选择题1. 线性规划问题中,目标函数的最优值是:A. 最大化B. 最小化C. 既可能最大化也可能最小化D. 不确定2. 下列哪个不是线性规划的基本假设?A. 目标函数是线性的B. 约束条件是线性的C. 约束条件是连续的D. 约束条件是不等式的3. 线性规划问题的图形解法中,可行域的边界条件是:A. 等式B. 不等式C. 既可能是等式也可能是不等式D. 无法确定4. 单纯形法是解决线性规划问题的哪种算法?A. 图形解法B. 枚举法C. 迭代法D. 直接法5. 以下哪个条件不是线性规划问题的基本假设?A. 目标函数是线性的B. 约束条件是线性的C. 目标函数和约束条件都是线性的D. 约束条件是确定的二、填空题6. 线性规划问题中,目标函数的最优解可能位于可行域的_________。

7. 单纯形法中,如果目标函数的系数在所有基变量上的系数都是_________,则该基可行解是最优解。

8. 线性规划问题中,如果目标函数是最大化问题,当可行域是无界的,则最优解是_________。

9. 线性规划问题中,如果约束条件中存在_________,则该问题可能没有可行解。

10. 单纯形法中,如果某一非基变量的系数在目标函数中为_________,则该变量在当前基可行解中为零。

三、简答题11. 解释线性规划问题中,为什么需要引入松弛变量?12. 描述单纯形法的基本步骤,并说明每一步的目的。

13. 线性规划问题中,如果目标函数是最大化问题,当可行域有界时,最优解可能出现在哪些位置?14. 解释线性规划问题中的对偶问题,并说明对偶问题与原问题之间的关系。

15. 什么是退化现象?在单纯形法中如何避免退化现象?四、计算题16. 考虑以下线性规划问题:Max Z = 3x + 4ys.t.2x + y ≤ 10x + 2y ≤ 8x, y ≥ 0求该问题的最优解,并给出最优值。

17. 假设你有一个生产问题,需要决定生产两种产品A和B的数量,以最大化利润。

线性规划练习题

线性规划练习题

作业1.第7题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.02.第8题下列不满足线性规划问题的典式要求的是()。

A. 线性规划模型必须是标准形B. 基必须是单位矩阵。

C. 基变量可以出现在目标函数中D. 非基变量可以出现在目标函数中。

A.AB.BC.CD.D答案:C标准答案:C您的答案:题目分数:1.0此题得分:0.03.第13题A.AB.BC.CD.D答案:B标准答案:B 您的答案:题目分数:1.0 此题得分:0.04.第14题A.AB.BC.CD.D答案:D标准答案:D 您的答案:题目分数:1.0此题得分:0.05.第15题A.AB.BC.CD.D答案:A标准答案:A 您的答案:题目分数:1.0 此题得分:0.06.第16题A.AB.BC.CD.D答案:B标准答案:B 您的答案:题目分数:1.0 此题得分:0.07.第17题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0此题得分:0.08.第18题若用二阶段法求没有可行解的线性规划问题,则在最后一张单纯表上()。

A. 人工变量的检验数没有正数B. 人工变量的检验数没有负数C. 非基变量中有人工变量D. 基变量中有人工变量A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.09.第19题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.010.第20题若目标函数求极小值的线性规划问题没有最优解,则在最后一张单纯表上()。

A. 对应非基变量的列上的系数没有正数B. 基变量的取值有负数C. 检验数没有负数D. 检验数为负的非基变量对应的列上的系数没有正数A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.011.第21题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.012.第26题A.AB.BC.CD.D答案:B标准答案:B您的答案:题目分数:1.0 此题得分:0.013.第28题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0 此题得分:0.014.第33题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.015.第34题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.016.第35题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.017.第36题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0此题得分:0.018.第46题检验有无迂回时,必须对()进行。

数学建模线性规划上机题

数学建模线性规划上机题

例1 (任务安排)某厂计划在下月内生产4种产品B1,B2,B3,B4。

每种产品都可用三条流水作业线A1,A2,A3中旳任何一条加工出来.每条流水线(Ai)加工每件产品(Bj)所需旳工时数(i=1,2,3,j=1,2,3,4)、每条流水线在下月内可供运用旳工时数及多种产品旳需求均列表于4.1中.又A1,A2,A3三条流水线旳生产成本分别为每小时7,8,9元。

现应怎样安排各条流水线下月旳生产任务,才能使总旳生产成本至少?例2 (外购协议)某企业下月需要B1,B2,B3,B4四种型号旳钢板分别为1000,1200,1500,2023吨。

它准备向生产这些钢板旳A1,A2,A3三家工厂订货。

该企业掌握了这三家工厂生产多种钢板旳效率(吨/小时)及下月旳生产能力(小时),如表4.2所示。

而它们销售多种型号钢板旳价格如表4.3所示。

该企业当然但愿能以至少旳代价得到自己所需要旳多种钢板,那么,它应当向各钢厂订购每种钢板各多少吨?假设该企业订购时采用如下原则,要么不订购,要么至少订购100吨以上。

该怎样处理这个问题。

若至少订购50吨,怎样处理?例3 (广告方式旳选择) 中华家电企业近来生产了一种新型洗衣机.为了推销这种新产品,该企业销售部决定运用多种广告宣传形式来使顾客理解新洗衣机旳长处。

通过调查研究,销售部经理提出了五种可供选择旳宣传方式.销售部门并搜集了许多数据。

如每项广告旳费用,每种宣传方式在一种月内可运用旳最高次数以及每种广告宣传方式每进行一次所期望得到旳效果等.这种期望效果以一种特定旳相对价值来度量、是根据长期旳经验判断出来旳.上述有关数据见表4.8中华家电企业拨了20230元给销售部作为第一种月旳广告预算费、同步提出,月内至少得有8个电视商业节目,15条报纸广告,且整个电视广告费不得超过12023元,电台广播至少隔日有一次,现问该企业销售部应当采用怎样旳广告宣传计划,才能获得最佳旳效果?例4 长城家电企业近来研制了一种新型电视机.准备在三种类型旳商场即一家航空商场、一家铁路商场和一家水上商场进行销售.由于三家商场旳类型不同样,它们旳批发价和推销费都不同样。

运筹学 第1章 线性规划习题

运筹学 第1章 线性规划习题

第一章线性规划习题1.1(生产计划问题)某企业利用A、B、C三种资源,在计划期内生产甲、乙两种产品,已知生产单位产品资源的消耗、单位产品利润等数据如下表,问如何安排生产计划使企业利润最大?表1—1产品单耗资源甲乙资源限制A B C 12111300kg400kg250kg单位产品利润(元/件)50100解:设x1、x2分别代表甲、乙两种产品的生产数量(件),z表示公司总利润。

依题意,问题可转换成求变量x1、x2的值,使总利润最大,即ma x z=50x1+100x2且称z=50x1+100x2为目标函数。

同时满足甲、乙两种产品所消耗的A、B、C三种资源的数量不能超过它们的限量,即可分别表示为x1 + x2≤3002x1 + x2≤400x2≤250且称上述三式为约束条件。

此外,一般实际问题都要满足非负条件,即x1≥0、x2≥0。

这样有ma x z=50x1+100x2x1 + x2≤3002x1 + x2≤400x2≤250x1、x2≥0习题1.2 靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天500万m 3,在两个工厂之间有一条流量为200万m 3的支流。

两化工厂每天排放某种有害物质的工业污水分别为2万m 3和1.4万m 3。

从第一化工厂排出的工业污水流到第二化工厂以前,有20%可以自然净化。

环保要求河流中工业污水含量不能大于0.2%。

两化工厂处理工业污水的成本分别为1000元/万m 3和800元/万m 3。

现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂处理工业污水的总费用最小。

解:设x 1、x 2分别代表工厂1和工厂2处理污水的数量(万m 3)。

则问题的目标可描述为min z =1000x 1+800x 2约束条件有第一段河流(工厂1——工厂2之间)环保要求 (2-x 1)/500 ≤0.2%第二段河流(工厂2以下河段)环保要求[0.8(2-x 1) +(1.4-x 2)]/700≤0.2%此外有x 1≤2; x 2≤1.4化简得到min z =1000x 1+800x 2x 1 ≥10.8x 1 + x 2 ≥1.6x 1 ≤2x 2≤1.4x 1、x 2≥0习题1.3ma x z =50x 1+100x 2x 1 + x 2≤3002x 1 + x 2≤400x 2≤250图1—1x 2x 1、x 2≥0用图解法求解。

第二章 线性规划习题(附答案)

第二章 线性规划习题(附答案)
z
x1
x2
x3
x4
x5
x6
RHS
z
1
0
2
0
1/5
3/5
-1/5
27
x1
3
1
-1/3
0
1/3
-1/3
2
5
x3
4
0
1
1
-1/5
2/5
-4/5
3
由于增加决策变量 后求得的最优单纯形表为:
z
x1
x2
x3
x4
x5
x6
RHS
z
1
1/10
89/30
0
7/30
17/30
0
55/2
x6
3
1/2
-1/6
0
1/6
-1/6
习题
2-1判断下列说法是否正确:
(1)任何线性规划问题存在并具有惟一的对偶问题;
(2)对偶问题的对偶问题一定是原问题;
(3)根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;
(4)若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解;
(8)已知yi为线性规划的对偶问题的最优解,若yi>0,说明在最优生产计划中第i种资源已经完全耗尽;若yi=0,说明在最优生产计划中的第i种资源一定有剩余。
2-2将下述线性规划问题化成标准形式。
解:(1)令 ,增加松弛变量 ,剩余变量 ,则该问题的标准形式如下所示:
(2)令 , , ,增加松弛变量 ,则该问题的标准形式如下所示:
则可知,最优解变为 ,最优值变为27。
(3)先将原问题最优解变量值代入,因有

线性规划练习题含答案

线性规划练习题含答案

线性规划练习题含答案一、选择题1.已知不等式组2,1,0y x y kx x ≤-+⎧⎪≥+⎨⎪≥⎩所表示的平面区域为面积等于1的三角形,则实数k 的值为A .-1 BD .1 【答案】B【解析】略作出不等式组表示的可行域如右图所示阴影部分,由于AOB ∆的面积为2, AOC ∆的面积为1,所以当直线y=kx+1过点A (2,0),B (0,1故选B 。

2.定义()()max{,}a a b a b b a b ≥⎧⎪=⎨<⎪⎩,已知实数y x ,满足设{}m a x ,2z x y x y=+-,则z 的取值范围是 ( ) A【答案】D【解析】{},2,20max ,22,22,20x y x y x y x y x y z x y x y x y x y x y x y x y ++≥-+-≤⎧⎧=+-==⎨⎨-+<--->⎩⎩, 当z=x+y 时,对应的点落在直线x-2y=0z=2x-y 时,对应的点落在直线x-2y=0的右下3.若实数x ,y 满足⎪⎩⎪⎨⎧≤+≥≥,1234,0,0y x y x 则 )A .BCD【答案】DP(x,y)与点(-1,-3)连续的斜率,数形结3,,4PA k =应选D4.设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值等于 ( )A. 2B. 3C.5D. 9【答案】B【解析】解:因为设,x y ∈R 且满足满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩故其可行域为当直线Z=x+2y 过点(1,1)时,z=x+2y 取最小值3, 故选B5.若实数,满足条件则的最大值为( )(A ) (B ) (C ) (D ) 【答案】A【解析】作出如右图所示的可行域,当直线z=2x-y 过点A 时,Z 取得最大值.因为A(3,-3),所以Z max =23(3)9⨯--=,故选A.x y 0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩2x y -9303-6.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-120y x a y x y x ,若目标函数z=2x+6y 的最小值为2,则a =A .1B .2C .3D .4 【答案】A【解析】解:由已知条件可以得到可行域,,要是目标函数的最小值为2,则需要满足直线过x 2y 1+=与x+y=a 的交点时取得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 一水源地的年供水能力为6000万m 3,供水范围包括工业、农业、生活三个部分,各部门的需水量、水价、供水要求见表1,如何在满足供水要求的情况下分配水量,使得供水收入达到最大?列出该问题的数学模型。

表1 各用户需水量、水价及供水要求
2. 用图解法求解以下线性规划问题,并指出问题具有唯一最优解、无穷多最优解、无界解,还是无可行解?
(1) (2)
≥,4≤1≥+10
≤2+..3+=max 212212121x x x x x x x t s x x Z
,2+3
3+..5.1+=min 2121212
1≥≥≥x x x x x x t s x x Z
3. 将以下线性规划问题转化为标准型,找出所有基解,确定其中的基可行解并计算其目标函数值,找出最优解及最优目标函数值。

,12≤+315
5+3..+2=max 21212121≥≤x x x x x x t s x x Z
4. 用对偶单纯形法解下题。

≥,3

2
+
x 6
3
+ 4x 3

+
3x +
2
= max
2 12
1
2 1
2
1
2
1
x
x
x
x
x
x
x
Z

约束条件:
5.某企业计划生产A,B两种产品。

生产1kg产品A需经甲设备加工1小时,乙设备加工5小时,获利5元;生产1kg产品B需经甲设备加工2小时,乙设备加工2小时,获利6元。

现该企业甲设备加工能力不超过12小时,乙设备加工能力不超过30小时。

试问如何安排生产计划,使企业获利最大,并计算两种设备的影子价格。

6. 某地区在今后三年内有四种投资机会。

第一种是在三年内每年年初投资,每年年底可将该年投资收回,并获利20%;第二种是在第一年年初投资,第二年年底可获利50%,并将本金收回,但是该项投资最多不得超过2万元;第三种投资是在第二年年初投资,第三年年底收回本金,并获利60%,该项投资不得超过1.5万元;第四种是在第三年年初投资,于该年年底收回本金,且获利40%,该项投资不得超过1万元。

现在该地区准备拿出三万元资金,问如何制定投资计划,使到第三年年末本利和最大。

相关文档
最新文档