校园空气监测方案
新版校园大气环境监测方案(校园空气环境质量监测方案)

中北大学空气环境监测方案一.监测目的(1)通过实训可以更进一步的巩固课本知识,更加熟练的掌握氮氧化物、二氧化硫、TSP、PM10的测定方法。
(2)通过对污染物的测定可以知道本校园的空气质量好坏,从而可以想到改善环境的方法,更好的营造一个舒适的、健康的校园环境。
(3)通过实践操作,布点的基本原则,采取适宜的方法进行布点,保证采集的样品无误,并掌握测定项目的一些采样方法。
(4)通过实训可以加强同学们的动手能力、观察能力、归纳能力、以及计算能力,增进同学之间的交流,培养同学之间团结合作精神。
二.监测区域资料收集及主要的监测项目受西风环流和较高的太阳辐射影响,使其气候干燥,降雨量偏少,昼夜温差大,表现为较强的大陆性气候。
污染物在大气中的扩散、输送和一系列的物理、化学变化在很大程度上取决于当时当地的气象条件,因此要收集监测区域的风向、风速、气温、气压、等资料,但学校校园内风向比较均匀,风速比较小,在监测时可以不考虑,根据《大气环境质量标准》(GB3095—2012)和校园周边的空气污染物的排放情况,可选TSP、PM10、氮氧化物、二氧化硫这四项作为环境的监测项目。
三.监测点的布设根据污染物的等标排放量,结合校园各环境功能区的要求,及当地的地形、地貌、气象条件,根据布点的原则用功能区划分布点法来布置采样点。
测点编测点名称测点方位号1#学生居住宿舍楼附近区2#教学区教学楼前距教室大约十米左右3#实验楼区实验楼附近4#食堂区各个食堂的门口前5#学校前门正对前门口保安室十米左右区四.监测时间和频次:时间:2012年 10月日至2012年10月日上午:9:00---10.00 中午:1:00---2.00 晚上:5:00---6.00五.污染物的监测分析方法TSP/PM的测试方法—重量法10一.实验目的1.掌握TSP/PM的分析方法和采样方法。
102.了解环保学院TSP/PM的浓度。
103.了解环保学院的环境情况。
学校空气质量监测方案

学校空气质量监测方案随着人们对健康的关注度不断提高,学校空气质量监测成为了一个备受关注的话题。
毕竟,学校是孩子们学习、生活的重要场所,保证学校空气质量的健康是非常重要的。
本文将介绍一个学校空气质量监测方案,旨在为学校提供优质的室内环境。
1. 介绍学校空气质量监测的必要性在学校教学活动中,学生们长时间呆在教室内,室内空气质量的好坏直接关系到学生的健康状况和学习效果。
通过监测学校的空气质量,可以了解到学校的室内环境是否达到健康标准,提醒学校及时进行空气净化和通风换气措施。
2. 设备选择与布局学校空气质量监测方案需要选择专业的监测设备,并合理布局。
首先要选择准确可靠的空气质量监测仪器,如PM2.5检测仪、甲醛检测仪等。
其次,需要考虑设备的布局,根据学校的教学楼、宿舍楼等不同场所布置,确保监测点的覆盖范围广泛。
3. 监测项目的确定学校空气质量监测项目应包括常见空气污染指标,如PM2.5、PM10、甲醛、苯等。
通过多个监测点对这些指标进行实时监测,形成全面的空气质量评估。
4. 监测频率和时间段的设定监测频率是指每天监测的次数,可以选择全天24小时监测或根据学校教学活动时间确定监测时间段。
这样能从时间维度上更准确地了解学校的空气质量情况。
5. 数据的采集与分析学校空气质量监测方案需要配备专业的数据采集设备,将监测到的数据自动化记录下来,并进行数据分析。
通过对数据的分析,可以发现空气污染问题的规律性和特点,为改善学校空气质量提供科学依据。
6. 报告生成与发布学校空气质量监测方案需要将监测结果及时生成报告,并向师生和家长发布。
报告应以简洁明了的方式呈现数据和分析结果,让相关人员了解学校空气质量的情况。
7. 应急措施的设定学校空气质量监测方案应设定应急措施,当监测到学校空气质量出现异常时,能够及时采取措施解决问题。
例如,出现甲醛超标,应及时通风、封锁源头等。
8. 学校空气质量监测方案的投入与支持学校空气质量监测方案需要投入一定的人力、物力和财力。
校园空气环境监测方案

校园空气环境监测方案目录一、项目背景与目的 (2)1. 项目背景介绍 (2)2. 监测目的与目标 (3)二、监测范围与内容 (4)1. 监测区域划分 (4)1.1 校园主要区域 (5)1.2 周边环境影响区域 (7)2. 监测内容设置 (8)2.1 空气质量指数监测 (9)2.2 温室气体监测 (10)2.3 有害气体及颗粒物监测等 (11)三、监测站点布局与设备选型 (12)1. 监测站点设置原则及布局图 (13)2. 设备选型与性能要求 (14)2.1 空气质量监测仪器 (16)2.2 数据采集与传输设备选型 (17)四、监测时间与周期安排 (18)1. 监测时间段划分 (19)2. 监测频率及时长设定 (20)3. 数据采集与处理周期安排 (20)五、监测流程与方法学设计 (21)1. 监测流程设计概述 (23)2. 具体监测方法学介绍与应用步骤说明 (24)一、项目背景与目的随着社会经济的快速发展,人们对环境保护和健康生活的要求越来越高。
校园作为培养人才的重要场所,其空气质量对师生的身体健康和学习效果具有重要影响。
校园空气污染问题日益严重,导致学生呼吸道疾病频发,影响了学生的身心健康。
加强校园空气环境监测,提高空气质量,保障师生的身体健康和学习环境,已成为当前亟待解决的问题。
本项目旨在建立一套完善的校园空气环境监测方案,通过对校园内的空气质量进行实时监测,为学校提供科学、有效的数据支持,以便采取针对性的措施改善空气质量。
通过本项目的实施,可以提高校园空气环境质量,降低学生呼吸道疾病的发生率,提高学生的学习效果和生活质量,同时也是响应国家关于环境保护政策的具体行动。
1. 项目背景介绍随着城市化进程的加快和工业生产规模的不断扩大,空气质量问题已成为人们关注的焦点之一。
校园作为学生学习和生活的重要场所,其空气质量直接关系到师生的身体健康和学习环境。
由于校园内可能存在多种污染源,如交通尾气、建筑工地扬尘、燃煤污染等,加之季节性气候等因素的影响,校园空气环境质量存在不确定性。
校园内大气监测方案

校园内大气监测方案随着城市化进程的不断加快,环境污染问题日益凸显,大气质量监测成为了一个重要的环保任务。
而校园作为一个相对封闭的环境,也需要进行大气质量监测,以确保学生和员工的健康与安全。
本文将介绍一种校园内大气监测方案。
一、监测目标1.PM2.5浓度监测:PM2.5是大气中直径小于或等于2.5微米的颗粒物。
其对人体健康影响较大,因此需要定期监测。
2.二氧化碳浓度监测:二氧化碳是大气中的重要气体,其浓度的升高会影响室内空气质量,对人体健康造成潜在威胁。
3.挥发性有机化合物(VOCs)浓度监测:VOCs是造成室内甲醛等有害物质超标的主要原因之一,需定期监测。
二、监测方法1.PM2.5浓度监测:采用PM2.5传感器进行监测。
传感器安装在室内几个主要位置,并通过无线传输将数据传送至监测终端。
采集到的数据将实时显示在监测终端上,并可以进行数据分析和报警处理。
2.二氧化碳浓度监测:采用二氧化碳传感器进行监测。
传感器同样安装在室内几个主要位置,并将数据通过无线传输至监测终端。
监测终端可以实时显示二氧化碳浓度,并设定阈值进行报警。
3.VOCs浓度监测:采用VOCs传感器进行监测。
传感器安装在室内几个关键位置,并将数据通过无线传输至监测终端。
监测终端可以实时显示VOCs浓度,并进行报警处理。
三、监测频率1.PM2.5浓度监测:每天监测一次,以监测全天的大气质量变化情况。
2.二氧化碳浓度监测:每天监测一次,以监测室内空气质量变化情况。
3.VOCs浓度监测:每周监测一次,以监测室内空气中VOCs浓度是否超标。
四、数据管理和处理1.数据管理:监测终端将采集到的数据存储在数据库中,包括监测时间、位置、浓度等信息。
2.数据分析:利用数据分析工具对存储的数据进行分析,获取大气质量的变化趋势、季节规律等信息。
3.报警处理:当监测到的浓度超过设定的阈值时,监测终端将发出警报,并向相关人员发送报警信息。
五、监测结果发布1.大气质量指数(AQI):根据监测到的数据计算AQI,并将结果实时显示在监测终端上,供学生和员工查看。
学校室内空气质量监测方案

学校室内空气质量监测方案一、背景介绍室内空气质量是一个与学生健康密切相关的问题。
近年来,随着污染问题的日益凸显,人们对室内环境的关注也越来越多。
为了确保学生的学习环境健康,学校室内空气质量监测方案应运而生。
二、监测目标学校室内空气质量监测方案的首要目标是确保学生在校园的教室、图书馆和食堂等室内环境中呼吸到高质量的空气。
通过监测室内空气中的污染物含量,及时发现和解决空气质量问题,提高学生的学习效果和生活质量。
三、监测方法1. 采样设备:选择高精度的空气质量监测仪器,如多参数气体分析仪、颗粒物检测仪等,确保监测数据的准确性和可靠性。
2. 监测点位:根据学生活动区域和人流密集程度,选择代表性的监测点位进行采样。
监测点位应覆盖学校的各类室内环境,包括教室、图书馆、食堂等。
3. 监测周期:根据实际情况设定合理的监测周期,可根据季节、天气等因素进行调整。
监测结果应每月定期公布,并及时进行数据分析和评估。
四、监测指标1. VOCs(挥发性有机化合物):检测空气中的甲醛、苯等有害物质的含量,确保不超过国家相关标准。
2. PM2.5:监测空气中细颗粒物的浓度,有效控制室内空气中的灰尘、细菌等污染物。
3. CO2:监测室内空气中二氧化碳含量,确保室内通风良好,学生不会长时间处于密闭的环境中。
五、数据分析与评估监测数据应由专业人员进行分析和评估,结合监测指标的标准限值,评估学校室内空气质量的优劣。
同时,建立数据跟踪系统,可以及时发现潜在问题,并制定相应的改进措施。
六、问题解决与改善根据监测的结果,学校应制定相应的改善措施。
对于存在的空气质量问题,及时采取有效的解决措施,如增加通风设备、净化空气、减少室内污染源等。
同时,加强对学生的健康教育,提高他们的环境保护意识和自我保护能力。
七、教师和学生参与学校室内空气质量监测方案需要教师和学生的积极参与。
学校可以组织相关培训,提高教师对空气质量的认识和监测操作的能力。
同时,学生也应加强对室内空气质量的学习和关注,积极参与监测活动,并提出改善建议。
校园环境空气质量监测方案

西安工业大学校园空气质量监测方案1.监测目的此次大气监测的目的主要有以下方面:1.通过实验进一步巩固课本知识,深入了解空气环境中各污染因子的具体采样方法、分析方法、误差分析及数据处理等方法。
巩固大气环境监测的原理与知识,了解调查研究的基本方法与步骤。
2.对校园的空气环境进行监测,评价校园的空气环境质量。
3.充分了解校园空气质量情况并分析可能的趋势发展及变化。
2.方案设计思路查找相关标准,确定监测的项目及内容,调查学校功能区分布及人口分布情况,查找校园气象资料,调查污染源分布,由以上资料确定监测点的布置。
采集样品后查找相应国标方法测定结果并分析,最后与实际情况对比。
3.方案调研大气污染受气象、季节、地形、地貌等因素的强烈影响而随时间变化,因此应对校园内各种大气污染源、大气污染物排放状况及自然与社会环境特征进行调查,并对大气污染物排放作初步估算。
3.1 背景调研4.1.1 总体气象情况西安春季温暖、干燥、多风;夏季炎热多雨,多雷雨大风天气;秋季凉爽,气温速降,秋淋明显;冬季寒冷,多雾、少雨雪。
春季回暖期(4月1~30日):平均气温15.2℃。
初夏少雨期(5月1日~6月20日):平均气温21.8℃。
初夏多雨期(6月21日~7月20日):日平均气温稳定在25~28℃,最低气温通常高于15℃。
盛夏伏旱期(7月21日~8月20日):日平均气温在24~28℃之间。
初秋多雨期(8月21日~10月10日):日平均气温15~24℃。
秋季凉爽期(10月11~31日):日平均气温11~15℃。
年平均气温变化图西安4~10月平均总降水量488.6毫米,平均总降水日数66天。
平均日降水≥25毫米的大雨日 4.5天。
年均降水量变化图春季回暖期(4月1~30日):平均相对湿度为64.5%,4月内各旬相对湿度分布比较均匀。
初夏少雨期(5月1日~6月20日):相对湿度6月上中旬的54%,达到全年最低值。
初夏多雨期(6月21日~7月20日):相对湿度达60~70%。
校园空气监测方案

基于我校空气污染以实验楼污染,烟囱污染,垃圾堆污染为主的现状,规定用SO2 、NOx、和TSP 三项主要污染物指标计算空气污染指数(API) ,表征空气质量状况。
资料采集主要污染源:经调查研究,我校污染源主要分为锅炉及垃圾堆和实验楼及印刷厂及东王庄小区。
气象资料:污染物在空气中的扩散迁移和一系列的物理、化学变化在很大程度上影响污染物的分布情况。
因此,要采集监测区域的风向、风速、气温、气压等资料 (由于校园内风向均匀及风速较小则在测量时可不与考虑) 。
监测项目必测项目:SO2 、NOx 、TSPA .PM10监测点的布设布设方法:东王庄小区采用网格布点法:由于污染源分布较均匀,将东王庄小区划分为若干个均匀网状方格,采样点设在方格的中心。
采样的时间及频率时间:20XX 年年10 月29 日上午8:00~8:40 中午12:00~12:40 下午5:00~5:40采样工具携带式采样器:采样速率0~1L/min;总悬浮颗粒物采样器:采样速率11.3~15mg/h 。
PM10 采样器采样纪录污染物的名称编号采样地点采样时间采样流量/L/min 采样体积/L 温度/℃大气压力/KPa 采样仪器所用吸收液采样者审核者1.大气中总悬浮颗粒物及PM10 的测定(分量法)一、原理用分量法测定大气中总悬浮颗粒物、PM10 的方法普通分为大流量(1.1― 1.7m3/min)和中流量(0.05―0.15m3/min)采样法。
其原理基于:抽取一定体积的空气,使之通过已恒重的滤膜,则悬浮微粒被阻留在滤膜上,根据采样先后滤膜分量之差及采气体积,即可计算总悬浮颗粒物及PM10 的质量浓度。
本实验采用中流量采样法测定。
二、仪器1.中流量采样器:流量50― 150L/min,滤膜直径8― 10cm。
2 .流量校准装置:经过罗茨流量计校准的孔口校准器。
3.气压计。
4 .滤膜:超细玻璃纤维或者聚氯乙烯滤膜。
5.滤膜贮存袋及贮存盒。
6.分析天平:感量0.1mg。
校园空气质量监测方案制订

校园空气质量监测方案制订随着城市化进程的加快,校园环境污染问题越来越严重,空气质量监测成为全社会关注的热点问题。
校园空气质量的好坏对学生、教师的健康和学习、工作效率有重要影响,因此制订一个科学、合理的校园空气质量监测方案具有十分重要的意义。
1、发现污染源通过监测校园内各地区的空气质量状况,可以快速发现污染源,并及时采取措施,保护教职工和学生的健康。
2、评估空气质量状况监测分析校园空气的污染状况,可以评估空气质量,减少有害气体的排放,提高空气品质水平。
3、提高环境保护意识对校园空气质量监测的开展,不仅有助于提高学生和教职工的环境保护意识,更进一步促进全社会环境保护观念的普及。
1、监测区域确定:校园内各关键区域(如教学区、宿舍区、运动场等)都应该设立监测点。
2、监测参数确定:监测体系应包括PM2.5、PM10、CO2、SO2、NO2等常规参数。
特殊的监测点可根据具体情况增加特定参数监测。
3、采样时间周期:应根据各区域的使用频率及特殊环境的实际情况,制定监测周期。
建议在学生较少的晚间及节假日进行长期连续监测。
4、监测设备及技术选择:市场上已有多种空气质量监测设备,可根据监测参数、预算等因素选择。
监测设备及技术应符合国家标准,具有较高的测量准确度。
5、数据管理及报告发布:监测数据应进行规范处理、保存、分析和归档,以备需要时候演示数据的准确性。
制定评估标准和发布监测报告,有助于监测效果的评估及监测意义的传达和推广。
三、校园空气质量监测过程中需要注意的问题1、监测数据的准确性空气质量监测的准确性及时性直接影响监测成果,因此要确保监测数据的准确性,保证监测结果具有科学性和可靠性。
2、相关人员的培训校园空气质量监测需要专业技术人员操控并准确采集所有监测信息,因此需要对监测人员进行专业培训。
3、采样点设置的科学性各区域的采样点要放置在最能代表区域内空气质量的位置,切忌规避污染源,否则采样数据将失去意义。
4、监测成果的有效应用积极的监测和有效地利用监测数据是保障校园空气质量的重要环节,因此需要制定出科学的空气质量治理计划,并通过实际行动改善监测点的空气质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙环保学院大气监测方案
TWB监测股份有限公司 2015年3月15日
目录
一、监测目的 (3)
二、校园大气环境因素识别 (3)
1、污染源调查 (3)
2、汽车尾气调查情况 (4)
3、气象资料收集 (4)
三、大气环境监测因子筛选 (5)
四、大气监测方案 (5)
1测点名称及相对方位 (5)
2环境项目和分析方法的确定 (6)
五、数据处理 (7)
六、质量保证与质量控制 (7)
一、监测目的
(1)了解二氧化硫、二氧化氮、PM10、一氧化碳对环保学院空气影响;(2)评价长沙环保学院空气质量;
(3)寻找污染源,追踪污染路线,为环保学院大气污染治理提供依据。
二、校园大气环境因素识别
1、污染源调查
调研时间:2014.3.15
调研人员:万冬,李捷,陶侽侽,秦芬,律婷
调查内容:主要调查排放源,燃料种类,污染物名称,排放方式
2、汽车尾气调查情况
时间:2014.3.15 地点:洞井中路,木莲路,南门校园大道
记录者:律婷审核者:陶侽侽3、气象资料收集
收集长沙气象数据,包含风向,风速,气温,降水量,相对湿度
三、大气环境监测因子筛选
环保学院主要污染为SO
2、NO
2
、CO 、TSP 、PM10,因技术条件限制,
我们监测项目主要为SO2、NO2、PM10。
四、大气监测方案
环保学院主要污染源为汽车尾气,食堂废气排放,建筑扬尘三类,常年主导风向为西北方向次主导风向为南,围绕污染源地结合风向,布点在污染源下方向,故布点如下
1测点名称及相对方位
校园中心为第一教学楼,图中1、2、3、4所示为布点位置2环境项目和分析方法的确定
监测项目采样
方法
流量
(L/min)
采气量
(L)
分析方法检出下限
(mg/m3)
PM10滤膜
阻留
法
100120000 重量法0.010
二氧化硫溶液
吸收
法
0.5 30 盐酸副玫瑰苯胺分光
光度法
0.007
二氧化氮溶液
吸收
0.4 24 盐酸萘乙二胺分光光
度法
0.015
采样频率:
1,PM10采用24小时平均,每天采样20h采样同时记录气温,气压,风向风速等气象因素。
2,二氧化碳和二氧化硫采用一小时平均,每小时采样45分钟。
五、数据处理
环境空气质量监测结果统计表如下:
六、质量保证与质量控制
1,按照监测规定对采样仪器进行校准检查;
2,严格按照《空气和废水监测分析方法》(第四版增补版)和标准分析方法进行采样及测试;
3,对样品在室内分析中采取平行双样、空白试验等质控措施。
对所用玻璃仪器均进行校准,分析仪器经过周期性计量检定。