第六章 电力系统三相短路的实用计算

合集下载

电力系统三相短路的实用计算

电力系统三相短路的实用计算

Em
zf1 zfi zfm
If
I fi
If f
7
(二)星网变换
➢星型网络
E1
➢变换成网型网络
E1
n 1
X ij
Xi X j
k 1
Xk
X1
X2
E2
X3
X 12
X 13
E2 X 23
8
6-2 起始次暂态电流和冲击电流 的实用计算
实用计算:满足工程需要的,可以节省大量时间的简化算法
➢ 起始次暂态电流:短路电流周期分量(指基频分量)的初 始值有效值
jx I[0]
算出短路后的短路电流
E[0] V[0] jxI[0]
I E0 E[0] x x
E[0]
V
jx I0
E和x的确定 E0 (V[0] I[0]xsin[0])2 (I[0]xcos[0])2 E0 V[0] I[0]xsin[0]
V 0
➢汽轮机和有阻尼的凸极发电机次暂态电抗可取x"=x"d 假定发电机在短路前满载运行,
➢ 对于不太复杂的电力系统,在制订等值电路
并完成元件参数计算后,可以直接对原网络
进行等值变换求得转移阻抗

可以保留电势源节点和短路点,通过原网络 的等值变换逐步消去一切中间节点,形成以
E1
电势源节点和短路点为顶点的全网形电路, Ei
这个最终电路中联接电势源节点和短路点的 支路阻抗即为该电源对短路点的转移阻抗
----等值电路问题:元件用次暂态参数计算,次暂态电流的 计算和稳态电路中电流的计算相同
➢ 系统中的元件可分为两类:静止元件和旋转元件
元件 静 旋止 转
次暂态参数与稳态参数相同 次暂态参数不同于稳态参数

电力系统三相短路电流计算公式

电力系统三相短路电流计算公式

电力系统三相短路电流计算公式在我们日常生活和工业生产中,电可是无处不在,发挥着至关重要的作用。

但您知道吗,当电力系统出现三相短路这种情况时,要计算短路电流可是有专门的公式呢!咱先来说说啥是三相短路。

这就好比一条宽阔的道路,原本电流在三根导线上稳稳当当流动,突然之间,这三条路一下子都“堵死”了,电流就像没头的苍蝇一样乱撞。

这时候,要搞清楚这混乱中的电流有多大,就得靠三相短路电流计算公式啦。

这个公式看起来可能有点复杂,不过别担心,我来给您慢慢拆解。

三相短路电流的计算公式是:$I_{k} = \frac{U_{av}}{Z_{eq}}$ 。

这里面,$U_{av}$ 表示平均额定电压,$Z_{eq}$ 表示短路回路的总阻抗。

就拿我曾经遇到的一个实际例子来说吧。

有一家工厂,新增加了一批大型设备。

在设备调试阶段,突然出现了短路故障。

技术人员赶紧进行排查,发现是三相短路了。

这时候,要计算短路电流,就得先搞清楚这短路回路的总阻抗。

他们开始仔细检查线路,从变压器到配电柜,再到每一台设备的连接线路。

发现有一段线路因为老化,电阻增大了不少。

还有一些设备的电感参数也不太正常。

经过一番努力,把这些参数都整理清楚,代入公式中,算出了短路电流的大小。

这可太重要啦!知道了短路电流的大小,才能选择合适的保护设备,比如断路器、熔断器等等,避免造成更大的损失。

再来说说这个平均额定电压。

它可不是随便定的,而是根据电力系统的标准来确定的。

不同的电压等级,平均额定电压也不一样。

总之,电力系统三相短路电流计算公式虽然有点复杂,但只要我们弄清楚每个参数的含义,结合实际情况进行准确的测量和计算,就能有效地应对短路故障,保障电力系统的安全稳定运行。

回想我之前提到的那个工厂,如果没有及时算出短路电流,采取有效的措施,可能整个生产线都得瘫痪好一阵子,那损失可就大了去了。

所以啊,掌握这个计算公式,对于电力工程师和相关技术人员来说,那可是必备的技能。

在实际工作中,我们还得考虑各种因素的影响,比如温度对电阻的影响,频率对电感的影响等等。

第六章电力系统三相短路电流的实用计算(1)剖析

第六章电力系统三相短路电流的实用计算(1)剖析
f2(3)
f2
f1(3)
f1(3)
jxT2/3
f1(3)
jxT3/3 jxT1/3 jxG/3
E
E
E
E
2018/10/24
电力系统分析 第六章 21
6.2 起始次暂态电流和冲击电流的实用计算(掌握) 一、起始次暂态电流I"的计算 1、起始次暂态电流定义: 短路电流周期分量(基频)的初值
冲击电流
(p99)

在标幺值参数计算方面
选取各级平均额定电压作为基准电压时,忽略各元件 的额定电压和相应电压级平均额定电压的差别,即认为变 压器的标幺变比都等于1.

假定所有发电机的电势具有相同的相位,所有元 件仅用电抗表示,避免了复数运算,短路电流的 计算简化为直流电路的计算。
电力系统分析 第六章 2
2018/10/24
Z10
Z7 f Z6
E 4
Z11 Z13 e Z15 f
E 2
zz z11 8 2 z8+z2
z z z12 9 3 z3+z9
z E z E 1 2 2 8 E4 z8+z2
z E z E 1 3 2 9 E5 z3+z9
z13
z6 z10 z6+z7+z10
Z1
E 1
Z3 Z5
f
Z1
E 2
E 1 E 1
Z3 Z5
f
E 2 E 2
Z4
Z6 Z2
Z4
Z2
Z6
(a )
E 1
Z1
Z5
f
Z3
E 2
(b )
E 1
Z2
Z4
E 2

3(C-6)三相短路实用计算

3(C-6)三相短路实用计算
Z if
)

& I f = 1 Z ff & Vf = 0
& Vi = 1 −
& =1− Vi z f + Z ff 1 Z jf − Z if & I ij = zij ( z f + Z ff )
Z ff 1 Z jf − Z if & I ij = zij Z ff Zif
L Z1 f M L Z ff L M Zif
M M L Z fi L Z fk M L Zii M L Zik
M L Z kf M L Z nf
M M L Z ki L Z kk M M L Z ni L Z nk
L Z1n I V & & 1 1 M M M & & L Z fn I f V f M M M & & L Zin I i = Vi M M M & & L Z kn I k Vk M M M & & L Z nn I n Vn
3
6-1 短路电流计算的基本原理与方法
一、实用短路计算的系统模型——节点电压方程 实用短路计算的系统模型——节点电压方程 —— 2、节点电压方程
YV=I YV=I → ZI=V
L Z1i L Z1k
Z=Y-1
Z11 M Z f 1 M Zi1 M Z k1 M Z n1
13
6-1 —— 三、利用转移阻抗计算短路电流 求转移阻抗的方法—— 2、求转移阻抗的方法——③网络变换化简法求转移阻抗

第6章 电力系统三相短路电流的实用计算

第6章 电力系统三相短路电流的实用计算

算例:f点发生三相短路时的短路计算
10.5kV T-1 115kV
G1 b
L-1
f T-3
LD-1 LD-3
a L-2 L-3
6.3kV
(1)制定等值电路,确定计算条件;
T-2 6.3kV c
LD-2
EG XG b XT1
XL1
a
XL2
XT2 c XSC ESC
XLD1
ELD3 XLD3
XL3
ELD1
1: k
z pq
p
q
I pq
6-1 短路电流计算的基本原理和方法
2.利用节点阻抗矩阵计算短路电流—忽略负荷电流
忽略负荷电流的影响, 短路前空载,各节点 电压:Vi(0) = 1
(1)故障点电流:
If
=
1 Z ff + z f
(2 )节点
i 电压:Vi
=
V (0) i

Zif
I
f
= 1− Zif Z ff + z f

t Tq′′
⎞ ⎟⎟⎠
jxe
G
f
Ip
x js1 x js 2
t
( ) ( ) I p∗ =
I2 p⋅d
+
I
2 p⋅q
=
f
xd′′ + xe , t
=f
x js , t
x js = xd′′ + xe —计算电抗,标么值 SB = SGN ,VB = Vav
6-3 短路电流计算曲线及其应用
2.计算曲线的制作
(3)支路电流:I pq
=
kVp −Vq z pq
1: k

电力系统三相短路电流的实用计算

电力系统三相短路电流的实用计算

电力系统三相短路电流的实用计算
电力系统中,短路电流是一种非常重要的参数,它能够反映出电力系统的安全性能。

在电力系统中,短路电流通常是指在电力系统中某一点发生短路时,通过短路点的电流大小。

在电力系统中,短路电流通常是三相短路电流,因为电力系统中的电路通常是三相电路。

三相短路电流的实用计算方法有很多种,其中比较常用的方法是采用对称分量法。

对称分量法是一种基于对称分量理论的计算方法,它能够将三相电路转化为三个对称分量电路,从而简化计算。

对称分量法的基本思想是将三相电路分解为正序、负序和零序三个对称分量电路,然后分别计算每个对称分量电路的短路电流,最后将三个对称分量电路的短路电流合成为三相短路电流。

具体的计算步骤如下:
1. 将三相电路分解为正序、负序和零序三个对称分量电路。

2. 分别计算正序、负序和零序三个对称分量电路的短路电流。

3. 将三个对称分量电路的短路电流合成为三相短路电流。

对称分量法的优点是计算简单、直观,适用于各种类型的电路。

但是,对称分量法也有一些局限性,比如只适用于对称电路,不适用于非对称电路。

除了对称分量法,还有一些其他的计算方法,比如矩阵法、有限元法等。

这些方法各有优缺点,需要根据具体情况选择合适的方法。

电力系统三相短路电流的实用计算是电力系统设计和运行中非常重要的一部分,需要掌握一定的计算方法和技巧,以确保电力系统的安全性能。

电力系统三相短路电流计算

电力系统三相短路电流计算

电力系统三相短路电流及其计算短路全电流,为短路电流周期分量与非周期分量之和。

k p np i i i =+ 式中,p i 为短路电流周期分量,np i 为短路电流非周期分量。

短路冲击电流,三相短路电流峰值sh p i K =式中,sh K 为短路电流冲击系数。

12sh K <<()短路全电流k i 的最大有效值,也称短路冲击电流有效值(指第一个周期内)sh p I =在高压电路发生三相短路时,一般可取 1.8sh K =,因此2.55sh p i I = 1.51sh p I I =在1000kVA 及以下电力变压器二次侧及低压电路中发生三相短路时,一般可取 1.3sh K =,因此1.84sh p i I = 1.09sh p I I =一般来说,sh i 用来校验电气设备短路时的动稳定性,sh I 校验冲击电流的热稳定性高压三相短路电流计算短路计算中有关物理量一般采用以下单位。

电流kA ,电压kV ,短路容量和断流容量MVA ,设备容量kW 或kVA ,阻抗Ω。

标幺值法进行短路计算时,一般先选定基准容量100B S MVA =和基准电压 1.05B N av U U U ==(115kV ,10.5kV ,0.4kV )根据功率方程S =,欧姆定律U = 基准电流B S I =基准电抗2BBBUXS==系统电源阻抗(电力系统的电抗)标幺值22*//B B Bs S BK B KU U SX X XS S S===KS为母线Ⅰ上的短路容量(电力系统变电所高压馈电线出口处的短路容量,一般由供电部门提供)电力变压器的电抗标幺值22*%%//100100K B B K BT T BT B TU U U U SX X XS S S===TS为配电变压器的额定容量(MVA)电力线路的电抗标幺值架空线路2*002//B BW W BB BU SX X X X l X lS U===电缆线路2*2//B BC C BB BU SZ X XS U===(注:一般高压短路回路的总电阻值R∑远小于总电抗X∑的1/3,计算中可不计高压元件有效电阻)限流电抗器2*//BK K BBU UUX X XS===其中KX,NU,NI为电抗器电抗百分值,额定电压,额定电流三相稳态短路电流(短路周期分量有效值)P KI I I∞==标幺值2***1//K PBK BBU S UI I I IS X X∑∑=====由此可得**1PP K B BI I I I IX∑=====三相短路容量**PBK av K av BSS I S IX∑====由**P KK B K BS S I S S S==,得**P KI S=即某点短路容量标幺值与该点的短路电流标幺值在数值上相等。

电力系统三相短路电流的实用计算培训课件

 电力系统三相短路电流的实用计算培训课件

x
及所指定的时刻t,查计算曲线(或对应的数
jsi
字表格)得出每台等值机组提供的短路电流标么值 。 Iti
b、无限大功率电源向短路点提供的短路电流周期分量的标幺值:

1 xsk
其数值不衰减。
c、第i台等值机组提供的短路电流有名值
Iti Iti I Ni Iti
S Ni 3U av
(kA)
d、无限大功率电源提供的短路电流有名值
* **上述将电源进行分组的计算方法称为:
个别变化法
* **如果全系统的发电机向短路点供出短路电流的 变化规律相同时,可把全系统中所有发电机看成一 台等值发电机进行计算,称之为:
同一变化法
二、应用运算曲线法求任意时刻短路电流周期分 量~~的~~有~~效~~值~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(3)进行网络化简,求取转移电抗 xik 。
a、采用星—三角变换法消去所有中间节点,最后只余下 电源节点和短路点;
b、每个电源与短路点之间直接相连的电抗就是 xik 。
c、化简过程中可进行电源分组合并,依据为: • 当发电机特性相近时,与短路点电气距离相似的发电机可以
合并; • 直接接于短路点的发电机应单独考虑; • 不同类型的机组不能合并; • 无限大功率的电源应单独计算。
(4)计算起始次暂态电流的标么值I”*和有名值I”。
I*
n i 1
1 Zik
I I* I B I*
SB (kA) 3U B
(5)计算短路冲击电流 iimp 。
Iimp Kimp 2 I (kA)
* **影响短路电流变化规律的主要因素有两个:
• 发电机的特性(类型、参数); • 发电机距短路点的电气距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 短路电流计算的基本原理和方法
当电势源i单独作用时, Ei Ei z mi z fi I fi I mi z fi 为电势源i对短路点f的转移阻抗 z mi 为电势源i对电势源节点m 之间的转移阻抗
8
6.1 短路电流计算的基本原理和方法
2、利用节点阻抗矩阵计算转移阻抗
V
E 0.9,
x 0.2

I E

V
-jx I
系统发生短路后,只当电动机端的残余电压小于E"时, 电动机才会暂时地作为电源向系统供给一部分短路电流

三、综合负荷提供的起始次暂态电流
配电网络中电动机数目多,查明短路前运行状态困难 电动机所提供的短路电流数值不大 实用计算中 只对于短路点附近能显著地供给短路电流的大型电动机, 将其作为提供短路电流的电源 其它的电动机,则看作是系统中负荷节点的综合负荷的一 部分,在短路瞬间,综合负荷也可以近似地用一个含次暂 态电势和次暂态电抗的等值支路来表示
z im z i z m / Z im
(6-13)
同理可得电势源i和电势源m之间的转移阻抗为
9
6.1 短路电流计算的基本原理和方法
3、利用电流分布系数计算转移阻抗
对于图6-8(a)所示的系统,令所有电源电势都 等于零,只在节点f接入电势 E ,使产生电流 I f E / Z ff 各电源支路对节点f的电流分布系数为 c I / I
jG
第一项 Z ij I j 是 I f 0 时的节点 i 的电压 即短路前节点 i 的电压,记为 Vi [0] , 可由节点方程求出,Vi [0] Z ij I j
jG
Vi Vi [0] Z if I f
jG
戴维南等值电路
Vi Vi
当电势源 E i 单独存在时,相当于在节点i单独注入 (0) 电流I i Ei / z i ,这时在节点f将产生电压V fi Z fi I i , (0) 若将节点f短路,便有电流I fi V fi / Z ff,于是可得
E i Z ff z fi zi I fi Z fi
第六章 电力系统三相短路的实用计算
6-1三相短路计算原理和方法
电力系统三相短路主要是短路电流周期分量的计算,工程 中着重实用,电力系统三相短路电流计算可采用实用的计算 方法,采用一定的简化和假设
短路计算的基本假设
不计发电机、变压器、输电线路的电阻 不计线路电容,略去变压器的励磁电流(三相三柱式变压器 的零序等值电路除外) 负荷当作恒定电抗,或某种附加电源,近似估计或忽略不计 变压器变比取1, VN=Vav 三相系统是对称的 所有发电机的电势同相位, 元件用电抗表示,没有复数运算, 把短路电流的计算简化为直流电路的求解 金属性短路,短路处的过渡电阻等于零。过渡电阻指短路处 的接触电阻,如电弧电阻或外物电阻,接地电阻
Z if Ii ci If zi
(6-15)
对照公式(6-13),计及 Z if Z fi可得
z fi Z ff ci
11
(6-16)
6.1 短路电流计算的基本原理和方法 电流分布系数是说明网络中电流分布情况的一种 参数,对于确定的短路点网络中的电流分布是完全确定 的。图6-10(a)表示某网络的电流分布情况。若令电 势 E 的标幺值与 Z ff 的标幺值相等,便有 I f 1,各支路 电流标幺值即等于该支路的电流分布系数,如图6-10 (b)所示。
静止 次暂态参数与稳态参数相同 元件 旋转 次暂态参数不同于稳态参数
一、 同步机提供的起始次暂态电流
在突然短路瞬间,同步电机的次暂态电势保持短路前 jx 瞬间的值, 短路前把E 计算出来
I [0]
E[0] V[0] jx I [0]
算出短路后的短路电流
一、电力系统节点方程的建立
电力系统结构复杂,一般用计算机计算。需要选择数学模型和 计算方法,然后编制计算程序。这里讲基本的数学模型和计算方法
模型
网络用节点方程描述 发电机用E和r+jx表示,由于节点方程要求已知节点注入电流,所以 用电流源表示
z i ri jxi
i
YN
i
Ii
yi
[0]
V [0] f


If
Zff
Z if I f (i 1, 2, n )
Vf
对于短路点 f, 有 Vf Vf[0] Z ff I f
Vf[0]是开路电压,Z ff 是只在节点 f 加电流 If ,其它节点电流源断开时,电势源短接 f点的电压与电流之比,即为戴维南等值阻抗
次暂态电抗
x xst 1/ I st
启动电流
E[ ] 0
V
启动电流的标幺值一般为(4~7),可近似取 x"=0.2
次暂态电势
E0 E[0] V[0] jI [0] x
2 2
jx
E0
E0 (V[0] I[0] x sin [0] ) ( I[0] x cos [0] ) V[0] I[0] x sin [0]
计及负荷影响时短路点的冲击电流
iim 2 k im.G I G 2 k im - LD I LD
例6-7
计算f点发生短路的冲击电流,系统各元件的参数为
发电机 G: 60MVA, xd”=0.12 调相机 SC: 5MVA, x”d=0.2 变压器 T1: 31.5MVA,Vs%=10.5, T2: 20MVA, Vs%=10.5 T3: 7.5MVA, Vs%=10.5 线路 L1: 60km, L2: 20km,L3: 10km 各条线路电抗均为0.4Ω/km 负荷: LD1: 30MVA, LD2: 18MVA, LD3: 6MVA
I ij
KVi V j zij
Vi
Vj
式中所用到的阻抗矩阵元素都带有列标 f,如果网络在正常状态下的节点 电压为已知,为了进行短路计算,只须利用节点阻抗矩阵中与故障点 对应的一列元素。一般只需形成网络的节点导纳矩阵,并根据具体要 求,求出阻抗矩阵的某一列或某几列元素即可
近似计算和程序流程
YN
1 zi Ei ri jx i
Ei

yi
Ii
负荷用恒定阻抗表示,追加到导纳矩阵中
z LD V / S LD
2 *
V
2
PLD jQLD
网络
YV I
二、 用节点阻抗矩阵计算短路电流的方法
非金属短路 ,过度阻抗为zf 网络分解 I
有源 网络
E[ ] 0
V
E0 E[0] I x x
E0
jx
I0
E 和 x的确定 E0 (V[0] I[0] x sin [0] ) 2 ( I[0] x cos [0] ) 2
V[0] I[0] x sin [0]
E 0.8,
x 0.35
暂态电抗0.35中包括电动机电抗0.2 和降压变压器以及 馈电线路的估计电抗0.15
四、 冲击电流
由于异步电动机的电阻较大,在突然短路后,由异步电动机供给 的电流的周期分量和非周期分量都将迅速衰减,而且 衰减的时间常数也很接近,其数值约为百分之几秒
实用计算,负荷提供的冲击电流
发电机运行参数不确知,可取 E 0 1.05 ~ 1.1 E0 1 不计负荷,取


I
E

jxI
ቤተ መጻሕፍቲ ባይዱV
二、 异步机提供的起始次暂态电流
正常运行情况,异步电动机的转差很小(s=2%~5%),可以近似当 作依同步转速运行。根据短路瞬间转子绕组磁链守恒的原则,异步电 动机也可以用与转子绕组的总磁链成正比的次暂态电势以及相应的次 暂态电抗来代表 jx I[0]
13
转移阻抗与节点互阻抗的比较
(1) 定义不同
i
Ii
Z ji V j I i
I j 0, j i
无源 网络 (Y)
j
i +
Vj
-
Ei
无源 网络 (Y)
j
Ij
z ji Ei I j
Ek 0, k i V j 0
Zji=V j I i
三、利用电势源对短路点的 转移阻抗计算短路电流
(一)叠加原理的应用 对于一个多电源的线性网络根据叠加原理总 可以把节点f的短路电流表示成
If
I f I f i E i / z fi
iG iG
Ifi
G 是有源支路的集合, Ei为第个有源支路的 电势,zfi便称为电势源对短路点的转移阻抗 为了与互阻抗相区别,转移阻抗用小写字 母z表示
12
6.1 短路电流计算的基本原理和方法
4、利用网络的等值变换计算转移阻抗
(1)将电源支路等值合并和网络变换,把原网络简化 成一端接等值电势源另一端接短路点的单一支路,该支 路的阻抗即等于短路点的输入阻抗,也就是等值电势源 对短路点的转移阻抗,然后通过网络还原,算出各电势 源对短路点的转移阻抗。 (2)保留电势源节点和短路点的条件下,通过原网络 的等值变换逐步消去一切中间节点,最终形成以电势源 节点和短路点为顶点的全网形电路,这个最终电路中联 结电势节点和短路点的支路阻抗即为该电源对短路点的 转移阻抗。
V 网络部分和故障部分( f z f I f ) 联合求解 I f Z z ff f Vf[0]
[0] [0] 网络中任一点的电压 Vi Vi Z i f I f Vi
相关文档
最新文档