函数的定义域与值域
函数的定义域与值域分析

函数的定义域与值域分析函数是数学中的重要概念,它描述了两个集合之间的映射关系。
在函数的研究中,定义域和值域是两个重要的概念,它们对于理解函数的性质和特点有着重要的作用。
本文将对函数的定义域与值域进行分析和讨论。
一、定义域的概念在数学中,函数的定义域是指函数自变量的取值范围。
简单来说,就是函数中自变量可以取的实数的范围。
在定义域内的每一个实数都与函数中的唯一一个值相对应。
例如,对于函数f(x)=√x,定义域为非负实数集[0, +∞)。
这意味着函数中的自变量x必须大于等于0,否则函数无法定义。
在确定函数的定义域时,需要注意以下几个方面:1. 分式函数的定义域:对于分式函数,需要注意分母不能为0。
例如,对于函数f(x)=1/(x-1),定义域为实数集R中除了x=1的所有实数。
2. 根式函数的定义域:对于根式函数,需要注意根号内的值必须大于等于0。
例如,对于函数f(x)=√(x-2),定义域为[x≥2]。
3. 复合函数的定义域:对于复合函数,需要注意每个函数的定义域。
例如,对于函数f(g(x)),需要保证g(x)的定义域在f(x)的定义域内。
二、值域的概念函数的值域是指函数的所有可能的取值。
简单来说,就是函数中因变量的取值范围。
值域可以是一个集合,也可以是一个区间。
例如,对于函数f(x)=x^2,值域为非负实数集[0, +∞)。
这意味着函数中的因变量y的取值范围大于等于0。
在确定函数的值域时,需要注意以下几个方面:1. 一次函数的值域:对于一次函数,其值域为整个实数集R。
例如,对于函数f(x)=2x+1,值域为实数集R。
2. 幂函数的值域:对于幂函数,其值域取决于指数的奇偶性。
例如,对于函数f(x)=x^2,值域为非负实数集[0, +∞);对于函数f(x)=x^3,值域为整个实数集R。
3. 三角函数的值域:对于三角函数,其值域是有界的。
例如,对于函数f(x)=sin(x),值域为闭区间[-1, 1]。
三、定义域与值域的关系函数的定义域和值域之间存在着密切的关系。
函数的定义域与值域

函数的定义域与值域函数是数学中的重要概念,用于描述输入和输出之间的对应关系。
在函数中,定义域(Domain)指的是函数的所有可能输入值所构成的集合,值域(Range)则是函数的所有可能输出值所构成的集合。
函数的定义域和值域在数学中具有重要的意义和应用,并在各个学科领域中发挥着重要的作用。
1. 定义域在函数中,定义域是指函数的所有可能输入值的集合。
它决定了函数可接受的输入范围。
通常,定义域可以是实数集、整数集、有理数集等。
然而,有些函数可能会有特定的限制条件,如分母不能为零、根号内不能为负数等。
例如,考虑函数f(x) = 1/x,其中x为实数。
在这种情况下,由于分母不能为零,所以x的定义域为除去0的实数集,即x∈R,x≠0。
这样,所有不为零的实数都可以作为这个函数的输入值。
2. 值域在函数中,值域是指函数的所有可能输出值的集合。
它表示了函数所能取得的所有可能结果。
值域的确定需要考虑函数在定义域中的取值范围以及函数本身的性质。
例如,再考虑函数f(x) = 1/x,其定义域为除去0的实数集,即x∈R,x≠0。
对于任意一个不为零的输入值x,在函数中,将其代入公式后可以得到一个相应的输出值,即f(x) = 1/x。
显然,输出值可以是任意实数,因此值域为实数集R,即f(x)∈R,f(x)≠0。
3. 定义域和值域的图示为了更好地理解函数的定义域和值域,可以通过图示来展示函数的输入输出关系。
在坐标系中,将定义域的值放在x轴上,将对应的函数值放在y轴上,可以绘制函数的图像。
例如,回顾函数f(x) = 1/x,在定义域除去0的实数集,可以绘制函数曲线。
这样,x轴上除了0以外的各个点,都对应着y轴上的一个值,而值域即为函数曲线所覆盖的y轴的范围。
4. 应用举例函数的定义域和值域在数学中具有广泛的应用和重要意义。
它们不仅可以帮助我们理解函数的性质,还能在实际问题中起到指导作用。
例如,在物理学和工程学中,定义域和值域的概念可以帮助我们描述和分析各种物理量之间的关系。
函数的定义域和值域

函数的定义域、值域一、知识回顾第一部分:函数的定义域1.函数的概念:设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或a x y =,所有的函数值所构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.2.定义域的理解:使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <.满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括时用空心点表示.4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集.5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零.(4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.(7)分段函数:①分段函数是一个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(8)复合函数定义域的求法:①已知)(x f y =的定义域是A ,求()[]x f y ϕ=的定义域的方法为解不等式:A x ∈)(ϕ,求出x 的取值范围.②已知()[]x f y ϕ=的定义域为A ,求)(x f y =的定义域的方法:A x ∈,求)(x ϕ的取值范围即可.第二部分:函数的值域函数值域的确定方法:(1)直接观察法对于一些比较简单的函数,其值域可通过观察得到. (2)分离常数法:分子、分母是一次函数得有理函数,形如,dcx bax y ++=,,,,,(d c b a 为常数,)0≠c 可用分离常数法,此类问题一般也可以利用反函数法.(3)换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解. (4)配方法:适用于二次函数值域的求值域. (5)判别式法:适用于二次函数型值域判定.(6)单调性法:利用单调性,端点的函数值确定值域的边界.(7)函数的有界性:在直接求函数值域困难的时候,可以利用已学过函数的有界性,反过来确定函数的值域.(8)不等式法:利用不等式的性质确定上下边界.(9)数形结合法:函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目.二、 精选例题第一部分:函数的定义域例1.函数x x y +-=1的定义域为( )A .{}1x x ≤B .{}0x x ≥ C.{}10x x x ≥≤或 D.{}01x x ≤≤【解析】由题意⎩⎨⎧≥≤⇒⎩⎨⎧≥≥-01001x x x x 即∈x {}10≤≤x x ,故选D. 例2.函数()()xx x x f -+=01的定义域是( )A .()0,+∞B .(),0-∞ C.()(),11,0-∞-- D.()()(),11,00,-∞--+∞【解析】由⎩⎨⎧≠-≠+001x x x 得,01⎩⎨⎧<-≠x x 故选C.例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是( )5.0,2A ⎡⎤⎢⎥⎣⎦[]4,1.-B []5,5.-C []7,3.-D 【解析】 ()1+=x f y 的定义域是[],3,2-,32≤≤-∴x[]4,11-∈+∴x ,即()x f 的定义域是[]4,1-.又由4121≤-≤-x 解得250≤≤x即()12-=x f y 的定义域是⎥⎦⎤⎢⎣⎡25,0故选.A例4.设函数()x f y =的定义域是()1,0,则()2x f y =的定义域是什么?【解析】 函数()x f y =的定义域是()1,0.102<<∴x 即11<<-x故()2x f y =的定义域是()1,1-∈x 且0≠x .例5.已知函数(),11+=x x f 则函数()[]x f f 的定义域是( ) {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或【解析】:()11+=x x f 的定义域是101-≠⇒≠+x x 则()[]x f f 的定义域是111-≠+x 即21012-≠-≠⇒≠++x x x x 且故选.C 例6.已知()x f21-求函数⎪⎭⎫⎝⎛-x x f 213的定义域是?【解析】由()x f21-可知021≥-x 即0213≥-xx()2100312≤≤⇒≤-⇒x x x 故函数⎪⎭⎫⎝⎛-x x f 213的定义域是⎥⎦⎤⎢⎣⎡∈21,0x例7.若函数y =R ,求实数k 的取值范围.【解析】当0=k 时,86+-=x y ,当34>x 时,无意义,∴0≠k ; 当0<k 时,()268y kx x k =-++为开口向下的二次函数,图像向下延伸,函数值总会出现小于零的情况,进而,0<k 不成立,当0>k 时,同时要求0≤∆,即解得1≥k .例8.已知函数x x x f -+=11lg )(,求函数)2(12)1()(xf x x f x F +++=的定义域. 【解析】由题意011>-+xx,即0)1)(1(<+-x x ,解得11<<-x 故函数xxx f -+=11lg )(的定义域为)1,1(-所以⎩⎨⎧≠+<+<-012111x x 解得02<<-x 且21-≠x .即12)1()(++=x x f x m 的定义域为)0,21()21,2(---又121<<-x ,解得22<<-x ,即)2(xf 的定义域为)2,2(-)2(12)1()(x f x x f x F +++=的定义域即为)(x m 和)2(xf 的定义域的交集,即)0,21()21,2(--- )2,2(- =)0,21()21,2(---故函数)2(12)1()(xf x x f x F +++=的定义域为)0,21()21,2(--- . 例9.已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠. (1)若0ab >,判断函数()f x 的单调性; (2)若0ab <,求(1)()f x f x +>时x 的取值范围. 【解析】(1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)xxxxf x f x a b -=-+-∵121222,0(22)0x x x x a a <>⇒-<,121233,0(33)0x x x x b b <>⇒-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数. 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (2)(1)()2230x x f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22xa b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-.第二部分:函数的值域1.观察法:例1.求函数x y 1=的值域. 【解析】0≠x 01≠∴x0≠∴y ,即值域为:()()+∞∞-,00,2.分离常数法:分子、分母是一次函数得有理函数,形如)0,,,(,≠++=c d c b a dcx bax y 为常数,,可用分离常数法,此类问题一般也可以利用反函数法.通式解析:)(,)(cad b d cx c ad b c a d cx b c ad d cx c a d cx b ax y ≠+-+=++-+=++= 故值域为⎭⎬⎫⎩⎨⎧≠c a y y 例2.求函数125xy x -=+的值域. 【解析】因为177(25)112222525225x x y x x x -++-===-++++, 所以72025x ≠+,所以12y ≠-,所以函数125x y x -=+的值域为1{|}2y y ≠-.3.换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解.例3.(A 类)求函数2y x =.【解析】令x t 21-=(0t ≥),则212t x -=,所以22151()24y t t t =-++=--+因为当12t =,即38x =时,max 54y =,无最小值所以函数2y x =5(,]4-∞.4.三角换元:例4.求函数2)1(12+-++=x x y 的值域.【解析】0)1(12≥+-x 1)1(2≤+∴x ,令[]πββ,0,cos 1∈=+x1)4sin(21cos sin cos 11cos 2++=++=-++=∴πβββββy ,,0πβ≤≤ 4544ππβπ≤+≤,1)4sin(22≤+≤-πβ, 121)4sin(20+≤++≤πβ故值域为:[]12,0+ 5.配方法:例5.求函数242y x x =-++([1,1]x ∈-)的值域.【解析】2242(2)6y x x x =-++=--+, 因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤,所以23(2)65x -≤--+≤,即35y -≤≤, 所以函数242y x x =-++在([1,1]x ∈-)的值域为[3,5]-.6.判别式法:例6.求函数2211xx x y +++=的值域. 【解析】原函数化为关于x 的一元二次方程,0)1()1(2=-+--y x x y (1)当1≠y 时,R x ∈,0)1(4)1(22≥---=∆y .解得2321≤≤y , 当1=y 时,0=x ,而⎥⎦⎤⎢⎣⎡∈23,211,故函数的值域为⎥⎦⎤⎢⎣⎡23,21.7.单调性法:例7.求函数x x x f 4221)(-+-=的值域. 【解析】由042≥-x ,解得21≤x , 令x x g 21)(-=,x x m 42)(-=,在21≤x 上)(),(x m x g 均为单调递减函数, 所以x x x m x g 4221)()(-+-=+在21≤x 上也是单调递减函数.故0)21()(min ==f x f ,值域为),0[+∞.8.有界性例8.求函数11+-=x x e e y 的值域.【解析】函数变形为11-+=y y e x,0>x e 011>-+∴y y ,解得11<<-y , 所以函数的值域为()1,1-.9.不等式法: 例9.求函数xx y 4+=的值域; 【解析】当0>x 时,4424=⋅≥+=xx x x y (当x =2时取等号); 所以当0>x 时,函数值域为),4[+∞.当0<x 时,442)4(-=⋅-≤+-=xx x x y (当2-=x 时取等号); 所以当0<x 时,函数值域为]4,(--∞. 综上,函数的值域为),4[]4,(+∞--∞10.数形结合法函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目. 例10. (1)求函数82++-=x x y 的值域.(2)求函数5413622++++-=x x x x y 的值域. (3)求函数5413622++-+-=x x x x y 的值域.【解析】(1)函数可以看成数轴上点P (x )到定点A (2),)8(-B 间的距离之和.由上图可知,当点P 在线段AB 上时,10min ==AB y 当点P 在线段AB 的延长线或反向延长线上时,10>=AB y 故所求函数的值域为:),10[+∞ 此题也可以画函数图象来解.(2)原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=可看成x 轴上的点)0,(x P 到两定点)1,2(),2,3(--的距离之和, 由图可知当点P 为线段与x 轴的交点时,如图34)12()23(22min =+++==AB y ,故所求函数的值域为),34[+∞.(3)将函数变形为:2222)10()2()20()3(-++--+-=x x y可看成定点A ()3,2到点P )0,(x 的距离与定点B ()2,1-到点P )0,(x 的距离之差. 如图BP AP y -=由图可知:①当点P 在x 轴上且与A ,B 两点不供线时,如点'P ,则构成'ABP ∆,)2xBP根据三角形两边之差小于第三边,有26)12()23(22=-++=<'-'AB P B P A所以2626<'-'<-P B P A即2626<<-y②当点P 恰好为直线AB 与x 轴的交点时,有26=='-'AB P B P A .综上所述,函数的值域为:]26,26(-.三、 课堂训练第一部分:函数定义域1.函数()x x x y +-=1的定义域为( ){}0.≥x x A{}1.≥x x B{}{}01. ≥x x C{}10.≤≤x x D解析:由题意得()⎩⎨⎧≥≥-001x x x ⎩⎨⎧≥≤≥⇒001x x x 或即[){}0,1 +∞∈x ,故选.C 2.()xx f 1111++=的定义域为 .【解析】由分式函数分母不为0得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≠≠+≠++001101121x x x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-≠≠-≠-≠010311x x x x x 或或()1,-∞-∈⇒x ⎪⎭⎫ ⎝⎛-31,1 ⎪⎭⎫ ⎝⎛0,31 ()+∞,0 3.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域;②求函数⎪⎭⎫⎝⎛-141x f 的定义域. 【解析】① 函数()x f 的定义域为[]2,2-222≤≤-∴x 即11≤≤-x故函数()x f 2的定义域为[]1,1-∈x . ② 函数()x f 的定义域为[]2,2-21412≤-≤-∴x 即124≤≤-x 故函数⎪⎭⎫⎝⎛-141x f 的定义域为[]12,4-. 4.已知函数()42-x f的定义域[]5,3∈x ,则函数()x f 的定义域是?【解析】 函数()42-x f 的定义域[]5,3∈x 21452≤-≤∴x即函数()x f 的定义域是[]21,5∈x5.如果函数()()()x x x f -+=11的图像在x 轴上方,则()x f 的定义域为( ).{}1.<x x A {}1.>x x B {}11.-≠<x x x C 且 {}11.≠->x x x D 且【解析】对于()(),011>-+x x 当0≥x 时,有()()011<-+x x 11<<-⇒x 得;10<≤x当0<x 时,有()012>+x 1-≠⇒x 得.10-≠<x x 且 综上,,11-≠<x x 且故选.C6.(1)已知1,,,,≠∈+a R z y x a ,设,,log 11log 11zya a ay ax --==用x a ,表示z .(2)设ABC ∆的三边分别为c b a ,,,且方程01lg 2)lg(2222=+--+-a b c x x 有等根,判断ABC ∆的形状. 【解析】(1),,log 11log 11zya a ay ax --==则,log 11log log ,log log log 11log 11z ay ax a za a ya a a a -===--y ax a ya a a log 11log log log 11-==-zza a log 11log 1111-=--=所以xz a a log 11log -=,故xa a z log 11-=.(2)原方程可以转化为0)(10lg 22222=-+-a b c x x又因为方程有等根,则0)(10lg 4)2(2222=---=∆ab c , 必然有1)(10lg 222=-a b c ,所以10)(10222=-ab c ,即222a b c +=. 故ABC ∆为直角三角形.第二部分:函数的值域例1.求函数111++=x y 的值域.【解析】.111,01≥++∴≥+x x ∴11110≤++<x ,∴函数的值域为(]1,0.例2.求函数[]2,1,522-∈+-=x x x y 的值域.【解析】将函数配方得:()412+-=x y []2,1-∈x由二次函数的性质可知:当1=x 时,,4m in =y 当1-=x 时,8m ax =y故函数的值域是[]8,4例3.求函数1-+=x x y 的值域.【解析】令()01≥=-t t x ,则12+=t x 故.4321122+⎪⎭⎫ ⎝⎛+=++=t t t y又,0≥t 由二次函数性质知,当0=t 时,;1min =y 当t 不断增大时,y 值趋于∞+, 故函数的值域为[)+∞,1.例4.求函数2332+-+-=x x x y 的值域. 【解析】定义域满足⎩⎨⎧≥+-≥-023032x x x 3≥⇒x . 令,31-=x y 任取,321≥>x x 由,03333212121>-+--=---x x x x x x1y ∴在[)+∞,3上单调递增.令,2322+-=x x y由,232+-=x x u 对称轴,23=x 开口向上,知2y 在[)+∞,3上也单调递增. 从而知()=x f 2332+-+-x x x 在定义域[)+∞,3上是单调递增.()∴=≥∴.23f y 值域为[)+∞,2.例5.求函数21+-=x x y 的值域 【解析】由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y 例6.求13+--=x x y 的值域【解析】可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图:观察得值域{}44≤≤-y y .例7.求函数x y -=3的值域.【解析】0≥x 33,0≤-≤-∴x x 故函数的值域是:[]3,∞-例8.求函数51042+++=x x y 的值域.【解析】配方,得().5622+++=x y ().65,6622+≥∴≥++y x∴函数的值域为).,65(+∞+例9.求函数1122+++-=x x x x y 的值域.【解析】 1122+++-=x x x x y ,R x ∈,去分母整理得()()01112=-+++-y x y x y.当1=y 时,,0=x 故y 可取1; ①当1≠y 时,方程①在R 内有解,则()()(),011412≥---+=∆y y y,031032≤+-∴y y 解得.331≤≤y ∴函数的值域为.3,31⎥⎦⎤⎢⎣⎡例10.求函数11--+=x x y 的值域.【解析】原函数可化为:112-++=x x y令,1,121-=+=x y x y 显然21,y y 在[)+∞,1上为无上界的增函数所以21,y y y =在[)+∞,1上也为无上界的增函数所以当1=x 时,21y y y +=有最小值2,原函数有最大值222= 显然,0>y 故原函数的值域为(]2,0.例11.求函数133+=x xy 的值域【解析】设t x=+13 ,则()111131113113>-=+-=+-+=t ty xx x 101101<<∴<<∴>y tt ,()01原函数的值域为∴.例12.求函数53-++=x x y 的值域.【解析】53-++=x x y ⎪⎩⎪⎨⎧≥-<<--≤+-=)5(22)53(8)3(22x x x x x由图像可知函数53-++=x x y 的值域为[)+∞,8.四、 课后作业【训练题A 类】1.函数()f x = ).A . 1[,)2+∞B . 1(,)2+∞ C. 1(,]2-∞ D. 1(,)2-∞2.函数265x x y ---=的值域是( )525.≤≤y A5.≤y B 50.≤≤y C 5.≥y D 3.函数31---=x x y 在其定义域内有( ).A 最大值2,最小值2- .B 最大值3,最小值1- .C 最大值4,最小值0 .D 最大值1,最小值3-4.已知函数31++-=x x y 的最大值为M ,最小值为m ,则Mm的值为( ) 41.A 21.B 22.C23.D 5.函数()=x f 962+-x 的值域是 ( )A 、(-∞,6)B 、]3,(-∞C 、 (0,6)D 、 (0,3) 6.()421-=x x f 的定义域为_____ 7.函数x x y 21-+=的值域是 . 8.求()4313512-++-=x x x x f 的定义域9.求2045222+-++-=x x x x y 的值域.10.求函数12-+=x x y 的值域.11.已知()x f 的值域为,94,83⎥⎦⎤⎢⎣⎡试求()()x f x f y 21-+=的值域.【参考答案】1.【答案】C【解析】由根式知21021≤⇒≥-x x 故选.C 2.【答案】A【解析】425425216022≤+⎪⎭⎫ ⎝⎛+-=--≤x x x , 25602≤--≤∴x x ,即525≤≤y3.【答案】A【解析】由题意得()()()⎪⎩⎪⎨⎧>≤<-≤-=3,231,421,2x x x x y []2,2-∈⇒y ,故选A4.【答案】C【解析】两边平方,即()()312312+-+++-=x x x x y ()41242++-+=x844max 2=+=y ,4min 2=y ,2284max min ==y y 故选C . 5.【答案】B【解析】∴≥+392x 3962≤+-x 故选.B6.【答案】()+∞,8 【解析】80421≥⇒≥-x x ,即()+∞,8 7.【答案】(],1-∞【解析】令x t 21-=则()0212≥-=t t x 即()()021212≥++-=t t t t f ()11212+--=t故1=t 时,取得最大值.即().1≤x f8.【解析】1212210431012>⇒⎪⎩⎪⎨⎧>≥⇒⎪⎩⎪⎨⎧>-≥-x x x x x ,即()+∞,129.【解析】()()1624122+-++-=x x y ()()()()2222402201-+-+++-=x x即可看成三点:()()()4,2,2,1,0,B A x P -,PB PA y +=在PAB ∆中AB PB PA >+知点()2,1-A 点()4,2B 在数轴异侧时AB 最大.PB PA y +==AB 故()()37422122=--+-=≥AB y10.【解析】显然,函数的定义域为21≥x . 当21≥x 时,函数12,21-==x y x y 都是递增的 所以在21=x 时,取得最小值.即⎪⎭⎫⎢⎣⎡+∞∈,21y . 11.【解析】()(),412191,9483≤-≤∴≤≤x f x f即有(),212131≤-≤x f 令(),21,31,21⎥⎦⎤⎢⎣⎡∈-=t x f t ()(),1212t t x f +-=()()t t t g y +-==∴2121()11212+--=t⎥⎦⎤⎢⎣⎡∉21,311 ,∴函数()t g y =在区间⎥⎦⎤⎢⎣⎡21,31上单调递增,,9731min =⎪⎭⎫ ⎝⎛=∴g y ∴=⎪⎭⎫ ⎝⎛=.8721max g y 函数的值域为⎥⎦⎤⎢⎣⎡87,97.【训练题B 类】1.求()52+=x x f 的值域2.求函数xy --=111的值域3.求函数12--=x x y 的值域.4.已知()x f 43-的定义域为[],2,1-∈x 则函数()x f 的定义域是?5.求下列函数的值域:(1);1342++=x x y (2)5438222+-+-=x x x x y6.对于每个函数x ,设()x f 是2,14+=+=x y x y 和42+-=x y 三个函数中的最小者,则()x f 的最大值是什么?7.已知⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x ,则函数()32+x f 的定义域是?8.求下列函数的值域:(1)[);5,1,642∈+-=x x x y (1)245x x y -+=.9.求函数13+--=x x y 的值域.10.函数232+-=kx x y 的值域为⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,3232, ,求k 的值.11.(1)已知函数⎩⎨⎧≥<=0,0,)(2x x x x x f ,求))((x f f .(2)求函数12)(2--+=x x x f 的最小值.12.若函数432--=x x y 的定义域为[],,0m 值域为,4,425⎥⎦⎤⎢⎣⎡--求m 的取值范围.【参考答案】1.【解析】25052-≥⇒≥+x x ,即⎪⎭⎫⎝⎛+∞-,25 2.【解析】原式化为,11=--x y y ,011≥-=-∴yy x 即01<≥y y 或. 故()[)+∞∞-∈,10, y .3.【解析】函数的定义域是{}.,1R x x x ∈≥令()0,1≥=-t t x 则 ,12+=t x8154122222+⎪⎭⎫ ⎝⎛-=+-=∴t t t y ,又o t ≥,∴结合二次函数的图像知()815≥t y .故原函数的值域为⎭⎬⎫⎩⎨⎧≥815y y . 4.【解析】 ()x f 43-的定义域为[]2,1-∈x 7435≤-≤-∴x()x f ∴的定义域为[]7,5-∈x .5.【解析】(1)由1342++=x x y 可得,0342=-+-y x yx 当0=y 时,;43-=x 当0≠y 时,,R x ∈故()(),03442≥---=∆y y解得,41≤≤-y 且0≠y .当2-=x 时,;1-=y 当21=x 时,.4=y∴所求函数的值域为[].4,1-(2)由5438222+-+-=x x x x y 可得()()0352422=-+---y x y x y ,当02≠-y 时,由,R x ∈得()()()035242162≥----=∆y y y ,25≤≤-∴y .25<≤-∴y .经检验2=x 时,5-=y ,而2≠y .∴原函数的值域为[]2,5-.6.【解析】在同一直角坐标系中作出三个函数的图像,由图像可知,()x f 的最大值是2+=x y 和42+-=x y 交点的纵坐标,易得()38max =x f . 7.【解析】 ⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x 2521321≤-≤∴x 即253221≤+≤x4145-≤≤-∴x 故函数()32+x f 的定义域是⎥⎦⎤⎢⎣⎡--∈41,45x 8.【解析】(1)配方,得().222+-=x y [),5,1∈x ∴函数的值域为{}.112<≤y y(2)对根号里配方得:()30922≤≤⇒+--=y x y 即[]3,0∈∴y .9.【解析】原式可变为()[)[)⎪⎩⎪⎨⎧+∞∈--∈+--∞-∈=,3,43,1,221,,4x x x x y 44≤≤-⇒y 即[]4,4-∈y10.【解析】232+-=kx x y 的反函数为kx x y -+=232,其定义域为⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,22,k k ,故.3322-=⇒-=k k 11.【解析】(1)当0≥x 时,0)(2≥=x x f ,则42)())((x x f x f f ==;当0<x 时,,0)(<=x x f 则x x f x f f ==)())(( 所以⎩⎨⎧≥<=0,0,))((2x x x x x f f(2)⎪⎩⎪⎨⎧<++-≥-+=2,12,3)(22x x x x x x x f由)(x f 在),2[+∞上的最小值为3)2(=f , 在)2,(-∞上的最小值为43)21(=f 故函数)(x f 在R 上的最小值为43. 12.【解析】,425232-⎪⎭⎫ ⎝⎛-=x y 因为,4,425⎥⎦⎤⎢⎣⎡--∈y 又,4)0(-=f ,42523-=⎪⎭⎫ ⎝⎛f ()43-=f ,故⎥⎦⎤⎢⎣⎡∈⇒≤≤3,23323m m . 【训练题C 类】1.函数()()R x xx f ∈+=211的值域是( ) []1,0.A [)1,0.B (]1,0.C ()1,0.D2.函数()155+=x xx f 的值域是( ) ()()+∞-∞-,51,. A ()5,1.B()()+∞∞-,11,. C ⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,5151,. D3.下列函数中,值域是()+∞,0的是( )12.2+-=x x y A ()()+∞∈++=,012.x x x y B ()Nx x x y C ∈++=121.211.+=x y D 4.求函数x x y 431-+-=的值域.5.求x x y ++-=12的值域.6.函数()112->++=x x x y 的值域是.7.已知函数()x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有()()()x f x x xf +=+11,则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛25f f 的值是多少?8.求函数)2(x x x y -+=的值域.9.已知函数⎪⎩⎪⎨⎧+∞∈+-∞∈-=),0[,1)0,(,11)(2x x x x x f ,求)1(+x f .10.已知函数()x f 的定义域为()b a ,且,2>-a b 则()()()1313+--=x f x f x F 的定义域为()13,13.-+b a A ⎪⎭⎫ ⎝⎛-+31,31.b a B ⎪⎭⎫ ⎝⎛--31,31.b a C ⎪⎭⎫⎝⎛++31,31.b a D11.若函数()x f y =的定义域为[],1,1-求函数⎪⎭⎫⎝⎛-∙⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域.【参考答案】1.【答案】C【解析】.1110,11,0,222≤+<∴≥+∴≥∴∈x x x R x∴函数()()R x xx f ∈+=211的值域为(].1,0 2.【答案】C 【解析】15115155+-+=+=x x x x y 1511+-=x 11511015≠+-∴≠+x x 即1≠y 知()()+∞∞-∈,11, y 故选.C3.【答案】D 【解析】A 中()012≥-x [)+∞∈∴,0yB 中11112++=++x x x ()+∞∈,0x 21<<∴y 即()2,1∈y C 中()2211121+=++=x x x y N x ∈ ()1,0∈∴y D 中由题意知01>+x ()+∞∈+∴,011x 故选D 4.【解析】令()01≥=-t t x 则()012≥+=t t x则142-+-=t t y ()o t t ≥⎪⎭⎫⎝⎛--=2214则0≤y .5.【解析】两边平方:6649212322≤⇒≤+⎪⎭⎫ ⎝⎛--+=y x y6.【解析】()12111211111112->=+⋅+≥+++=+++=++=x x x x x x x x x y当且仅当111+=+x x 即0=x 时成立,故2≥y 7.【解析】由()()()x f x x xf +=+11可得:23=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛23252523f f ,21=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21232321f f , 21-=x 时,⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-21212121f f .又.025,023021=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛f f f又()()()(),111111--=+--f f ()().0100=-=-∴f f()().0025,00==⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∴=∴f f f f8.【解析】由0)2(≥-x x 解得定义域为20≤≤x两边平方整理得:0)1(2222=++-y x y x (1)因为0)1(2222=++-y x y x 一定有根,所以08)1(42≥-+=∆y y 解得:2121+≤≤-y由0≥∆仅保证关于x 的方程:0)1(2222=++-y x y x 在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根, 也就是说0≥∆求出的范围可能比y 的实际范围大, 故需要进一步确定此函数的值域. 采取如下方法进一步确定函数的值域. ∵20≤≤x 0)2(≥-+=∴x x x y ,把0min =y ,21+=y 带入方程(1)解得:]2,0[2222241∈-+=x即当时,2222241-+=x 时原函数的值域为:]21,0[+9.【解析】由复合函数的定义域知)1(+x f 的定义为),1[)1`,(+∞-⋃--∞当)1`,(--∞∈x 时 11)2(+=-x x f ,当),1[+∞-∈x 时22)1(2++=+x x x f 所以⎪⎩⎪⎨⎧+∞-∈++--∞∈+=+),1[,22)1,(,11)1(2x x x x x x f10.【答案】B【解析】由题意得⎩⎨⎧<+<<-<b x a b x a 1313,即⎪⎪⎩⎪⎪⎨⎧-<<-+<<+31313131b x a b x a 显然,3131->+b b ,3131->+a a 又,2>-a b 从而.3131+>-a b()x F ∴的定义域为⎪⎭⎫⎝⎛-+31,31b a ,故选.B11.【解析】 函数()x f y =的定义域为[]1,1-∴有⎪⎪⎩⎪⎪⎨⎧≤-≤-≤+≤-14111411x x 即⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-45434345x x 得4343≤≤-x 故函数⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域是⎥⎦⎤⎢⎣⎡-∈43,43x .。
函数的定义域和值域

1 函数的定义域和值域要点梳理1.常见基本初等函数的定义域(1)函数y =a x (a >0且a ≠1)、y =sin x 、y =cos x 的定义域是R(2) y =log a x 的定义域是{x |x >0}或(0,+∞),y =tan x 的定义域是{x |x ≠kπ+π2,k ∈Z }. 求定义域方法:①分式中的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0;④对数式中的真数大于0,底数大于0且不等于1.2.基本初等函数的值域(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫yy ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫yy ≤4ac -b 24a .(3)y =k x (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}.(5)y =log a x (a >0且a ≠1)的值域是R .(6)y =sin x ,y =cos x 的值域是[-1,1].(7)y =tan x 的值域是R .求值域方法:(1)观察法:一些简单函数,通过观察法求值域.(2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.(4)分离常数法:形如y =cx +d ax +b(a ≠0)的函数可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法,(7)导数法,(8)利用基本不等式典型例题求函数的定义域例1、函数f (x )=1-2x +1x +3的定义域为________. 例2、函数f (x )=x 22-x-lg(x -1)的定义域是________. 例3、函数f (x )=2x +12x 2-x -1的定义域是________. 求函数的值域例4、求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]); (2)y =1-x 21+x 2; (3)y =x +4x(x <0);(4)f (x )=x -1-2x (5)y =log 3x +log x 3-1(x >1).例5、若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围。
函数的定义域与值域课件

复合函数
由内到外逐层分析,确保每层 函数在对应定义域内有意义。
图像法求定义域
01
观察函数图像,找出图像上所有 点的横坐标集合,即为函数的定 义域。
02
适用于直观易懂的函数图像,如 一次函数、二次函数等。
实际问题中定义域确定
根据实际问题的背景 和条件,确定自变量 的取值范围。
需要结合具体问题进 行具体分析,灵活应 用数学知识。
对于形如$y=a(x-h)^2+k$的 复合函数,可以通过配方的方 法将其转化为顶点式,进而求 得值域。
对于形如$y=ax^2+bx+c/x$ 的复合函数,可以通过判别式 的方法求得值域。首先将原式 化为关于$x$的二次方程,然 后根据判别式$Delta geq 0$ 求得$y$的取值范围。
对于某些特殊的复合函数,可 以通过求其反函数的方法求得 值域。例如,对于形如 $y=log_a[f(x)]$的复合函数, 可以先求出其反函数$x=a^y$, 然后根据反函数的定义域求得 原函数的值域。
取并集
将各区间定义域取并集, 得到分段函数的定义域。
注意分段点
分段点应包含在定义域内, 除非分段点处函数无定义。
分段函数值域求解
分别求解各区间值域
注意最值点
根据各区间内解析式的性质,分别求 解各区间的值域。
在各区间内和分段点处寻找最值点, 以确定值域的上下界。
取并集
将各区间值域取并集,得到分段函数 的值域。
05 分段函数定义域与值域
分段函数概念及性质
01
02
03
分段函数定义
在不同区间上,用不同解 析式表示的函数。
分段函数性质
各区间内函数性质可能不 同,如单调性、奇偶性等。
函数的定义域与值域的求解

函数的定义域与值域的求解函数的定义域与值域是数学中一个重要的概念,它们对于研究函数的性质和应用具有重要的作用。
本文将介绍函数的定义域与值域的概念,并介绍如何求解函数的定义域和值域。
一、函数的定义域函数的定义域是指函数所有可能的输入值的集合。
对于实函数,定义域一般是实数集,但也可以是某一部分实数集。
在确定函数的定义域时,需要考虑函数的基本性质和限制条件。
例如,对于一个简单的一元实函数f(x),如果f(x)在实数集上有定义,那么函数的定义域就是整个实数集R。
但是,在某些情况下,函数的定义域可能受到限制。
比如,函数f(x) = √x在定义域时要求x≥0,因为负数的平方根在实数范围内没有定义。
所以,函数f(x) = √x的定义域为[0, +∞)。
在求解函数的定义域时,需要注意以下几个方面:1. 分式函数的定义域:对于分式函数,需要注意分母不能为零。
所以,在确定定义域时,需要将分母为零的情况排除。
例如,对于函数f(x) = 1/(x-1),分母x-1不能为零,所以定义域为R-{1}。
2. 幂函数、指数函数和对数函数的定义域:幂函数的底数不能为负数或零,指数函数的底数不能为零且指数必须是实数,对数函数的底数不能为零且取对数的数必须是正数。
在求解这些函数的定义域时,需要根据这些限制条件进行判断。
3. 复合函数的定义域:对于复合函数,需要保证内层函数的定义域在外层函数的定义域范围内。
如果内层函数的定义域超出了外层函数的定义域,则需要调整定义域范围。
二、函数的值域函数的值域是指函数所有可能的输出值的集合。
对于实函数,值域一般是实数集,但也可以是某一部分实数集。
在求解函数的值域时,需要根据函数的性质来判断。
例如,对于函数f(x) = x^2,可以发现无论x取何值,函数的值都大于等于0。
所以,函数f(x)的值域为[0, +∞)。
在求解函数的值域时,需要注意以下几个方面:1. 幂函数、指数函数和对数函数的值域:根据幂函数、指数函数和对数函数的基本性质,可以确定它们的值域。
2.2函数的定义域与值域

2.2函数的定义域与值域一:函数的定义域:1.定义域的概念与表示:2.确定函数定义域的原则:(1)当函数f(x)用列表法给出时,函数的定义域是表格中实数x的集合。
(2)当函数f(x)用图像法给出时,函数的定义域是x轴上投影所需覆盖的实数集合。
(3)当函数f(x)用解析式给出时,函数的定义域是使解析式有意义的实数的集合。
3.确定函数定义域的依据:(1).若f(x)是整式,则x R∈。
(2)若f(x)是分式,则分母不为0.(3)当f(x)是偶次根式,则被开方式x≥0,例:y=x,x≥0,(4)当f(x)是非正数指数幂时,定义域是使幂的底不为0的x取值的集合⇒f(x)>0(5)当f(x)为对数函数时,例y=)flog x(a⇒当对数式或指数式函数的底数中含变量时,底数须大于0且不等于1(6)若f(x)是有限个基本初等函数四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集。
(7)若f[])(xa,时的值域a,,则f(x)的定义域为g(x)在x∈[]bg的定义域为[]b(8)若f(x)的定义域为[]bg的定义域由不等式a≤g(x)≤ba,,其复合函数f[])(x解出(9)对于含字母参数的函数,求其定义域。
根据问题具体情况须对字母参数进行分类讨论(10)由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义二:函数的值域:1.值域的概念与表示:2.求函数值域的常用方法:(1)配方法(2)换元法(3)不等式法(4)逆求法(即利用反函数)(5)单调性法(6)观察法(7)分离常数法(8)数形结合法(9)判别式法(10)中间变量值域法基础自测:1.设a ∈()1,0,则函数y=)1(log -x a 的定义域为( ) A . .(]2,1 B. ()+∞,1 C . [)+∞,2 D .(]2,+∞- 2.下列四个函数:①.Y=3X ②.⎩⎨⎧<≥)0(,2)0(,3x x x x ③. y=-4x+5 (x ∈z) ④ y=2x -6x+7 其中值域相同的是( )A .①② B. ①③ C.②③ D. ②④3.若函数f(x)=3442++-mx mx x 的定义域为R ,则实数m 的取值范围是() A.()+∞∞-, B .⎪⎭⎫⎝⎛43,0 C.⎪⎭⎫ ⎝⎛+∞,43D.⎪⎭⎫⎢⎣⎡43,04.定义域为R 的函数y=f(x)的值域为[]b a ,,则函数y=f(x+a)的值域是() A.[]b a a +,2 B.[]a b -,0 C.[]b a , D.[]b a a +-,5.函数y=x e -31的值域为---------------。
定义域和值域的概念

定义域和值域的概念
定义域和值域是数学中的两个重要概念。
定义域(domain)指函数中自变量(变量x)所有可能的取值范围。
通俗地说,定义域表示函数能接受哪些数作为输入。
值域(range)指函数中因变量(变量y)所有可能的取值范围。
通俗地说,值域表示函数输出值的范围。
例如,函数f(x)=x²的定义域为实数集合R,而值域为非负实数集合[0,∞)。
另外,需要注意的是,有些函数并没能取遍其值域上的所有值,这种函数就称为是有限制的。
例子:f(x)=2x+5,定义域为实数集合,值域也为实数集合,但它的值域却被限制在大于等于5的实数集合中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函 数一、函数定义1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案:B二、函数求值1.已知f (x )=3x 3+2x +1,若f (a )=2,则f (-a )=________. 解析:∵f (x )=3x 3+2x +1,∴f (a )+f (-a )=3a 3+2a +1+3(-a )3+2×(-a )+1=2, ∴f (-a )=2-f (a )=0.2.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2解析:选B 当x ≥0时,f (x )=x 2,f (x 0)=4,即x 20=4,解得x 0=2. 当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2,3.函数f (x ),g (x )分别由下表给出.则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1,∴f (g (1))=1.当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:12三、函数定义域(1)一般函数的定义域求解1.函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)解析:由题意知,x 2-x >0,即x <0或x >1.则函数定义域为(-∞,0)∪(1,+∞),选C. 2.(2017·贵阳监测)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1解析:选D 由函数y =1-x22x 2-3x -2得⎩⎨⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎨⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12, 所以所求函数的定义域为⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1,故选D. 3.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎨⎧1-|x -1|≥0,a x-1≠0⇒⎩⎨⎧0≤x ≤2,x ≠0⇒0<x ≤2, 故所求函数的定义域为(0,2].4.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为( )A .(-1,1]B .(0,1]C .[0,1]D .[1,+∞)解析:选B由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0.即⎩⎨⎧x <-1或x >0,x ≠0,-1≤x ≤1.则x ∈(0,1].5.函数f (x )=x +3+log 2(6-x )的定义域是( )A .(6,+∞)B .(-3,6)C .(-3,+∞)D .[-3,6) 解析:选D 要使函数有意义应满足⎩⎨⎧x +3≥0,6-x >0,解得-3≤x <6.(2)抽象函数的定义域的求解1.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].2.已知函数y =f (x )的定义域是[0,3],则函数g (x )=f 3x x -1的定义域是( )A.⎣⎢⎡⎭⎪⎫0,13∪⎝ ⎛⎦⎥⎤13,1 B .[0,1) C .[0,1)∪(1,3] D .[0,1)∪(1,9] 解析:选B 由⎩⎨⎧0≤3x ≤3,x -1≠0可得0≤x <1,选B.3.若函数y =f (x )的定义域是[1,2 017],则函数g (x )=f x +1x -1的定义域是( )A .[0,2 016]B .[0,1)∪(1,2 016]C .(1,2 017]D .[-1,1)∪(1,2 016] 解析:选B 令t =x +1,则由已知函数的定义域为[1,2 017],可知1≤t ≤2 017.要使函数f (x +1)有意义,则有1≤x +1≤2 017,解得0≤x ≤2 016,故函数f (x +1)的定义域为[0,2 016].所以使函数g (x )有意义的条件是⎩⎨⎧0≤x ≤2 016,x -1≠0,解得0≤x <1或1<x ≤2016.故函数g (x )的定义域为[0,1)∪(1,2 016].抽象函数的定义域求解:若函数f (x )定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; 若函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.四、函数解析式的求法 (1)换元法和配凑法1.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t . ∴f (x )=5x +1x2(x ≠0).2.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 等于( )A .-74 B.74 C.43 D .-43解析:选B 令t =12x -1,则x =2t +2,f(t)=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.3、已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式;解:(1)(配凑法)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. 4、已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;解:(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1,x >1. 5.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:(换元法)设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1. 法二:(配凑法)∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 6.已知f (x )满足f ⎝ ⎛⎭⎪⎫3x -1=lg x ,则f ⎝ ⎛⎭⎪⎫-710=________.解析:令3x -1=-710,得x =10,∴f ⎝ ⎛⎭⎪⎫-710=lg10=1.(2)待定系数法1.(2017·黄山质检)已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=( ) A .x +1 B .2x -1 C .-x +1 D .x +1或-x -1 解析:选A f (x )是一次函数,设f (x )=kx +b ,f (f (x ))=x +2, 可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,∴k 2=1,kb +b =2.解得k =1,b =1.即f (x )=x +1.故选A.2、已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); 解:设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎨⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.3.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.(3)解方程组法1、已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式. 解:由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ① ×2-②,得,3f (x )=2x +1-2-x. 即f (x )=2x +1-2-x3.∴f (x )的解析式是f (x )=2x +1-2-x3.五、分段函数角度一:分段函数的函数求值问题1.(2017·西安质检)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x+1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:由题意可得f ⎝ ⎛⎭⎪⎫14=log 214=-2, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2+1=109.2.(2017·长沙四校联考)f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( )A .-2B .-3C .9D .-9解析:选C ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C.3.(2016·云南一检)已知函数f (x )的定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎨⎧lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)的值为________.解析:∵f (10)=f (100-90)=lg 100=2,f (-100)=f (-10-90)=-(-10)=10, ∴f (10)-f (-100)=2-10=-8.4.设函数f (x )=⎩⎨⎧1x, x >1,-x -2,x ≤1,则f (f (2))=______,函数f (x )的值域是______.解析:f (2)=12,则f (f (2))=f ⎝ ⎛⎭⎪⎫12=-52.当x >1时,f (x )∈(0,1),当x ≤1时,f (x )∈[-3,+∞), ∴f (x )∈[-3,+∞). 答案:-52[-3,+∞5.已知函数f (x )=⎩⎨⎧a -1x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12, 所以f (3)=⎝ ⎛⎭⎪⎫122=14.1.已知f (x )=⎩⎪⎨⎪⎧x 12,x ∈[0,+∞,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0,解得a =-π6.综上可知,a =14或-π6.2.设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 答案:±13.(2017·唐山统考)已知函数f (x )=⎩⎨⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( ) A .-log 37 B .-34 C .-54 D .-74解析:当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9, 所以f (7-a )=f (-2)=2-2-2=-74.4.(2015·山东高考)设函数f (x )=⎩⎨⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)解析:由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C已知函数f (x )=⎩⎨⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3.对称问题练习1.已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34 D.32或-34解析:当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.2.f (x )满足对任意x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=______.解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2, f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2, f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2,又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1, ∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.3.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎨⎧x ′=4-x ,y ′=y .又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x .课后练习题1.已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .① 解析:对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x )满足. 综上可知,满足“倒负”变换的函数是①③.2.如图,已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式. (2)求△AOC 的面积.解:(1)因为B (1,4)在反比例函数y =m x上,所以m =4,又因为A (n ,-2)在反比例函数y =m x =4x的图象上,所以n =-2,又因为A (-2,-2),B (1,4)是一次函数y =kx +b 上的点, 联立方程组⎩⎨⎧-2k +b =-2,k +b =4,解得⎩⎨⎧k =2,b =2.所以y =4x,y =2x +2.(2)因为y =2x +2,令x =0,得y =2,所以C (0,2),所以△AOC 的面积为:S =12×2×2=2.。