2设计动态规划算法的主要步骤为
算法分析与设计教案

算法分析与设计课程教案课程编号:50c24037-01总学时:51 周学时:4适用年级专业(学科类):2007级计科专业开课时间:2010-2011 学年第1 学期使用教材:王晓东编著计算机算法设计与分析第3版章节第1章1.1~ 1.2 第2 章2.1 课时 2教学目的理解程序与算法的概念、区别与联系;掌握算法在最坏情况、最好情况和平均情况下的计算复杂性概念;掌握算法复杂性的渐近性态的数学表述;理解递归的概念。
教学重点及突出方法重点:程序与算法的概念、算法的时间复杂性、算法复杂性的渐近性态的数学表述以及递归的概念。
通过讲解、举例方法。
教学难点及突破方法难点:算法复杂性与递归通过讲解、举例、提问与引导方法。
相关内容此部分内容基础知识可参考清华大学出版社出版严蔚敏编著的《数据结构》教学过程(教师授课思路、设问及讲解要点)回顾数据结构课程中的算法概念、排序算法等知识,从而引出本课程内容。
提问算法与程序的区别、联系以及算法具有的特性。
讲解算法的复杂性,主要包括时间复杂性与空间复杂性。
讲解最坏情况、最好情况与平均情况的时间复杂性。
讲解算法复杂性在渐近意义下的阶,主要包括O、Ω、θ与o,并通过具体例子说明。
通过具体例子说明递归技术。
主要包括阶乘函数、Fibonacci数列、Ackerman函数、排列问题、整数划分问题、Hanoi塔问题等。
第页章节第2 章2.2~2.5 课时 2 教学目的掌握设计有效算法的分治策略,并掌握范例的设计技巧,掌握计算算法复杂性方法。
教学重点及突出方法重点:分治法的基本思想及分治法的一般设计模式。
通过讲解、举例方法。
教学难点及突破方法难点:计算算法复杂性。
通过讲解、举例、提问与引导方法。
相关内容素材教(教师授课思路、设问及讲解要点)学过程通过生活中解决复杂问题的分解方法,引出分治方法。
讲解分治法的基本思想及其一般算法的设计模式,介绍分治法的计算效率。
通过具体例子采用分治思想来设计有效算法。
动态规划的空间复杂度

动态规划的空间复杂度动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题分解为子问题,并保存子问题的解来解决整体问题。
其中,空间复杂度是评估算法在使用内存方面的效率。
本文将探讨动态规划算法中的空间复杂度,并分析如何在实际应用中优化空间利用。
一、动态规划算法概述动态规划算法通常用于解决具有重叠子问题和最优子结构性质的问题。
它的核心思想是将原问题分解为若干个子问题,并分别求解这些子问题的最优解,然后通过求解子问题的最优解,得到原问题的最优解。
二、动态规划算法的基本步骤动态规划算法通常包括以下几个基本步骤:1. 定义状态:将问题抽象为一个数学模型,并定义状态表示问题的一种描述方式。
2. 状态转移方程:为了求解原问题的最优解,需要找到子问题之间的关系,并建立状态转移方程,即将原问题的求解过程表示为子问题的求解过程。
3. 初始条件:确定问题的边界条件,即最简单的情况。
4. 计算顺序:按照一定的顺序计算各个子问题的最优解。
5. 填表求解:根据状态转移方程和初始条件,计算各个子问题的最优解,并填表保存。
6. 构造解:根据填表求解的结果,构造原问题的最优解。
三、动态规划算法的空间复杂度分析在动态规划算法中,空间复杂度是评估算法使用内存的量。
由于动态规划算法通常采用填表的方式记录子问题的解,因此在空间复杂度分析中,主要考虑所需的额外空间。
1. 状态表空间:动态规划算法通常使用一个二维数组或一维数组来保存子问题的解。
如果问题的规模为n,状态数为m,则状态表的大小为m*n。
因此,状态表空间复杂度为O(m*n)。
2. 状态变量空间:有些动态规划问题只需要保存前一状态的解,而不需要保存全部子问题的解。
此时,可以只使用一个变量来保存前一状态的解,从而减少空间复杂度。
3. 优化空间利用:有时候,可以通过观察问题的特点,找到一种更加紧凑的存储方式,从而节省空间。
例如,对于一些只与前一状态相关的问题,可以使用滚动数组技巧,只保存最近的几个状态,从而将空间复杂度降低至常数级。
动态规划的具体操作,分四步

动态规划的具体操作,分四步动态规划是我学的最蛋疼的⼀个问题。
⼤家觉得呢•动态规划算法的⼀般步骤1.找出最优解的性质,并刻画其结构特征;2.递归地定义最优值;3.以⾃底向上的⽅式计算出最优值;根据计算最优值时得到的信息,构造最优解下⾯⽤⼀个例⼦来说明。
矩阵连乘问题(⾃⾏百度查⼀下是什么哈)•将矩阵连乘积AiAi+1…Aj记作A[i:j]–把问题转化成考察A[1:n]的最优计算次序问题–设计算次序在A[k]处将矩阵断开最优,则总计算量为: A[1:k] 的计算量加上A[k+1:n]的计算量,再加上A[1:k] 和A[k+1:n]相乘的计算量。
关键特征lA[1:n]的最优计算次序所包含的计算矩阵⼦链A[1:k]和A[k+1:n]的次序也是最优的。
(可⽤反证法证明)——问题的最优解包含了其⼦问题的最优解,这种性质称为最优⼦结构性质。
对矩阵:A1A2A3A4A5A6,可能的最优解A1(A2A3)|A4(A5A6)最优解:A[1:6]=A[1:3]+A[4:6]+A[1:3]*A[4:6]–A[1:3]与A[4:6]也必分别为最优解(计算总量最少),因为其⽆关;–若有A’[1:3]⼩于A[1:3],由后两项不改变,则A[1:6]不是最⼩,故与前提⽭盾;递归地定义最优值。
•设计算A[i:j],1≤i≤j ≤n,所需的最少数乘次数为m[i][j]——则原问题的最优解为m[1][n]–考察两种情况•i=j;•i<j;m[i][j] = 0+m[i+1][j]+ p[i-1]*p[i]*p[j];for (k = i+1; k < j; k++) {t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];if (t < m[i][j]) m[i][j] = t;}void MatrixChain(int *p,int n,int **m,int **s) {for (j = 2; j <= n; j++)for (i = j-1; i >= 1; i--) {m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j];s[i][j] = i;for (k = i+1; k < j; k++) {t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];if (t < m[i][j]) { m[i][j] = t; s[i][j] = k; }}}} //算法的计算时间上界为O(n3)。
电大计算机本科_算法设计与分析(期末考试复习题含答案)

1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A ).A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9。
实现循环赛日程表利用的算法是( A ).A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D ).A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B ).A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A ).A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。
算法习题——精选推荐

算法习题算法设计与分析试卷⼀、填空题(20分,每空2分)1、算法的性质包括输⼊、输出、确定性、有限性。
2、动态规划算法的基本思想就将待求问题分解成若⼲个⼦问题、先求解⼦问题,然后从这些⼦问题的解得到原问题的解。
3、设计动态规划算法的4个步骤:(1)找出最优解的性质,并刻画其结构特征。
(2)递归地定义最优值。
(3)以⾃底向上的⽅式计算出最优值。
(4)根据计算最优值得到的信息,构造最优解。
4、流⽔作业调度问题的johnson算法:(1)令N1={i|ai=bj};(2)将N1中作业依ai的ai的⾮减序排序;将N2中作业依bi的⾮增序排序。
5、对于流⽔作业⾼度问题,必存在⼀个最优调度π,使得作业π(i)和π(i+1)满⾜Johnson不等式min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}。
6、最优⼆叉搜索树即是最⼩平均查找长度的⼆叉搜索树。
⼆、综合题(50分)1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最⼤⼦段和为∑ak(2<=k<=4)=20(5分)2、由流⽔作业调度问题的最优⼦结构性质可知,T(N,0)=min{ai+T(N-{i},bi)}(1=3、最⼤⼦段和问题的简单算法(10分)int maxsum(int n,int *a,int & bestj){Int sum=0;for (int i=1;i<=n;i++)for (int j=i;j<=n;j++)int thissum=0;for(int k=i;k<=j;k++)this sum+=a[k];if(thissum>sum){sum=thissum;besti=i;bestj=j;}}return sum;}4、设计最优⼆叉搜索树问题的动态规划算法OptimalBinarysearchTree? (15分)Void OptimalBinarysearchTree(int a,int n,int * * m, int * * w){for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]= 0;}for(int r=0;rfor(int i=1;i<=n-r;i++){int j=i+r;w[i][j]=w[i][j-1]+a[j]+b[j];m[i][j]= m[i+1][j];s[i][j]=i;for(int k=i+1;k<=j;k++){int t=m[i][k-1]+m[k+1][j];if(t}m[i][j]=t; s[i][j]=k;}}5、设n=4, (a1,a2,a3,a4)=(3,4,8,10), (b1,b2,b3,b4)=(6,2,9,15) ⽤两种⽅法求4个作业的最优调度⽅案并计算其最优值?(15分)法⼀:min(ai,bj)<=min(aj,bi)因为min(a1,b2)<=min(a2,b1)所以1→2 (先1后2)由min(a1,b3)<=min(a3,b1)得1→3 (先1后3)同理可得:最后为1→3→4→2法⼆:johnson算法思想N1={1,3,4} N2={2}N11={1,3,4} N12={2}所以N11→N12得:1→3→4→2三、简答题(30分)1、将所给定序列a[1:n]分为长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最⼤⼦段和,则a[1:n]的最⼤⼦段和有哪三种情形?(10分)答:(1)a[1:n]的最⼤⼦段和与a[1:n/2]的最⼤⼦段和相同。
练习——简答题

练习——简答题1.什么是算法?算法有哪些特征?答:算法是求解问题的⼀系列计算步骤。
算法具有有限性、确定性、可⾏性、输⼊性和输出性5个重要特征。
2.算法设计应满⾜的⼏个⽬标答:算法设计应满⾜正确性、可使⽤性、可读性、健壮性和⾼效率与低存储量需求。
3.算法设计的基本步骤答:算法设计的基本步骤是:(1)分析求解问题(2)选择数据结构和算法设计策略(3)描述算法(4)证明算法正确性(5)算法分析各步骤之间存在循环和反复过程。
4.什么是算法复杂性?它主要有哪两个⽅⾯构成?答:算法复杂性是算法运⾏时所需要的计算机资源的量,它包括两个⽅⾯:时间复杂性(需要时间资源的量)和空间复杂性(需要空间资源的量)。
5.分析算法复杂性的意义是什么?算法的复杂性是算法效率的度量,是评价算法优劣的重要依据。
⼀个算法的复杂性的⾼低体现在运⾏该算法所需要的计算机资源的多少上⾯,所需的资源越多,我们就说该算法的复杂性越⾼;反之,所需的资源越低,则该算法的复杂性越低。
6.f(n)=O(g(n))答:f(n)=O(g(n))当且仅当存在正常量c和n0,使当n≥n0时,f(n)≤cg(n),即g(n)为f(n)的上界。
7.f(n)=W(g(n))答:f(n)=W(g(n))当且仅当存在正常量c和n0,使当n≥n0时,f(n)≥cg(n),即g(n)为f(n)的下界。
8.f(n)=Q(g(n))答:f(n)=Q(g(n))当且仅当存在正常量c1、c2和n0,使当n≥n0时,有c1g(n)≤f(n)≤c2g(n),即g(n)与f(n)的同阶。
9.算法的平均情况、最好情况、最坏情况,哪种情况的可操作性最好,最具有实际价值?答:设⼀个算法的输⼊规模为n,Dn是所有输⼊的集合,任⼀输⼊I∈Dn,P(I)是I出现的概率,有 =1,T(I)是算法在输⼊I下所执⾏的基本语句次数,则该算法的平均执⾏时间为:A(n)=算法的最好情况为:G(n)= ,是指算法在所有输⼊I下所执⾏基本语句的最少次数。
算法设计与分析考试题及答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法分析复习题目及答案16-12-10

一。
选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( D )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法5. 回溯法解旅行售货员问题时的解空间树是()。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法注意:动态规划采用的是自底向上的方式求解,而贪心算法采用的是自顶向下的方式来求解问题。
7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法注意:备忘录是动态规划方法的一个步骤。
14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2设计动态规划算法的主要步骤为:
(1)找出最优解的性质,并刻划其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解。
3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。
而用分治法求解的问题,经分解得到的子问题往往是互相独立的。
贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。
6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决;
(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3)利用该问题分解出的子问题的解可以合并为该问题的解;
(4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
P:也即是多项式复杂程度的问题。
NP就是多项式复杂程度的非确定性问题。
NPC(NP Complete)问题
ADT 抽象数据类型
分析问题→设计算法→编写程序→上机运行和测试
算法特性1. 确定性、可实现性、输入、输出、有穷性
算法分析目的2. 分析算法占用计算机资源的
情况,对算法做出比较和评价,设计出额更好
的算法。
3. 算法的时间复杂性与问题的规模相关,是
问题大小n的函数。
算法的渐进时间复杂性的含义:当问题的规模
n趋向无穷大时,影响算法效率的重要因素是
T(n)的数量级,而其他因素仅是使时间复杂度
相差常数倍,因此可以用T(n)的数量级(阶)
评价算法。
时间复杂度T(n)的数量级(阶)称为
渐进时间复杂性。
最坏情况下的时间复杂性和平均时间复杂性有什么不同?
最坏情况下的时间复杂性和平均时间复杂性
考察的是n固定时,不同输入实例下的算法所
耗时间。
最坏情况下的时间复杂性取的输入实
例中最大的时间复杂度:
W(n) = max{ T(n,I) } , I∈Dn
平均时间复杂性是所有输入实例的处理时间
与各自概率的乘积和:
A(n) =∑P(I)T(n,I) I∈Dn
为什么要分析最坏情况下的算法时间复杂
性?最坏情况下的时间复杂性决定算法的优
劣,并且最坏情况下的时间复杂性较平均时间
复杂性游可操作性。
1.贪心算法的基本思想?
是一种依据最优化量度依次选择输入的分级处理方法。
基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。