算法设计与分析-动态规划习题
算法设计与分析习题答案

算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法设计与分析试卷及答案

算法设计与分析1、(1) 证明:O(f)+O(g)=O(f+g)(7分)(2) 求下列函数的渐近表达式:(6分)① 3n 2+10n;② 21+1/n;2、对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。
(15分)(1);5log )(;log )(2+==n n g n n f (2);)(;log )(2n n g n n f == (3);log )(;)(2n n g n n f == 3、试用分治法对数组A[n]实现快速排序。
(13分)4、试用动态规划算法实现最长公共子序列问题。
(15分)5、试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。
试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少。
(12分)6、试用动态规划算法实现下列问题:设A 和B 是两个字符串。
我们要用最少的字符操作,将字符串A 转换为字符串B ,这里所说的字符操作包括:(1)删除一个字符。
(2)插入一个字符。
(3)将一个字符改为另一个字符。
将字符串A 变换为字符串B 所用的最少字符操作数称为字符串A 到B 的编辑距离,记为d(A,B)。
试设计一个有效算法,对任给的两个字符串A 和B ,计算出它们的编辑距离d(A,B)。
(16分)⎣⎦2/)(;3)(i i g i i f ==。
对于给定的两个整数n 和m ,要求用最少的变换f 和g 变换次数将n 变为m 。
(16分)1、⑴证明:令F(n)=O(f),则存在自然数n 1、c 1,使得对任意的自然数n ≥n 1,有:F(n)≤c 1f(n)……………………………..(2分)同理可令G(n)=O(g),则存在自然数n 2、c 2,使得对任意的自然数n ≥n 2,有:G(n)≤c 2g(n)……………………………..(3分)令c 3=max{c 1,c 2},n 3=max{n 1,n 2},则对所有的n ≥n 3,有: F(n)≤c 1f(n)≤c 3f(n)G(n)≤c 2g(n)≤c 3g(n)……………………………..(5分) 故有:O(f)+O(g)=F(n)+G(n)≤c 3f(n)+c 3g(n)=c 3(f(n)+g(n)) 因此有:O(f)+O(g)=O(f+g)……………………………..(7分) ⑵ 解:① 因为;01033)103(lim 222=+-+∞→n n n n n n 由渐近表达式的定义易知: 3n 2是3n 2+10n 的渐近表达式。
动态规划例题

动态规划例题动态规划是一种以最优化原理为基础的问题求解方法,通过拆分问题为若干阶段,每个阶段求解一个子问题,再逐步推导出整个问题的最优解。
例如,有一个背包能够承受一定的重量,现有一些物品,每个物品都有自己的重量和价值。
我们希望将物品放入背包中,使得背包的总价值最大。
这个问题可以用动态规划来解决。
首先,我们定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,容量为j的背包中所能放入的物品的最大价值。
那么,对于每一个物品,可以选择放入背包或者不放入背包。
如果选择放入背包,最大价值为dp[i-1][j-w[i]] + v[i],其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
如果选择不放入背包,最大价值为dp[i-1][j]。
因此,dp[i][j]的状态转移方程为:dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j])。
基于这个状态转移方程,可以逐步求解从第1个物品到第n个物品的最大价值。
最终,dp[n][W]即为问题的最优解,其中W 表示背包的容量。
举个简单的例子,假设背包的容量为10,有3个物品,它们的重量分别为3、4、5,价值分别为4、5、6。
此时,可以得到如下的dp矩阵:0 0 0 0 0 0 0 0 0 0 00 0 0 4 4 4 4 4 4 4 40 0 0 4 5 5 9 9 9 9 90 0 0 4 5 5 9 10 10 14 14我们可以看到,dp[3][10]的最大价值为14,表示在前3个物品中,容量为10的背包中所能放入的物品的最大价值为14。
通过动态规划,我们可以有效地求解背包问题,得到物品放入背包的最优解。
这个例子只是动态规划的一个简单应用,实际上,动态规划可以解决各种复杂的问题,如最长公共子序列、最大子数组和、最大字段和等。
因此,学习动态规划是非常有意义的。
算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)⼀、问题描述引出问题之前我们先来复习⼀下矩阵乘积的标准算法。
int ra,ca;//矩阵A的⾏数和列数int rb,cb;//矩阵B的⾏数和列数void matrixMultiply(){for(int i=0;i<ra;i++){for(int j=0;j<cb;j++){int sun=0;for(int k=0;k<=ca;k++){sum+=a[i][k]*b[k][j];}c[i][j]=sum;}}}给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
加括号的⽅式对计算量有很⼤的影响,于是⾃然地提出矩阵连乘的最优计算次序问题,即对于给定的相继n个矩阵,如何确定矩阵连乘的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
⼆、问题分析矩阵连乘也是Catalan数的⼀个常⽤的例⼦,关于时间复杂度的推算需要参考离散数学关于Catalan的内容。
下⾯考虑使⽤动态规划法解矩阵连乘积的最优计算次序问题。
1、分析最优解的结构问题的最优⼦结构性质是该问题可以⽤动态规划求解的显著特征!!!2、建⽴递归关系3、计算最优值public static void matrixChain(int n) {for (int i = 1; i <= n; i++) {m[i][i] = 0;}for (int r = 2; r <= n; r++) {//i与j的差值for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}}4、构造最优解public static void traceback(int i, int j) {if (i == j) {System.out.printf("A%d", i); // 输出是第⼏个数据return;}System.out.printf("(");traceback(i, s[i][j]);// 递归下⼀个数据System.out.printf(" x ");traceback(s[i][j] + 1, j);System.out.printf(")");}三、总结。
算法设计与分析-练习题

一。
选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先 C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
(完整版)算法设计与分析考试题及答案,推荐文档

____________________________________。 4.若序列 X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列
X 和 Y 的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至
和
之分。
5、 f(n)= 6×2n+n2,f(n)的渐进性态 f(n)= O(
)
6、 贪心算法总是做出在当前看来
的选择。也就是说贪心算法并不从整体最优考
虑,它所做出的选择只是在某种意义上的
。
7、 许多可以用贪心算法求解的问题一般具有 2 个重要的性质:
性质和
性质。
二、简答题(本题 25 分,每小题 5 分)
五、算法理解题(本题 5 分) 设有 n=2k 个运动员要进行循环赛,
现设计一个满足以下要求的比赛日程表:
①每个选手必须与其他 n-1 名选手比赛各一次; ②每个选手一天至多只能赛一次;
③循环赛要在最短时间内完成。
我去(人1)如也果 就n=2k有,循人环赛!最少为需要U进R行扼几天腕; 入站内信不存在向你偶同意调剖沙 (2)当 n=23=8 时,请画出循环赛日程表。
六、算法设计题(本题 15 分) 分别用贪心算法、动态规划法、回溯法设计 0-1 背包问题。要求:说明所使用的算法
策略;写出算法实现的主要步骤;分析算法的时间。 七、算法设计题(本题 10 分)
建议收藏下载本文,以便随时学习! 通过键盘输入一个高精度的正整数 n(n 的有效位数≤240),去掉其中任意 s 个数字后, 剩下的数字按原左右次序将组成一个新的正整数。编程对给定的 n 和 s,寻找一种方案, 使得剩下的数字组成的新数最小。 【样例输入】 178543 S=4 【样例输出】 13
动态规划典型例题

1、单调递增最长子序列描述求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4输入第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串的长度不会超过10000 输出输出字符串的最长递增子序列的长度样例输入3aaaababcabklmncdefg样例输出1372、最长公共子序列描述如题,需要写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。
其定义是,一个序列S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则S 称为已知序列的最长公共子序列。
输入第一行给出一个整数N(0<N<100)表示待测数据组数接下来每组数据两行,分别为待测的两组字符串。
每个字符串长度不大于1000.输出每组测试数据输出一个整数,表示最长公共子序列长度。
每组结果占一行。
样例输入2asdfadfsd123abcabc123abc样例输出363、括号匹配时间限制:1000 ms | 内存限制:65535 KB描述给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来。
如:[]是匹配的([])[]是匹配的((]是不匹配的([)]是不匹配的输入第一行输入一个正整数N,表示测试数据组数(N<=10)每组测试数据都只有一行,是一个字符串S,S中只包含以上所说的四种字符,S的长度不超过100输出对于每组测试数据都输出一个正整数,表示最少需要添加的括号的数量。
每组测试输出占一行样例输入4[]([])[]((]([)]样例输出324、完全背包描述直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。
算法分析与设计试题及答案

算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。
答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。
其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。
2. 什么是动态规划算法?请给出一个动态规划算法的示例。
答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。
它的特点是具有重叠子问题和最优子结构性质。
以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。
3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。
而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。
DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。
4. 请简述贪心算法的特点及其应用场景。
答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。
然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
j
k
T(n)=2T(n/2)+O(n) 解此递归方程可知,T(n)=O(nlogn) 3) 记 b[j]=
a
k 1
j
k
,1≤i≤n,则所求的最大子段和问题为
a
k 1
j
k
=max max
a
k i
j
k
=max b[j]
由 b[j]的定义可知,b[j-1]>0 时,b[j]= b[j-1]+a[j], 否则 b[j]=a[j],因此 b[j]的动态规划递 归式 b[j]=max{b[j-1]+a[j],a[j]},1≤j≤n。 据此, 可设计出最大子段和动态规划算法如下: int MaxSum(int n,int *a) { Int sum=0,b=0; For(int i=1;i<=n;i++){ If(b>0)b+=a[j]; Else b=a[j]; If(b>sum)sum=b; } Return sum; } 显然,这个算法需要的时间和空间复杂度均为 O(n)。
则 RELI(1,n,c)可靠性设计的最优值为:
初始条件:f0 (X)=1,0≤X≤c
i
S ={ (f , X ) | f =f (X ) }
i i
S ={ (f , X ) | f =f (X ) }为可靠性设计问题 RELI(1,i,X) 的最优解,(f, X)是由 m1 ,m2 ,…,mi 的
按此递归式计算出来的 m(n,b)为最优值,算法所需的计算时间为 O(nb)。
4、可靠性设计:一个系统由 n 级设备串联而成,为了增强 可靠性,每级都可能并联了不止一台同样的设备。假设第 i 级设备 Di 用了 mi 台,该级设备的可靠性是 gi(mi),则这个 系统的可靠性是Π gi(mi)。一般来说 gi(mi)都是递增函数,所 以每级用的设备越多系统的可靠性越高。但是设备都是有成 本的, 假定设备 Di 的成本是 ci, 设计该系统允许的投资不超 过 c,那么,该如何设计该系统(即各级采用多少设备)使 得这个系统的可靠性最高。试设计一个动态规划算法求解可 靠性设计。
2
a
k 1
j
k
,j=1,2, …,n)
a[1,n]的最大子段为 k 1 ,且 1≤i≤n/2,n/2+1≤j≤n; 前两种情况可以通过递归求的,对于第三种情况,容易看出,a[n/2]与 a[n/2+1] 在最优子 序列中, 因此可以求出 a[1,n/2]中的最大子段 s1 和与 a[n/2+1,n]的最大子段和 s2,s1+s2 即 为第三种情况的最大子段和。 该算法所需的计算时间 T(n)满足典型的分治算法递归式
i
不同决策序列决定的,即:
S ij
具体算法如下:
0
1. S ห้องสมุดไป่ตู้{(1,0)}
i-1
2. 假设已求出 S
i
。
3. S 的求解步骤如下:
对于 m 的所有可能值,依次求出 m =j,1≤j≤u 时,有可能得到的所有序偶的集合
i i i i
。
将u个
i
按支配规则归并即得 S
3、考虑下面特殊的整数线性规划问题
试设计一个解此问题的动态规划算法,并分析算法的时间复 杂度。
解:该问题是一般情况下的背包问题,具有最优子结构性质。 设所给背包问题的子问题
的最优值为 m(i,j), 即 m(i,j)是背包容量为 j,可选物品为 1,2,…,i 时背包问题的最优解。 由背包问题的最优子结构性质,可建立计算 m(i,j)的递归式如下:
设 RELI(1,i,X) :表示在可容许成本 X 约束下,对第 1 种到第 i 种设备的可靠性设计问题。 目标函数:
约束条件:
, RELI(1,n,c): 表示整个系统的可靠性设计问题。 该问题具有最优子结构性质, 假设 m1 , m2, …, mn 为 RELI(1,n,c)的最优解,假设 m1 为第 1 级的最优选择,则 m2 ,…,mn 为 RELI(2,n,c-m1 c1) 的最优解,否则设 m’ 2,…,m’ n 为 RELI(1,n,c-m1 c1 )的最优解,则 m1,m’ 2,…m’ n 为 RELI(1,n,c) 的最优解。矛盾。 系统可靠性设计问题 RELI(1,n,c)的最优解是对 m1 ,m2,…,mn 的一系列决策的结果。设 fi(X) 是在允许成本值 X 约束下对前 i 种设备组成的子系统 RELI(1,i,X)可靠性设计的最优值,即:
2、 (双机调度问题)用两台处理机 A 和 B 处理个作业。设第 i 个作业交给机器 A 处理时所需要的时间是,若由机器 B 来 处理,则所需要的时间是 bi。现在要求设计每个作业只能由 一台机器处理,每台机器处理完这 n 个作业的时间最短(从 任何一个机器开工到最后一台机器停工的总的时间) ,以下 面的例子说明你的算法。
解: 设最优解为 C[n], 设在处理第 i 个作业时, 当前为最优值 C[i], 在 A 上处理的总时间为 A[i],B[i] 处理的总时间为 B[i], N=1, 显然有 a1<b1, 故 C[1]=A[I]=a[1]=2,B[1]=0,A 加工 N=2,A[2]=2+5=7<B[1]+8=0+8, 因此 C[2]=A[2]=7,B[2]=0,A 加工 N=3,A[2]+7=14>B[2]+b[3]=4, 因此 C[3]=C[2]=7,A[3]=7,B[3]=4,B 加工 N=4,A[3]+10=17>B[3]+11=15. 因此 C[4]=B[4]=15,A[4]=7,B[4]=15,B 加工 N=5,A[5]+5=12<B[5]+3=18, 因此 C[5]=C[4]=15,A[5]=9,B[5]=15,A 加工 N=6,A[6]+2=14<B[6]+4=19, 因此,C[6]=C[5]=15,A[6]=14,B[6]=15,A 加工 因此处理的总时间为 15,A 加工 1、2、5、6 个作业,B 加工 3、4 个作业
习题五 1、
j
最大字段和问题:给定正整数 a1,a2,… ,an,求该序列形
a
k 1 k
如
的子段和的最大值: max 0, max X k
j
k 1
1) 已知一个简单算法如下: int Maxsum(int n,int a,int& besti,int& bestj) { int sum = 0; for(int i=1;i<=n;i++){ int suma = 0; for(int j=i;j<=n;j++){ suma + = a[j]; if(suma > sum){ sum = suma; besti = i; bestj = j; } } } return sum; } 试分析该算法的时间复杂性。 2) 试用分治算法解最大子段和问题,并分析算法的时间复杂性。 3) 试说明最大子段和问题具有最优子结构性质,并设计一个动态规划算法解最大子段和问 题。分析算法的时 间复杂度。 (提示:令 b( j ) max 解: 1) 该简单算法嵌套了两个 for 循环, 均是从 1 到 n 进行循环。 因此, 时间复杂性为 o (n ) 。 2) 如果将所给序列 a[1,n]分为长度相等的两段 a[1,n/2]和 a[n/2+1,n], 分别求出这两段的最大 子段和,则 a[1,n]的最大子段和有三种情形: a[1,n]的最大子段和与 a[1,n/2]的最大子段和相同; a[1,n]的最大子段和与 a[n/2+1,n]的最大子段和相同;