红外测温方法的工作原理及测温(自己总结的)

合集下载

红外测温仪的原理及应用

红外测温仪的原理及应用

红外测温仪的原理及应用1. 红外测温仪的工作原理红外测温仪是一种用于非接触式测量物体表面温度的仪器。

它利用物体发出的红外辐射来测量物体的温度,通过该仪器能够实现快速、准确地测量目标物体的温度,无需直接接触物体。

红外测温仪的工作原理主要基于以下两个原理:1.1 热辐射原理所有物体都会发出一定量的红外辐射。

根据斯特藩-玻尔兹曼定律,物体发出的红外辐射功率与物体的绝对温度的四次方成正比。

红外测温仪通过测量物体发出的红外辐射来间接测量物体的温度。

1.2 热导率原理物体表面的温度会随着物体内部温度的变化而变化。

红外测温仪利用物体表面的温度变化来推断物体内部温度的变化。

通过测量物体表面的温度变化,可以间接测量物体内部的温度。

2. 红外测温仪的应用红外测温仪广泛应用于各个领域,包括但不限于以下几个方面:2.1 工业制造在工业制造过程中,红外测温仪被用于监测和控制机器设备的温度。

例如,在钢铁冶炼过程中,红外测温仪可以用来监测炉内的温度,确保炉温保持在合适的范围内。

此外,红外测温仪还可以用于检测产品质量,如检测焊接点的温度是否符合标准。

2.2 食品安全在食品加工和储存过程中,红外测温仪可以用来监测食品的温度。

例如,在餐饮业中,可以使用红外测温仪来检测食材的温度,确保食材储存和处理的安全性。

此外,红外测温仪还可以用来检测食品加热设备的温度,确保烹饪过程中的食品安全。

2.3 医疗保健在医疗保健领域,红外测温仪被广泛用于测量人体温度。

由于红外测温仪无需接触人体,因此可以减少与传统接触式测温方法相比的交叉感染风险。

红外测温仪通常用于测量额头、耳朵等部位的温度,可以快速、准确地检测患者的体温变化,为及时采取必要的医疗措施提供支持。

2.4 环境监测红外测温仪可以用于环境监测,例如测量大气温度、土壤温度等。

通过监测环境的温度变化,可以了解气候变化、土壤健康等因素,从而做出相应的应对措施。

2.5 安全防护红外测温仪可以在安全防护中发挥重要作用。

电子红外测温仪工作原理

电子红外测温仪工作原理

电子红外测温仪工作原理电子红外测温仪是一种利用红外辐射技术来测量物体温度的仪器。

它广泛应用于工业、农业、医疗等领域,具有快速、准确和非接触的特点。

那么,它是如何实现测温的呢?下面将为您介绍电子红外测温仪的工作原理。

1. 红外辐射原理在了解电子红外测温仪的工作原理前,首先需要了解红外辐射的基本原理。

一切物体都会辐射电磁波,包括可见光和红外线。

而红外线的波长比较长,无法被人眼所察觉。

当物体的温度升高时,其红外辐射强度也会相应增加。

2. 传感器系统电子红外测温仪内部包含了一个红外传感器系统。

该传感器系统由红外传感器、滤光器、光学聚焦系统和信号处理电路组成。

红外传感器可以感知物体所释放的红外辐射,并将其转化为电信号。

3. 光学聚焦系统光学聚焦系统是电子红外测温仪的核心部分,用于将红外辐射聚焦到传感器上。

光学聚焦系统通常由凸透镜和反射镜组成,其作用是将来自物体的红外辐射汇聚到传感器的敏感面上。

4. 信号处理电路传感器将感知到的红外辐射转化为电信号后,需要经过信号处理电路进行处理和转换。

信号处理电路会对传感器输出的信号进行放大、滤波和线性化处理,以提高测温仪的精度和稳定性。

5. 温度计算与显示电子红外测温仪中的微处理器会根据接收到的电信号计算出物体的温度。

计算温度的方法通常采用了斯特藩-玻尔兹曼定律,即根据物体的红外辐射强度和表面积计算出物体的温度。

最后,计算得到的温度数值将在仪器的显示屏上显示出来。

总结通过红外辐射原理、传感器系统、光学聚焦系统、信号处理电路以及温度计算与显示等环节的协同作用,电子红外测温仪能够准确地测量出物体的温度。

这种技术的非接触特性,在许多实际应用中具有不可替代的优势,无论是工业生产中的温度监测,还是医疗场景下的体温测量,都离不开电子红外测温仪。

所以,电子红外测温仪的工作原理可以概括为:通过感知物体的红外辐射、光学聚焦、信号处理和温度计算,实现对物体温度的准确测量和显示。

红外测温仪工作原理

红外测温仪工作原理

红外测温仪工作原理
简介
红外测温仪是一种基于热学原理制作的非接触式温度测量仪器,广泛应用于各
个领域。

相比传统温度测量方法,红外测温仪具有快速、精准、便捷等优点。

工作原理
红外测温仪的工作原理基于物体的热辐射规律。

根据斯蒂芬-波尔兹曼定律,
任何物体都会辐射出热能,其辐射功率与物体的温度的四次方成正比。

因此,只要知道物体的热辐射功率和辐射频率,就可以通过计算得到物体的温度。

红外测温仪采用的是热像仪技术,它可以将物体发出的红外线转化为图像,因
此能够在不同的距离和角度测量物体的温度。

红外测温仪所使用的热像仪可以将物体的辐射功率转换成电信号,然后通过放大、滤波和数字化处理后,输出温度值。

红外测温仪的探测元件是一种特制的红外线探测器,它能够侦测物体发出的红
外线,产生与红外线强度成正比的电流信号。

然后,这个电流信号会被放大、处理、转换为数字信号,并传送到仪器的计算部分。

实际应用
红外测温仪广泛应用于医疗、工业、能源等领域。

在医疗方面,红外测温仪被
广泛运用于体温检测,如近年来COVID-19疫情期间的体温筛查。

在工业生产中,
红外测温仪用于冶金、钢铁、炼油、玻璃等行业的温度监测。

在能源行业,红外测温仪可以用于太阳能电池板的温度检测,以及核电站设备的温度检测等。

总结
红外测温仪利用物体的热辐射规律,通过热像仪将物体发出的红外线转化为图像,进而测量物体的温度。

红外测温仪不仅具有测量快速和精确的优点,而且还可以在不同的角度和距离测量物体温度,因此被广泛应用于医疗、工业、能源等多个领域。

红外测温仪的原理

红外测温仪的原理

红外测温仪的原理红外测温仪是一种利用红外线辐射能够感应物体表面温度的仪器。

它是利用物体表面的红外辐射能量与物体表面温度之间的关系来测量物体的温度。

红外测温仪通常由光学系统、探测器、信号处理系统和显示系统等部分组成。

首先,红外测温仪的光学系统是其核心部分,它主要由透镜、光学滤波器和光电探测器组成。

透镜用于聚焦被测物体发出的红外辐射,光学滤波器则用于选择所需的波长范围的红外辐射,而光电探测器则负责将红外辐射转换成电信号。

其次,红外测温仪的探测器是用来感应物体表面的红外辐射,并将其转换成电信号的装置。

探测器的性能直接影响着红外测温仪的测量精度和稳定性。

目前常用的红外探测器有热电偶探测器和焦平面阵列探测器两种。

热电偶探测器利用热电效应将红外辐射转换成电信号,而焦平面阵列探测器则是利用半导体材料的光电效应来实现。

然后,红外测温仪的信号处理系统是用来处理探测器输出的电信号,将其转换成数字信号,并进行信号放大、滤波、线性化和温度补偿等处理,最终得到被测物体的温度值。

信号处理系统的设计和性能对红外测温仪的测量精度和稳定性有着重要影响。

最后,红外测温仪的显示系统是用来显示被测物体的温度数值的部分。

常见的显示方式有数码显示和液晶显示两种。

数码显示直观清晰,适合在光线较暗的环境下使用;而液晶显示则可以显示更多的信息,适合在光线较亮的环境下使用。

综上所述,红外测温仪通过光学系统聚焦物体发出的红外辐射,探测器感应红外辐射并转换成电信号,信号处理系统处理电信号并得到物体温度值,最后通过显示系统显示出温度数值。

这是红外测温仪的基本原理,其测温精度和稳定性取决于光学系统、探测器、信号处理系统和显示系统的设计和性能。

红外测温仪在工业、医疗、军事等领域有着广泛的应用,其原理和技术不断得到改进和完善,将会为各行各业的温度测量提供更加便捷和准确的解决方案。

红外测温仪的原理及应用介绍

红外测温仪的原理及应用介绍

红外测温仪的原理及应用介绍红外测温仪的原理红外测温仪是基于物体发射红外线的原理进行温度测量的仪器。

根据热力学第二定律,每个物体在温度为T时都会发射红外线,这些红外线的波长和发射强度随着温度的升高而增加。

因此,如果我们能够测量红外线的波长和强度,就可以确定物体的温度。

现代红外测温仪是利用一种叫做热电偶的技术来测量物体的温度。

热电偶是由两种不同的金属制成的导线,在两端连接成一个回路。

当热电偶的两端处于不同温度时,就会产生一个由电势差引起的电流。

这个电势差的大小与两端之间的温度差有关。

因此,我们可以用热电偶来测量物体表面和环境之间的温度差,从而推断物体的温度。

红外测温仪的应用红外测温仪广泛应用于各种领域,例如:工业制造红外测温仪在工业领域中的应用很广泛,例如测量机械设备的运行温度、检测高温炉炉墙和管道等。

环境监测红外测温仪也可以用于环境监测,例如检测地表温度、森林火灾等。

医疗保健红外测温仪也可以用于医疗保健,例如测量病人体温、检测病人的动脉和静脉等。

建筑施工在建筑施工中,红外测温仪可以测量材料表面的温度,例如测量混凝土的硬化过程、检测建筑物中的水分等。

农业种植在农业种植中,红外测温仪可以测量植物表面的温度,例如测量植物吸收的阳光能量和冷却速率,以便更有效地管理温室环境和农田作物。

结论红外测温仪是一种基于物体发射红外线的原理进行温度测量的仪器。

由于其精度高、测量速度快、便携性好等优点,它在各个领域都有着广泛的应用,从农业种植到工业加工,从医疗保健到环境监测,都有着它的身影。

随着技术的不断发展,相信红外测温仪的应用范围和精度等方面也会越来越好,使其在越来越多的领域中发挥重要作用。

红外测温枪原理

红外测温枪原理

红外测温枪原理
红外测温枪是一种利用红外线辐射能量来测量物体表面温度的仪器。

它通过测量物体发出的红外辐射来确定物体的温度,具有非接触式、快速、准确的特点,因此在工业生产、医疗保健、食品安全等领域得到了广泛应用。

红外测温枪的原理主要基于物体的热辐射特性。

所有物体都会发出热辐射,其强度与物体的温度成正比。

根据普朗克辐射定律和斯特藩-玻尔兹曼定律,可以得出物体表面的热辐射功率与物体温度的关系。

红外测温枪利用内置的红外传感器来接收物体发出的红外辐射,然后通过内部的光电元件将其转换为电信号,最终通过电路处理得到物体的温度。

在使用红外测温枪时,需要注意一些影响测量精度的因素。

首先是环境温度和湿度的影响,这些因素会影响红外辐射的传播和接收,从而影响测温精度。

其次是目标物体的表面特性,不同的表面材质对红外辐射的反射和吸收特性不同,会对测温结果产生影响。

此外,测温距离和测温角度也会影响测温精度,需要根据实际情况进行调整。

在实际应用中,红外测温枪可以应用于各种场景。

在工业生产中,可以用于测量机械设备、电气设备、炉温等的温度,及时发现异常情况并进行调整和维护。

在医疗保健领域,可以用于测量人体表面温度,快速筛查发热病人,保障医疗安全。

在食品安全领域,可以用于检测食品的温度,确保食品质量和安全。

总的来说,红外测温枪是一种非常实用的测温工具,具有快速、准确、非接触式的特点,适用于各种领域的温度测量。

通过了解其原理和影响因素,可以更好地使用和维护红外测温枪,发挥其优势,为生产和生活提供更好的保障。

红外测温原理

红外测温原理
红外测温是一种测量物体温度的快速有效的方法。

它是利用物体
表面热量所发出的红外线信号来测量物体温度的方法。

尽管物体表面
为室温时,物体本身仍然有特定的温度,而红外测温的原理就是利用
这种温度差来测量物体温度。

红外测温器看起来与一般的温度仪器有些不同,红外测温器有一
个特殊的镜头组件,可将物体的表面温度转换为一个标准的红外发射
信号(波长),这种信号再通过传感器收集,根据红外发射特性,它
可以显示当前物体表面温度。

而且,红外测温器也可以通过红外光检
测低温范围、远距离、多角度等低温范围,这是传统温度计无法办到的。

此外,红外测温也具有快速和便捷的优势,相比于一般温度检测
仪器,红外测温所需要的时间较短,而且它使用的技术也在逐渐提高。

红外的技术可以用来检测温度变化,因此可以迅速检测出物体的表面
温度。

综上所述,红外测温是一种快速、有效的温度测量技术,可以提
供准确可靠的物体温度检测记录,由于具有快速、便捷和精确的特点,现在用来测量非常普遍,泛用于气候控制、热电、家用电器、工业过
程检测等行业。

红外线测温仪的工作原理

红外线测温仪的工作原理红外线测温仪是一种利用红外线辐射能量来测量物体温度的仪器。

它主要由光学系统、探测器、信号处理电路和显示装置等部分组成。

红外线测温仪的工作原理主要是基于物体的热辐射特性和热辐射能量与温度之间的关系。

首先,红外线测温仪通过光学系统将物体发出的红外辐射聚焦到探测器上。

物体的温度越高,发出的红外辐射能量就越大。

探测器接收到的红外辐射能量会随着物体温度的变化而发生相应的变化。

其次,探测器将接收到的红外辐射能量转换成电信号,并通过信号处理电路进行放大、滤波和线性化处理,最终转换成与物体温度成正比的电压信号。

然后,经过信号处理电路处理后的电压信号会被送入显示装置,通过显示装置将物体的温度数值显示出来。

在一些高级的红外线测温仪中,还可以对温度进行记录、存储和分析处理。

总的来说,红外线测温仪的工作原理就是利用物体发出的红外辐射能量与温度之间的关系,通过光学系统、探测器、信号处理电路和显示装置等部分的协同作用,实现对物体温度的快速、准确测量。

红外线测温仪的工作原理简单易懂,但在实际应用中需要注意一些影响测量精度的因素。

比如,环境温度、湿度、气体和粉尘等对红外辐射的吸收和散射,都会影响到测温精度。

因此,在使用红外线测温仪时,需要根据实际情况进行合理的校准和补偿,以确保测量结果的准确性。

此外,红外线测温仪在实际应用中还需要考虑测量距离、测量角度、目标表面的发射率等因素。

不同的红外线测温仪有不同的测量距离范围和测量角度范围,需要根据实际测量要求进行选择。

总的来说,红外线测温仪的工作原理是基于物体的热辐射特性和热辐射能量与温度之间的关系,通过光学系统、探测器、信号处理电路和显示装置等部分的协同作用,实现对物体温度的快速、准确测量。

在实际应用中需要考虑各种影响测量精度的因素,并进行合理的校准和补偿,以确保测量结果的准确性。

红外线测温仪工作原理

红外线测温仪工作原理
红外线测温仪是一种非接触式测温设备,它通过测量目标物体发出的红外辐射来获取物体的温度信息。

其工作原理主要基于黑体辐射定律和斯特藩-玻尔兹曼定律。

首先,根据黑体辐射定律,任何温度高于绝对零度的物体都会发出电磁波,其中包括可见光、红外线和紫外线等。

红外线测温仪利用的就是物体发出的红外辐射,通过测量目标物体发出的红外辐射强度来确定其温度。

其次,根据斯特藩-玻尔兹曼定律,物体发出的红外辐射功率与其温度的四次方成正比。

红外线测温仪利用这一定律,通过测量目标物体发出的红外辐射功率来计算出物体的温度。

红外线测温仪内部包含红外传感器和温度计算电路。

红外传感器接收目标物体发出的红外辐射,将其转换成电信号并传送给温度计算电路。

温度计算电路根据接收到的电信号,利用斯特藩-玻尔兹曼定律计算出目标物体的温度,并将结果显示在仪器的屏幕上。

除了基于斯特藩-玻尔兹曼定律的测温原理外,红外线测温仪还
可以通过测量目标物体的红外辐射波长来确定其温度。

根据普朗克公式,不同温度的物体发出的红外辐射波长是不同的,红外线测温仪可以通过测量目标物体的红外辐射波长来推算出其温度。

总的来说,红外线测温仪工作原理是基于目标物体发出的红外辐射来确定其温度。

它利用了黑体辐射定律、斯特藩-玻尔兹曼定律和普朗克公式等物理原理,通过红外传感器和温度计算电路来实现温度测量,具有非接触式、快速、准确的特点,被广泛应用于工业生产、医疗卫生、安防监控等领域。

红外测温枪原理

红外测温枪原理
红外测温枪是一种利用物体辐射的红外能量,通过红外探测器感知并转换为温度值的仪器。

它基于物体的热辐射原理,测量出物体表面的红外能量,进而推算出物体的温度。

红外测温枪通常由红外辐射探测器、光学透镜、信号处理电路和显示装置等部分组成。

当红外辐射探测器接收到物体表面发出的红外辐射时,辐射能量会被传递到光学透镜上,然后通过光学透镜聚焦到红外辐射探测器上。

红外辐射探测器是红外测温枪的核心部件,其根据物体发射出的热辐射能量的不同,产生相应的电信号。

这些电信号会经过信号处理电路进行放大、滤波,然后转换为数字信号进行处理。

最后,通过显示装置将温度值以数字或图形的形式显示出来。

红外测温枪的工作原理基于斯特藩-玻尔兹曼定律,即物体表
面的热辐射能量与其温度成正比。

因此,红外测温枪通过测量物体发射的红外辐射能量,并与内置黑体辐射源进行对比,可以准确地计算出物体表面的温度。

值得注意的是,红外测温枪对测温目标的表面特性有一定要求,例如,物体表面不能太粗糙,否则会影响红外辐射能量的接收和测量的准确性。

因此,在使用红外测温枪进行测温时,需要根据实际情况选择合适的测量距离和目标的表面状态,以保证测量结果的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外测温方法的工作原理及测温仪在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm 的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。

传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。

目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。

表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。

表1 常用测温方法对比测温方法 温度传感器 测温范围(°C )精度(%) 接触式 热电偶 -200~1800 0.2~1.0 热电阻 -50~300 0.1~0.5 非接触式 红外测温 -50~3300 1 其它示温材料-35~2000<11 红外测温仪的工作原理及特点1.1 黑体辐射与红外测温原理一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。

物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。

因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。

黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1,其它的物质反射系数小于1,称为灰体。

应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。

由于黑体的光谱辐射功率Pb(λΤ)与绝对温度Τ 之间满足普朗克定理:()1exp 251-=-T c c T P b λλλ (1)其中,Pb(λΤ)—黑体的辐射出射度;λ—波长; T —绝对温度; c 1、c 2—辐射常数。

式(1)说明在绝对温度Τ 下,波长λ处单位面积上黑体的辐射功率为Pb(λΤ)。

根据这个关系可以得到下图1的关系曲线:图1 黑体辐射的光谱分析从图1中可以看出:(1)随着温度的升高,物体的辐射能量越强。

这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。

(2)随着温度升高,辐射峰值向短波方向移动(向左),并满足维恩位移定理T *λm = 2897.8 μm*K ,峰值处的波长λm 与绝对温度Τ 成反比,虚线为λm 处峰值连线。

这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。

(3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。

根据斯特藩—玻耳兹曼定理黑体的辐出度 Pb(Τ)与温度Τ 的四次方成正比, 即:()4T T P b σ= (2)式中,Pb(T)—温度为T 时,单位时间从黑体单位面积上辐射出的总辐射能,称为总辐射度;σ—斯特藩—玻耳兹曼常量; T —物体温度。

式(2)中黑体的热辐射定律正是红外测温技术的理论基础。

如果在条件相同情况下,物体在同一波长范围内辐射的功率总是小于黑体的功率,即物体的单色辐出度 Pb(Τ)小于黑体的单色黑度ε(λ),即实际物体接近黑体的程度。

ε(λ)= P(T)/ Pb(T) (3)考虑到物体的单色黑度ε(λ)是不随波长变化的常数,即ε (λ)=ε,称此物体为灰体。

它是随不同物质而值不同,即使是同一种物质因其结构不同值也不同,只有黑体ε=1,而一般灰体0<ε<1,由式(2)可得:()()()4;T T P T P T P b εσε==所测物体的温度为:()41⎪⎭⎫ ⎝⎛=εσT P T (4)式(4)正是物体的热辐射测温的数学描述。

1.2 红外测温仪特点一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。

红外辐射能量的大小按波长的分布与它的表面温度有着十分密切的关系。

因此,通过对物体自身发出的红外能量的测量,便能准确地测出它的表面温度。

红外测温仪能接收多种物体自身发射出的不可见红外辐射能量。

红外辐射是电磁频谱的一部分,红外位于可见光和无线电波之间。

当仪器测温时,被测物体发射出的红外辐射能量,通过测温仪的光学系统在探测器上转为电信号,并通过红外测温仪的显示部分显示出被测物体的表面温度。

红外测温仪特点:非接触式测量,测温范围广,响应速度快,灵敏度高。

但由于受被测对象的发射率影响,几乎不可能测到被测对象的真实温度,测量的是表面温度。

2 红外测温仪的系统组成红外测温采用逐点分析的方式,即把物体一个局部区域的热辐射聚焦在单个探测器上,并通过已知物体的发射率,将辐射功率转化为温度。

由于被检测的对象、测量范围和使用场合不同,红外测温仪的外观设计和内部结构不尽相同,但基本结构大体相似,主要包括光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成,其基本结构如图2 所示。

辐射体发出的红外辐射,进入光学系统,经调制器把红外辐射调制成交变辐射,由探测器转变成为相应的电信号。

该信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射率校正后转变为被测目标的温度值。

调 制 盘电子放大器调制 盘图2 红外测温仪结构图如图2所示红外测温仪是根据物体的红外辐射特性,依靠其内部光学系统将物体的红外辐射能量汇聚到探测器(传感器) ,并转换成电信号,再通过放大电路、补偿电路及线性处理后,在显示终端显示被测物体的温度。

系统由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成,其核心是红外探测器,将入射辐射能转换成可测量的电信号(见3热辐射体光学系统红外探测器 显示器图) 。

图3 红外测温系统结构3 红外测温误差分析由于红外测温是非接触式的,这样会存在着各种误差,影响误差的因素很多,除了仪器本身的因素外,主要表现在以下几个方面:1、 辐射率辐射率是一个物体相对于黑体辐射能力大小的物理量,它除了与物体的材料形状、表面粗糙度、凹凸度等有关,还与测试的方向有关。

若物体为光洁表面时,其方向性更为敏感。

不同物质的辐射率是不同的,红外测温仪从物体上接收到辐射能量大小正比于它的辐射率。

(1) 辐射率的设定根据基尔霍夫定理:物体表面的半球单色发射率(ε)等于它的半球单色吸收率(α),ε=α。

在热平衡条件下,物体辐射功率等于它的吸收功率,即吸收率(α)、反射率(ρ)、透射率(γ)总和为1,即α+ρ+γ=1,图4 解释了上述规律。

对于不透明的(或具有一定厚度)的物体透射率可视γ=0,只有辐射和反射(α+ρ=1),当物体的辐射率越高,反射率就越小,背景和反射的影响就会越小,测试的准确性也就越高;反之,背景温度越高或反射率越高,对测试的影响就越大。

由此可以看出,在实际的检测过程中必须注意不同物体和测温仪相对应的辐射率,对辐射率的设定要尽量准确,以减小所测温度的误差。

被测目标 光学系统探测器调制电机信号处理电路补偿电路显示器图4 目标的红外辐射(2)测试角度辐射率与测试方向有关,测试角度越大,测试误差越大,在用红外进行测温时,这一点很容易被忽视。

一般来说,测试角最好在30°C之内,一般不宜大于45°C,如果不得不大于45°C 进行测试,可以适当地调低辐射率进行修正。

如果两个相同物体的测温数据要进行判断分析,那么在测试时测试角一定要相同,这样才更具有可比性。

2、距离系数距离系数(K=S:D)是测温仪到目标的距离S与测温目标直径D的比值,它对红外测温的精确度有很大影响,K值越大,分辨率越高。

因此,如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪,以减小测量误差。

在实际使用中,许多人忽略了测温仪的光学分辨率。

不管被测目标点直径D大小,打开激光束对准测量目标就测试。

实际上他们忽略了该测温仪的S:D 值的要求,这样测出的温度会有一定的误差。

比如,用测量距离与目标直径S:D=8:1 的测温仪,测量距离应满足表2 的要求。

表2 S值应满足的要求目标大小D(mm)1550100200测量距离S(mm)<120<400<800<16003、目标尺寸被测物体和测温仪视场决定了仪器测量的精度。

使用红外测温仪测温时,一般只能测定被测目标表面上确定面积的平均值。

一般测试时有以下三种情况:(1)当被测目标大于测试视场时,测温仪就不会受到测量区域外面的背景影响,就能显示被测物体位于光学目标内确定面积的真实温度,这时的测试效果最好。

(2)当被测目标等于测试视场时,背景温度已受到影响,但还比较小,测试效果一般。

(3)当被测目标小于测试视场时,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。

仪器仅显示被测物体和背景温度的加权平均值。

因此建议在实际测温时,被测目标尺寸超过视场大小的50%为好,具体情况如图5 所示。

图5 目标与视场示意图4、 响应时间响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。

如果目标的运动速度很快或者测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。

但并不是所有应用都要求快速响应的红外测温仪。

对于静止的或目标热过程存在热惯性时,测温仪的响应时间可放宽要求。

因此,红外测温仪响应时间的选择要和被测目标的情况相适应。

5、 环境因素被测物体所处的环境条件对测量的结果有很大的影响,它主要体现在两个方面,即环境的温度和精晰度。

(1) 环境温度的影响设被测目标的温度为T 1,环境温度为T 2 时,该目标单位面积表面发射的辐射能为41T A εσ,而相应地被它所吸收辐射能为42T A ασ,则该物体发出的净辐射能Q 为:Q=41T A εσ-42T A ασ (5)式中,A —单位面积; ε—物体的辐射率; α—吸收率。

设被测物体的ε 和α两者相等,由式(5)可得:()4241T T A Q -=εσ (6)表3 提供了感受波长在(9~12μm)的测温仪在环境温度为270K~330K 范围,对从300K~1000K 目标温度进行测量时产生的能量误差(%)。

相关文档
最新文档