江苏省苏州市2016年中考数学模拟试卷(二)带答案

合集下载

中考数学二模试卷含解析3

中考数学二模试卷含解析3

江苏省苏州市张家港市2016年中考数学二模试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内)1.的相反数是()A.B.C.﹣4 D.42.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.下列运算中,正确的是()A.3a+2a2=5a3B.a•a4=a4C.a6÷a3=a2D.(﹣3x3)2=9x64.2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期19 20 21 22 23 24 25最低气温/℃ 2 4 5 3 4 6 7A.4,4 B.5,4 C.4,3 D.4,4.55.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A.20° B.25° C.30° D.40°6.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A.(3,1) B.(3,﹣1)C.(1,﹣3)D.(1,3)7.若a>3,化简|a|﹣|3﹣a|的结果为()A.3 B.﹣3 C.2a﹣3 D.2a+38.已知一个圆锥的侧面积是l0πcm2,它的侧面展开图是一个圆心为144°的扇形,则这个圆锥的底面半径为()A. cm B. cm C.2cm D. cm9.已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2 B.x≤﹣2 C.x≤3 D.x≥310.如图,△ABC中,AD⊥BC,垂足为D,AD=BD=3,CD=2,点P从点B出发沿线段BC的方向移动到点C停止,过点P作PQ⊥BC,交折线BA﹣AC于点Q,连接DQ、CQ,若△ADQ与△CDQ的面积相等,则线段BP的长度是()A.或4 B.或4 C.或D.或二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上)11.分解因式:4x2﹣1= .12.国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258000m2.那么,258000用科学记数法表示为.13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.如图,A、B、C、D是⊙O上的四点,且D是弧AB的中点,CD交OB于E,∠AOB=100°,∠OBC=55°,那么∠OEC= 度.15.在一次数学实验活动中,老师带领学生去测一条南北流向的河的宽度.如图,某同学在河东岸点A处观测河对岸水边有点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,则这条河的宽度米.(参考数据:)16.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若DE=1,则矩形ABCD的面积为.17.如图,直线y=﹣x+b与双曲线y=(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,AC⊥x轴于点C,BD⊥y轴于点D,当b= 时,△ACE、△BDF与△ABO面积的和等于△EFO面积的.18.对于二次函数y=x2﹣2mx+3(m>0),有下列说法:①如果m=2,则y有最小值﹣1;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后的函数的最小值是﹣9,则;④如果当x=1时的函数值与x=2015时的函数值相等,则当x=2016时的函数值为3.其中正确的说法是.(把你认为正确的结论的序号都填上)三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:.20.(5分)解不等式组:.21.(6分)先化简,再求值:,其中.22.(6分)已知,如图,AC=BD,∠1=∠2.(1)求证:△ABC≌△BAD;(2)若∠2=∠3=25°,则∠D= °.23.(8分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.24.(8分)如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运动,两点同时出发,到达各自的终点后停止运动.已知动点Q运动的速度是动点P 运动的速度的2倍.设两点之间的距离为s(厘米),动点P的运动时间为t(秒),图2表示s与t之间的函数关系.(1)求动点P、Q运动的速度;(2)图2中,a= ,b= ,c= ;(3)当a≤t≤c时,求s与t之间的函数关系式(即线段MN对应的函数关系式).25.(8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点.(1)求m、n的值和反比例函数的表达式.(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.26.(10分)如图,四边形ACBD是⊙O的内接四边形,AB为直径,过C作⊙O的切线交AB 的延长于E,DB⊥CE,垂足为F.(1)若∠ABC=65°,则∠CAD= °;(2)若⊙O的半径为cm,弦BD的长为3cm;①求CE的长;②连结CD,求cos∠ADC的值.27.(10分)如图,在矩形OABC中,OA=2OC,顶点O在坐标原点,顶点A的坐标为(8,6).(1)顶点C的坐标为(,),顶点B的坐标为(,);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒2个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位.当运动时间为2秒时,以点P、Q、C顶点的三角形是等腰三角形,求k的值;(3)若矩形OABC以每秒个单位的速度沿射线AO下滑,直至顶点A到达坐标原点时停止下滑.设矩形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.28.(10分)如图,已知抛物线为常数,且a>0)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C(0,).点P是线段BC上一个动点,点P横坐标为m.(1)a的值为;(2)判断△ABC的形状,并求出它的面积;(3)如图1,过点P作y的平行线,交抛物线于点D.①请你探究:是否存在实数m,使四边形OCDP是平行四边形?若存在,求出m的值;若不存在,请说明理由;②过点D作DE⊥BC于点E,设△PDE的面积为S,求S的最大值.(4)如图2,F为AB中点,连接FP.一动点Q从F出发,沿线段FP以每秒1个单位的速度运动到P,再沿着线段PC以每秒2个单位的速度运动到C后停止.若点Q在整个运动过程中的时间为t秒,请直接写出t的最小值及此时点P的坐标.2016年江苏省苏州市张家港市中考数学二模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内)1.的相反数是()A.B.C.﹣4 D.4【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:的相反数是,故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,也不是中心对称图形,故错误;B、不是轴对称图形,是中心对称图形,故错误;C、不是轴对称图形,也不是中心对称图形,故错误;D、是轴对称图形,是中心对称图形,故正确.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列运算中,正确的是()A.3a+2a2=5a3B.a•a4=a4C.a6÷a3=a2D.(﹣3x3)2=9x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、3a+2a2≠5a3,故错误;B、a•a4=a5,故错误;C、a6÷a3=a3,故错误;D、正确;故选:D.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期19 20 21 22 23 24 25最低气温/℃ 2 4 5 3 4 6 7A.4,4 B.5,4 C.4,3 D.4,4.5【考点】众数;中位数.【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:将一周气温按从小到大的顺序排列为2,3,4,4,5,6,7,中位数为第四个数4;4出现了2次,故众数为4.故选A.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A.20° B.25° C.30° D.40°【考点】平行线的性质.【分析】先根据对顶角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.6.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A.(3,1) B.(3,﹣1)C.(1,﹣3)D.(1,3)【考点】菱形的性质;坐标与图形性质.【分析】首先连接AB交OC于点D,由四边形OACB是菱形,可得AB⊥OC,AD=BD=1,OD=CD=3,易得点B的坐标是(3,﹣1).【解答】解:连接AB交OC于点D,∵四边形OACB是菱形,∴AB⊥OC,AD=BD=1,OD=CD=3,∴点B的坐标是(3,﹣1).故选:B.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直.解此题注意数形结合思想的应用.7.若a>3,化简|a|﹣|3﹣a|的结果为()A.3 B.﹣3 C.2a﹣3 D.2a+3【考点】绝对值.【分析】根据绝对值的定义可得:正数的绝对值是它本身,负数的绝对值是它的相反数.依此即可求解.【解答】解:∵a>3,∴a>0,3﹣a<0,∴|a|﹣|3﹣a|=a+3﹣a=3.故选:A.【点评】本题主要考查了绝对值的定义.正数的绝对值是它本身,负数是它的相反数.8.已知一个圆锥的侧面积是l0πcm2,它的侧面展开图是一个圆心为144°的扇形,则这个圆锥的底面半径为()A. cm B. cm C.2cm D. cm【考点】圆锥的计算.【分析】设圆锥的母线长为lcm,根据圆锥的侧面积为侧面展开图中扇形的面积得出=10π,求出l=5,再设圆锥的底面半径是rcm,根据圆锥的底面圆周长是扇形的弧长得出2πr=,解方程即可求出半径.【解答】解:设圆锥的母线长为lcm,则=10π,解得:l=5,设圆锥的底面半径是rcm,则2πr=,解得:r=2.即这个圆锥的底面半径为2cm,故选C.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9.已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2 B.x≤﹣2 C.x≤3 D.x≥3【考点】一次函数与一元一次不等式.【分析】先把(3,0)代入y=kx+b得b=﹣3k,则不等式化为k(x﹣4)+6k≥0,然后在k <0的情况下解不等式即可.【解答】解:把(3,0)代入y=kx+b得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0化为k(x﹣4)+6k>0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选B.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.如图,△ABC中,AD⊥BC,垂足为D,AD=BD=3,CD=2,点P从点B出发沿线段BC的方向移动到点C停止,过点P作PQ⊥BC,交折线BA﹣AC于点Q,连接DQ、CQ,若△ADQ与△CDQ的面积相等,则线段BP的长度是()A.或4 B.或4 C.或D.或【考点】三角形的面积.【分析】分两种情况计算:①点Q在AB边上时,先求出三角形ABD的面积,设出BP=x,再将三角形DCQ和AQD的面积用x表示出来,用面积相等建立方程即可;②当点Q在AC边时,由面积相等即可得出点Q是AC中点,进而得出点P'是CD的中点,即可求出DP',即可得出结论.【解答】解:①点Q在AB边上时,∵AD⊥BC,垂足为D,AD=BD=3,CD=2,∴S△ABD=BD•AD=×3×3=,∠B=45°∵PQ⊥BC,∴BP=PQ,设BP=x,则PQ=x,∵CD=2,∴S△DCQ=×2x=x,S△AQD=S△ABD﹣S△BQD=﹣×3×x=﹣x,∵△ADQ与△CDQ的面积相等,∴x=﹣x,解得:x=,②如图,当Q在AC上时,记为Q',过点Q'作Q'P'⊥BC,∵AD⊥BC,垂足为D,∴Q'P'∥AD∵△ADQ与△CDQ的面积相等,∴AQ'=CQ'∴DP'=CP'=CD=1∵AD=BD=3,∴BP'=BD+DP'=4,综上所述,线段BP的长度是或4.故选A,【点评】此题是三角形的面积,主要考查了三角形的中线将三角形分成面积相等的两个三角形,三角形的面积公式,解本题的关键是判断出点Q'是AC的中点.二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上)11.分解因式:4x2﹣1= (2x+1)(2x﹣1).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式即可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:4x2﹣1=(2x+1)(2x﹣1).故答案为:(2x+1)(2x﹣1).【点评】本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.12.国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258000m2.那么,258000用科学记数法表示为 2.58×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:258 000=2.58×105,故答案为:2.58×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.【考点】概率公式.【分析】由一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,直接利用概率公式求解即可求得答案.【解答】解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.如图,A、B、C、D是⊙O上的四点,且D是弧AB的中点,CD交OB于E,∠AOB=100°,∠OBC=55°,那么∠OEC= 80 度.【考点】圆心角、弧、弦的关系;三角形内角和定理;圆周角定理.【分析】根据等弧所对的圆心角相等以及圆周角定理,得∠BCD=100°÷4=25°.再根据三角形的一个外角等于和它不相邻的两个内角的和,得∠OEC=55°+25°=80°.【解答】解:连接OD,∵D是弧AB的中点,∠AOB=100°,∴∠BOD==50°,∴∠BCD==25°,∴∠OEC=∠OBC+∠C=55°+25°=80°.【点评】综合运用了圆周角定理以及三角形的内角和定理的推论.15.在一次数学实验活动中,老师带领学生去测一条南北流向的河的宽度.如图,某同学在河东岸点A处观测河对岸水边有点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,则这条河的宽度30 米.(参考数据:)【考点】解直角三角形的应用-方向角问题.【分析】作CE⊥AB于E,设CE=x,在RT△ACE中,根据tan∠CAE==列出方程即可解决问题.【解答】解:如图,作CE⊥AB于E,设CE=x,由题意得∠CBE=45°,∠CAE=31°,∴∠CBE=∠BCE=45°,∴CE=BE=x,AE=20+x,∵tan31°==,∴=,∴x=30,∴CE=30米.故答案为30.【点评】本题考查解直角三角形、方向角、三角函数等知识,解题的关键是添加辅助线构造直角三角形,学会利用方程解决问题,属于中考常考题型.16.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若DE=1,则矩形ABCD的面积为3.【考点】旋转的性质;矩形的性质.【分析】根据旋转的性质得到AC=AC′,由AC的中点恰好与D点重合,得到AD=AC,根据三角函数的定义得到∠DAE=∠ACD=30°,求得AD=,AE=2,AE=CE=2,根据矩形的面积公式即可得到结论.【解答】解:∵将矩形ABCD绕点A旋转至矩形AB′C′D′位置,∴AC=AC′,∵AC的中点恰好与D点重合,∴AD=AC,∴∠DAE=∠ACD=30°,∵DE=1,∴AD=,AE=2,∵∠DAC=90°﹣30°=60°,∴∠EAC=30°,∴∠EAC=∠ACD=30°,∴AE=CE=2,∴CD=3,∴矩形ABCD的面积=CD•AD=3.故答案为:3.【点评】本题考查了旋转的性质、矩形的性质、特殊角的三角函数,三角形面积计算等知识点,难度不大.清楚旋转的“不变”特性是解答的关键.17.如图,直线y=﹣x+b与双曲线y=(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,AC⊥x轴于点C,BD⊥y轴于点D,当b= 2时,△ACE、△BDF与△ABO面积的和等于△EFO面积的.【考点】反比例函数综合题.【分析】△ACE、△BDF与△ABO面积的和等于△EFO面积的,即S△OBD+S△AOC=S△EOF,根据反比例函数的解析式与三角形的面积的关系即可求解.【解答】解:直线y=﹣x+b中,令x=0,解得:y=b,则OF=b;令y=0,解得:x=b,则OE=b.则S△EOF=OE•OF=b2.∵S△OBD=S△AOC=,又∵△ACE、△BDF与△ABO面积的和等于△EFO面积的,∴S△OBD+S△AOC=S△EOF,即:×b2=1,解得:b=±2(﹣2舍去),∴b=2.故答案是:2.【点评】本题主要考查了反比例函数中k的几何意义,正确理解△ACE、△BDF与△ABO面积的和等于△EFO面积的,即S△OBD+S△AOC=S△EOF是解题的关键.18.对于二次函数y=x2﹣2mx+3(m>0),有下列说法:①如果m=2,则y有最小值﹣1;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后的函数的最小值是﹣9,则;④如果当x=1时的函数值与x=2015时的函数值相等,则当x=2016时的函数值为3.其中正确的说法是①③④.(把你认为正确的结论的序号都填上)【考点】二次函数的性质.【分析】①把m=2代入,利用配方法求顶点坐标;②利用对称轴和增减性的性质可知,对称轴一定是x=1的右侧;③根据平移原则:左⇒+,右⇒一,得出解析式,并利用最值列式;④根据已知先求m的值,写出解析式,把x=2016代入求y.【解答】解:①当m=2时,二次函数为y=x2﹣4x+3=(x﹣2)2﹣1,∵a=1>0,∴当x=2时,y有最小值为﹣1;故①正确;②如果当x≤1时y随x的增大而减小,则﹣=m≥1;故②错误;③y=x2﹣2mx+3=(x﹣m)2﹣m2+3,将它的图象向左平移3个单位后的函数:y=(x﹣m+3)2﹣m2+3,则﹣m2+3=﹣9,m=±2,∵m>0,∴m=2,故③正确;④由当x=1时的函数值与x=2015时的函数值相等得:12﹣2m+3=20152﹣4030m+3,m=1008,∴当x=2016时,y=20162﹣2×2016×1008+3=3,故④正确;故答案为:①③④.【点评】本题考查了二次函数的性质,是常考题型;要注意每一个条件都只能在本选项中运用,各选项中根据自己的已知条件求出相应的m的值.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=3+3﹣1+2=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式3(x﹣2)<x+4,得:x<5,故不等式组的解集为:2≤x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先算括号里面的加法,再算除法,再把x的值代入进行计算即可.【解答】解:原式=•=•=,当x=时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.已知,如图,AC=BD,∠1=∠2.(1)求证:△ABC≌△BAD;(2)若∠2=∠3=25°,则∠D= 105 °.【考点】全等三角形的判定与性质.【分析】(1)由SAS证明△ABC≌△BAD即可;(2)求出∠1=∠2=∠3=25°,∠ABC=50°,由三角形内角和定理求出∠C,由全等三角形的性质即可得出结果.【解答】(1)证明:在△ABC和△BAD中,,∴△ABC≌△BAD(SAS);(2)解:∵∠1=∠2,∠2=∠3=25°,∴∠1=∠2=∠3=25°,∠ABC=50°,∴∠C=180°﹣∠1﹣∠ABC=105°,由(1)得:△ABC≌△BAD,∴∠D=∠C=105°;故答案为:105.【点评】本题考查了全等三角形的判定与性质、三角形内角和定理;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.23.为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)用A的人数除以所占的百分比,即可求出调查的学生数;(2)用抽查的总人数减去A、C、D的人数,求出喜欢“立定跳远”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(3)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可.【解答】解:(1)根据题意得:15÷10%=150(名).答;在这项调查中,共调查了150名学生;(2)本项调查中喜欢“立定跳远”的学生人数是;150﹣15﹣60﹣30=45(人),所占百分比是:×100%=30%,画图如下:(3)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是=.【点评】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运动,两点同时出发,到达各自的终点后停止运动.已知动点Q运动的速度是动点P运动的速度的2倍.设两点之间的距离为s(厘米),动点P的运动时间为t(秒),图2表示s与t之间的函数关系.(1)求动点P、Q运动的速度;(2)图2中,a= 3 ,b= 6 ,c= 6 ;(3)当a≤t≤c时,求s与t之间的函数关系式(即线段MN对应的函数关系式).【考点】动点问题的函数图象.【分析】(1)设动点P运动的速度为x厘米/秒,则动点Q运动的速度为2x厘米/秒,根据图象可知经过2秒两点之间的距离为0,即经过2秒两点相遇.根据相遇时,两点运动的路程之和=12厘米列出方程,求解即可;(2)根据图象可知,a的值为动点Q从点B运动到点A的时间,根据时间=路程÷速度列式求出a=3;b的值为动点P运动3秒时的路程,根据路程=速度×时间列式求解;c的值为动点P从点A运动到点B的时间,根据时间=路程÷速度列式求解;(3)当3≤t≤6时,设s与t之间的函数关系式为s=kt+b,将(3,6),(6,12)代入,利用待定系数法即可求解.【解答】解:(1)设动点P运动的速度为x厘米/秒,则动点Q运动的速度为2x厘米/秒,根据题意,得2(x+2x)=12,解得x=2.答:动点P、Q运动的速度分别是2厘米/秒、4厘米/秒;(2)动点Q运动的时间a==3;经过3秒,动点Q从点B运动到点A,此时动点P运动的路程为2×3=6,即b=6;动点P运动的时间c==6;故答案为3,6,6;(3)当3≤t≤6时,设s与t之间的函数关系式为s=kt+b,∵图象过点(3,6),(6,12),∴,解得,∴s与t之间的函数关系式为s=2t(3≤t≤6).【点评】本题考查了动点问题的函数图象,路程、速度与时间的关系,待定系数法求一次函数的解析式等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.25.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点.(1)求m、n的值和反比例函数的表达式.(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;矩形的性质;翻折变换(折叠问题).【分析】(1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.【解答】解:(1)∵D(m,2),.∴AB=BD=2,∴m=n﹣2,∴,解得,∴D(1,2),∴k=2,∴反比例函数的表达式为y=;(2)设OG=x,则GD=OG=x,CG=2﹣x,在RT△CDG中,x2=(2﹣x)2+12,解得x=,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,。

2016年江苏省苏州市吴中区中考数学二模试卷含答案解析

2016年江苏省苏州市吴中区中考数学二模试卷含答案解析

2016年江苏省苏州市吴中区中考数学二模试卷一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.132.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)3.下列图形中不是中心对称图形的是()A.B.C. D.4.某市在一次扶贫助残活动中,共捐款8310000元,将8310000用科学记数法表示为()A.0.831×108B.8.31×106C.8.31×107D.83.1×1065.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的众数和极差分别是()A.5,7 B.7,5 C.4,7 D.3,76.直线y=2x+6与两坐标轴围成的三角形面积是()A.2 B.4.5 C.9 D.187.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=58.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.9.若关于x、y的二元一次方程组的解满足,则满足条件的m的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.110.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A.B.C.D.2二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在答题卷相对应的位置上.)11.计算:|﹣5|=.12.计算:3a3•a2﹣2a7÷a2=.13.若使二次根式有意义,则x的取值范围是.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.15.已知3是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是菱形ABCD 的两条对角线的长,则菱形ABCD的面积为.16.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是.17.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.18.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是(填序号)三、解答题(本大题共10题,共76分.解答时应写出文字说明、证明过程或演算步骤.19.计算:.20.解不等式组:.21.先化简,再求值:,其中.22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.25.如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数的图象经过点B、D,且.(1)求:k及点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n 的值.26.如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且AB=AC.(1)求证:DE平分∠CDF;(2)若AC=3cm,AD=2cm,求DE的长.27.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发1秒后,点Q从点C出发,并以1cm/s 速度向点B运动,当点P到达点C时,点Q也停止运动.设点P的运动时间为t秒.(1)求DC的长;(2)当t取何值时,PQ∥CD?(3)是否存在t,使△PQC为直角三角形?28.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C 两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2016年江苏省苏州市吴中区中考数学二模试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.13【考点】有理数的加法.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(4+9)=﹣13,故选A.2.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)【考点】因式分解﹣提公因式法.【分析】原式提取公因式得到结果,即可做出判断.【解答】解:原式=a(a﹣2),故选A.3.下列图形中不是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;4.某市在一次扶贫助残活动中,共捐款8310000元,将8310000用科学记数法表示为()A.0.831×108B.8.31×106C.8.31×107D.83.1×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8310000用科学记数法表示为8.31×106,故选:B.5.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的众数和极差分别是()A.5,7 B.7,5 C.4,7 D.3,7【考点】极差;众数.【分析】根据众数的定义和极差的计算方法分别进行解答即可.【解答】解:4出现了2次,出现的次数最多,则众数是4;极差是:10﹣3=7;故选C.6.直线y=2x+6与两坐标轴围成的三角形面积是()A.2 B.4.5 C.9 D.18【考点】一次函数图象上点的坐标特征.【分析】先根据直线解析式求得直线y=2x+6与坐标轴交点坐标,再计算围成的三角形面积即可.【解答】解:在直线y=2x+6中,当x=0时,y=6;当y=0时,x=﹣3;∴直线y=2x+6与坐标轴交于(0,6),(﹣3,0)两点,∴直线y=2x+6与两坐标轴围成的三角形面积=×6×3=9.7.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=5【考点】抛物线与x轴的交点.【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.【考点】弧长的计算;圆周角定理;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.9.若关于x、y的二元一次方程组的解满足,则满足条件的m的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.1【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入所求不等式计算确定出m的范围,即可确定出m 的正整数值.【解答】解:,①+②得:3(x+y)=﹣3m+6,解得:x+y=﹣m+2,代入得:﹣m+2>,解得:m<,则满足条件的m的所有正整数值是1,故选D10.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A.B.C.D.2【考点】切线的性质;坐标与图形性质.【分析】利用点C的坐标可判断点C在直线y=﹣x上,在确定AB的中点D的坐标为(4,﹣2)过D点作DC垂直直线y=﹣x于点C,利用两点之间线段最短得到此时CD为过点C的圆的最小半径,再求出直线CD的解析式为y=x﹣6,通过解方程组得C点坐标为(3,﹣3),然后利用两点的距离公式计算CD的长即可.【解答】解:∵C(a,﹣a),∴点C在直线y=﹣x上,设AB的中点D,则D(4,﹣2)过D点作DC垂直直线y=﹣x于点C,此时CD为过点C的圆的最小半径,∵CD⊥直线y=﹣x,∴直线CD的解析式可设为y=x+b,把D(4,﹣2)代入得4+b=﹣2,解得b=﹣6,∴直线CD的解析式为y=x﹣6,解方程组得,此时C点坐标为(3,﹣3),∴CD==,即这个圆的半径的最小值为.故选B.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在答题卷相对应的位置上.)11.计算:|﹣5|=5.【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:512.计算:3a3•a2﹣2a7÷a2=a5.【考点】整式的混合运算.【分析】根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3•a2﹣2a7÷a2的值是多少.【解答】解:3a3•a2﹣2a7÷a2=3a5﹣2a5=a5故答案为:a5.13.若使二次根式有意义,则x的取值范围是x≥2.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵二次根式有意义,∴2x﹣4≥0,解得x≥2.故答案为:x≥2.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.15.已知3是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是菱形ABCD 的两条对角线的长,则菱形ABCD的面积为 4.5.【考点】菱形的性质;一元二次方程的解;根与系数的关系.【分析】首先利用一元二次方程的解得出m的值,再利用根与系数的关系得出方程的两根之积,再结合菱形面积公式求出答案.【解答】解:∵3是关于x的方程x2﹣2mx+3m=0的一个根,∴32﹣6m+3m=0,解得:m=3,∴原方程为:x2﹣6x+9=0,∴方程的两根之积为:9,∴菱形ABCD的面积为:4.5.故答案为:4.5.16.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是.【考点】列表法与树状图法.【分析】先画树状图展示所有12种等可能的结果数,再找出两个转盘停止后指针所指区域内的数字之和小于6的结果数,然后根据概率公式计算即可.【解答】解:画树状图为:共有12种等可能的结果数,两个转盘停止后指针所指区域内的数字之和小于6的结果数为6,所以两个转盘停止后指针所指区域内的数字之和小于6的概率==.故答案为.17.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.【考点】线段垂直平分线的性质;解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.18.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是③④(填序号)【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时, ∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt , 把(5,300)代入可求得k=60, ∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得,解得:,∴y 乙=100t ﹣100,令y 甲=y 乙,可得:60t=100t ﹣100, 解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车, ∴③不正确;令|y 甲﹣y 乙|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y 甲=50,此时乙还没出发, 当t=时,乙到达B 城,y 甲=250;综上可知当t 的值为或或或t=时,两车相距50千米,∴④不正确;综上可知不正确是:③④, 故答案为:③④.三、解答题(本大题共10题,共76分.解答时应写出文字说明、证明过程或演算步骤.19.计算:.【考点】实数的运算.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=9+2﹣4=11﹣4=720.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了,确定不等式组的解集.【解答】解:解不等式2(x+2)>x+7,得:x>3,解不等式3x﹣1<5,得:x<2,故不等式组无解.21.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先算括号里面的,再算乘法,最后把m的值代入进行计算即可.【解答】解:原式=•=•(﹣)=,当m=+1时,原式==﹣.22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?【考点】分式方程的应用.【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解:设每个小组有x名学生.﹣=4,解得x=10,经检验x=10是原方程的解.答:每个小组有10名学生.23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)由得10分的人数除以占的百分比求出乙校参赛的总人数,即可得出8分的人数;由于两校参赛人数相等,根据总人数减去其他人数求出甲校得9分的人数;(2)根据平均数求法得出甲的平均;把分数从小到大排列,利用中位数的定义解答.【解答】解:(1)5÷=20(人),20×=3(人),20﹣11﹣8=1(人),填表如下:如下尚不完整的统计图表.如图所示:(2)甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,故中位数=(7+7)=7(分);由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.故答案为:1.24.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.【考点】平行四边形的性质;全等三角形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由四边形ABCD是平行四边形,可得AB=CD,AD=BC,∠B=∠CDM,又由M、N 分别是AD,BC的中点,即可利用SAS证得△ABN≌△CDM;(2)易求得∠MND=∠CND=∠2=30°,然后由含30°的直角三角形的性质求解即可求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,∵在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∠END+∠CNP+∠2=180°﹣∠CEN=90°又∵∠END=∠CNP=∠2∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==2,∵∠MNC=60°,CN=MN=MD,∴△CNM是等边三角形,∵△ABN≌△CDM,∴AN=CM=2.25.如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数的图象经过点B、D,且.(1)求:k及点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n 的值.【考点】反比例函数图象上点的坐标特征;翻折变换(折叠问题).【分析】(1)先根据AO:BC=3:2,BC=2得出OA的长,再根据点B、C的横坐标都是3可知BC∥AO,故可得出B点坐标,再根据点B在反比例函数y=(x>0)的图象上可求出k的值,由AC∥x轴可设点D(t,3)代入反比例函数的解析式即可得出t的值,进而得出D点坐标;(2)过点A1作EF∥OA交AC于E,交x轴于F,连接OAA1,根据AC∥x轴可知∠A1ED=∠A1FO=90°,由相似三角形的判定定理得出△DEA1∽△A1FO,设A1(m,n),可得出=,再根据勾股定理可得出m2+n2=9,于是得到结论.【解答】解:(1)∵AO:BC=3:2,BC=2,∴OA=3,∵点B、C的横坐标都是3,∴BC∥AO,∴B(3,1),∵点B在反比例函数y=(x>0)的图象上,∴1=,解得k=3,∵AC∥x轴,∴设点D(t,3),∴3t=3,解得t=1,∴D(1,3);(2)过点A1作EF∥OA交AC于E,交x轴于F,连接OA1,∵AC∥x轴,∴∠A1ED=∠A1FO=90°,∵∠OA1D=90°,∴∠A1DE=∠OA1F,∴△DEA1∽△A1FO,∵A1(m,n),∴=,∴m2+n2=m+3n,∵m2+n2=OA12=OA2=9,∴m+3n=9.26.如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且AB=AC.(1)求证:DE平分∠CDF;(2)若AC=3cm,AD=2cm,求DE的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)由∠ABC+∠ADC=180°,∠CDE+∠ADC=180°,推出∠CDE=∠ABC,由∠EDF=∠ADB=∠ACB,以及AB=AC,推出∠ABC=∠ACB,即可推出∠EDF=∠CDE解决问题.(2)证△ABD∽△AEB,通过相似三角形的对应成比例线段,求出DE的值.【解答】(1)证明:∵∠ABC+∠ADC=180°,∠CDE+∠ADC=180°,∴∠CDE=∠ABC,∵∠EDF=∠ADB=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠EDF=∠CDE,∴DE平分∠CDF.(2)解:∵∠ADB=∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB∴=,∵AB=AC=3,AD=2∴AE==,∴DE=﹣2=(cm).27.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发1秒后,点Q从点C出发,并以1cm/s 速度向点B运动,当点P到达点C时,点Q也停止运动.设点P的运动时间为t秒.(1)求DC的长;(2)当t取何值时,PQ∥CD?(3)是否存在t,使△PQC为直角三角形?【考点】四边形综合题.【分析】(1)过D点作DF⊥BC于F,得出四边形ABFD是矩形,那么DF=AB=8,BF=AD=12,CF=BC﹣BF=6,然后在直角△CDF中利用勾股定理即可求出DC;(2)由于AD∥BC,所以当PQ∥CD时,四边形PDCQ是平行四边形,根据平行四边形的对边相等得出PD=QC,依此列出关于t的方程,求解即可;(3)因为∠C<90°,所以△PQC为直角三角形时,分两种情况:①∠PQC=90°;②∠CPQ=90°;分别求解即可.【解答】解:(1)过D点作DF⊥BC于F,∵AD∥BC,∠B=90°,∴四边形ABFD是矩形,∴DF=AB=8,BF=AD=12,∴CF=BC﹣BF=18﹣12=6,∴DC===10(cm);(2)当PQ∥CD时,四边形PDCQ是平行四边形,此时PD=QC,∴12﹣2t=t﹣1,∴t=4.∴当t=4时,四边形PQDC是平行四边形;(3)△PQC为直角三角形时,因为∠C<90°,分两种情况:①当∠PQC=90°时,则AP=BQ,即2t=18﹣(t﹣1),解得t=6,不合题意舍去;②当∠CPQ=90°,此时P一定在DC上,∵CP=10+12﹣2t=22﹣2t,CQ=t﹣1,易知,△CDF∽△CQP,∴=,即=,解得:t=8,符合题意;综上所述,当t=8秒时,△PQC是直角三角形.28.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C 两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【考点】二次函数综合题.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.=S△PAQ+S△PCQ=×(﹣m2+m)×6∵S△PAC=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).2017年3月11日。

2016年江苏省苏州市中考数学试卷及答案

2016年江苏省苏州市中考数学试卷及答案

2016年苏州市初中毕业暨升学考试试卷数 学本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分.考试时间120分钟.一、本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上。

........... 1.的倒数是( ) A .B .C .D .2.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 3.下列运算结果正确的是( )A .a+2b=3abB .3a 2﹣2a 2=1C .a 2•a 4=a 8D .(﹣a 2b )3÷(a 3b )2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是( )A .0.1B .0.2C .0.3D .0.45.如图,直线a ∥b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若∠1=58°,则∠2的度数为( ) A .58° B .42° C .32° D .28° 6.已知点A (2,y 1)、B (4,y 2)都在反比例函数y=xk(k <0)的图象上,则y 1、y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:则这30户家庭该用用水量的众数和中位数分别是( )A .25,27B .25,25C .30,27D .30,25第5题8.如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .32mB .26mC .(23﹣2)mD .(26﹣2)m9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( ) A .(3,1) B .(3,34) C .(3,35) D .(3,2) 10.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF .若四边形ABCD 的面积为6,则△BEF 的面积为( ) A .2 B .49 C .25D .3第8题 第9题 第10题二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.分解因式:x 2﹣1= . 12.当x= 时,分式522+-x x 的值为0. 13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s ),甲的方差为0.024(s 2),乙的方差为0.008(s 2),则这10次测试成绩比较稳定的是 运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是 度.15.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .16.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若∠A=∠D ,CD=3,则图中阴影部分的面积为 .第16题 第17题 第18题17.如图,在△ABC 中,AB=10,∠B=60°,点D 、E 分别在AB 、BC 上,且BD=BE=4,将△BDE 沿DE 所在直线折叠得到△B′DE (点B′在四边形ADEC 内),连接AB′,则AB′的长为 . 18.如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,32),C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线第一次垂直时,点P 的坐标为 .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:(5)2+|﹣3|﹣(π+)0.20.解不等式2x ﹣1>21-x 3,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=3.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M 落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE 是平行四边形; (2)若AC=8,BD=6,求△ADE 的周长.25.如图,一次函数y=k x+b 的图象与x 轴交于点A ,与反比例函数y=xm(x >0)的图象交于点B (2,n ),过点B 作BC ⊥x 轴于点C ,点P (3n ﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC ,求反比例函数和一次函数的表达式.26.如图,AB 是⊙O 的直径,D 、E 为⊙O 上位于AB 异侧的两点,连接BD 并延长至点C ,使得CD=BD ,连接AC 交⊙O 于点F ,连接AE 、DE 、DF . (1)证明:∠E=∠C ;(2)若∠E=55°,求∠BDF 的度数;(3)设DE 交AB 于点G ,若DF=4,cos B=32,E 是的中点,求EG•ED 的值.27.如图,在矩形ABCD 中,AB=6cm ,AD=8cm ,点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4cm/s ,过点P 作PQ ⊥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3m/s ,以O 为圆心,0.8cm 为半径作⊙O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <58). (1)如图1,连接DQ 平分∠BDC 时,t 的值为 ;(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值; (3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与⊙O 相切时,求t 的值;并判断此时PM 与⊙O 是否也相切?说明理由.28.如图,直线l :y=﹣3x+3与x 轴、y 轴分别相交于A 、B 两点,抛物线y=ax 2﹣2ax+a+4(a <0)经过点B .(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).第11 页共11 页。

2016年苏州市吴中区中考数学二模试题含答案

2016年苏州市吴中区中考数学二模试题含答案

三、解答题(本大题共 10 题,共 76 分.解答时应写出文字说明、证明过程或演算步骤. 19.计算: 20.解不等式组: 21.先化简,再求值: . . ,其中 .
22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的 3 个小组(每个小组 人数都相等)制作 240 面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任 务,这样这两个小组的每一名学生就要比原计划多做 4 面彩旗.如果每名学生制作彩旗的面数 相等,那么每个小组有多少学生? 23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后, 发现学生成绩分别为 7 分、8 分、9 分、10 分(满分为 10 分) .依据统计数据绘制了如下尚不 完整的统计图表. 分数 人数 7分 11 8分 0 9分 10 分 8
15. 已知 3 是关于 x 的方程 x2﹣2mx+3m=0 的一个根, 并且这个方程的两个根恰好是菱形 ABCD 的两条对角线的长,则菱形 ABCD 的面积为 .
16.如图,A、B 两个转盘分别被平均分成三个、四个扇形,分别转动 A 盘、B 盘各一次.转 动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字 所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于 6 的概率是 .
2016 年江苏省苏州市吴中区中考数学二模试卷
一、选择题(本大题共有 10 小题,每小题 3 分,共 30 分.在每小题所给出的四个选项中,只 有一项是符合题目要求的.) 1.计算(﹣4)+(﹣9)的结果是( A.﹣13 B.﹣5 C.5 D.13 ) )
2.把 a2﹣2a 分解因式,正确的是( A.a(a﹣2) B.a(a+2)
8.如图,四边形 ABCD 是⊙O 的内接四边形,⊙O 的半径为 2,∠B=135°,则

江苏省苏州市中考数学模拟试卷(二)含答案解析

江苏省苏州市中考数学模拟试卷(二)含答案解析

2016年江苏省苏州市中考数学模拟试卷(二)、选择题(本大题共10小题,每小题3分,共30 分)1.在| - 2| , 20, 2—1般这四个数中,最大的数是(14.在数轴上标注了四段范围,如图,则表示.1的点落在(A .段① B.段②C.段③D .段④5.函数y="*眾-.:中自变量x的取值范围是(A. x >-1B.x<-1C. x>—1D.x v—1 6•如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为(是()B.5的两点以及它们之间的所有整数点中,任意取一点P,则P点表示的数大于3的概率211F列图形是中心对称图形的是(3. F列运算正确的是((2a2) 3=6a6 B.—a2b2?3ab3= —3a2b5C.2.0 —1| —2| B . 20 C . 2 1=-1参赛人数 19 12 14&已知一次函数 y=kx+b 的图象如图,则关于 x 的不等式k (x - 4)- 2b >0的解集为(A • (- 2, 0)B .(- 一二 0)或(.1, 0)C .(-「;,0)D . (- 2, 0)或(2, 0)10. 如图,△ ABC ,△ EFG 均是边长为2的等边三角形,点 D 是边BC 、EF 的中点,直线 AG 、FC 相交 于点M .当△ EFG 绕点D 旋转时,线段BM 长的最小值是()二、填空题(本大题共 8小题,每小题3分,共24分)11. ________________________________ ( - 2) 2+(- 2) -2=12. __________________________________________________________ 计算3.8X 107- 3.7X 107,结果用科学记数法表示为 ______________________________________________________ . 13 .分解因式:2x 2- 4xy +2y 2= ______________14.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表: 年龄组13岁 14岁 15岁 16岁9•如图,在平面直角坐标系中, x 轴上一点A 从点(-3, 0)出发沿x 轴向右平移,当以 A 为圆心,半的图象相切时,点 A 的坐标变为(C . x > 2D . x v 3径为1的圆与函数 y=_x则全体参赛选手年龄的中位数是 岁.ABCDEF 中,连接 AE ,贝U tan / 1 =EF 、DF 翻折,点B 恰好落在AD 边上的点B 处,点C 恰好落在边 BF 上.若 AE=3 , BE=5,贝U FC=ADE<7Fc|18 .某商场在 五一 ”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法: ①如果不超过500元,则不予优惠; ②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③ 如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠•促销期间,小红和她 母亲分别看中一件商品,若各自单独付款,则应分别付款 480元和520元;若合并付款,则她们总共只需付款 _____________ 元.三、解答题(本大题共 10小题,共76分)20.计算A 、B 作x 轴的垂线,垂足分别为C , 若 OM=MN=NC , △ AOC 的面积为6,贝U k 的值为17 •如图,将矩形纸片的两只直角分别沿 (k > 0, x > 0)的图象上,过点 16•如图,点A 、B 在反比例函数 19•计算:1好対戈)(1)21 •解不等式组:」y- 1⑵22.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图•请根据图中提供的信息,解答下列问题:(1) 若抽取的成绩用扇形图来描述,则表示 第三组(79.5〜89.5) ”的扇形的圆心角为 _______________ 度; (2) 若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3) 某班准备从成绩最好的 4名同学(男、女各 2名)中随机选取2名同学去社区进行环保宣传,则选 出的同学恰好是1男1女的概率为 ______________ .23 .如图,平行四边形 ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F , DE 二亍CD . (1) 求证:△ ABF CEB ;(2) 若厶DEF 的面积为2,求平行四边形 ABCD 的面积.24.如图所示,把一张长方形卡片 ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上, 已知/ a =36°求长方形卡片的周长.(精确到 1mm )(参考数据:sin36°~0.60, cos36°~0.80, tan36°~0.75)25 .如图,每个网格都是边长为 1个单位的小正方形, △ ABC 的每个顶点都在网格的格点上, 且/ C=90 °AC=3 , BC=4 .(1)试在图中作出△ ABC以点A为旋转中心,按顺时针方向旋转90°后得到的图形△ AB1C1;(2)试在图中建立直角坐标系,使 x 轴// AC ,且点B 的坐标为(-3, 5);(3) 在(1)与(2)的基础上,若点 P 、Q 是x 轴上两点(点P 在点Q 左侧),PQ 长为2个单位,则当26 •如图,AB 是O O 的直径,C 是AB 延长线上一点,CD 与O O 相切于点E , AD 丄CD 于点D . (1) 求证:AE 平分/ DAC ; (2) 若 AB=4,/ ABE=60 ° ①求AD 的长;27.如图,在平面直角坐标系中,四边形 OABC 是矩形,点B 的坐标为(4, 3) •平行于对角线 AC 的直 线m 从原点0出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线 m 与矩形OABC 的两边分别 交于点M 、N ,直线m 运动的时间为t (秒).(1) _________________________ 点A 的坐标是 _______________ ,点C 的坐标是 ; (2) 当t= ___________ 秒或 _____________ 秒时,MN=」-AC ; (3) 设厶OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数 S 有没有最大值?若有,求出最大值;若没有,要说明理由.时,AP+PQ+QB i 最小,最小值是____________ 个单位.点P 的坐标为② 求出图中阴影部分的面积.- ::28 .如图,抛物线y=ax2+bx+c (a v 0)与双曲线产二相交于点A , B,且抛物线经过坐标原点,点A的坐标为(-2, 2),点B在第四象限内,过点B作直线BC // x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ ABC与厶ABE的面积;(3)在抛物线上是否存在点D,使△ ABD的面积等于△ ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.2016年江苏省苏州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1•在| - 2| , 2°, 2 —1, 「这四个数中,最大的数是()A • | - 2|B • 2°C • 2“D • . ■:【考点】实数大小比较;零指数幕;负整数指数幕.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出| - 2| , 20, 2-1的值是多少,然后根据实数比较大小的方法判断即可.【解答】解:| - 2|=2 , 20=1 , 2-1=0.5 ,w”•••「…I ,•••在I - 2| , 20, 2-1,二这四个数中,最大的数是| - 2| •故选:A •【点评】(1 )此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数〉0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幕的运算,要熟练掌握,解答此题的关键是要明确:①a-P=j(a z 0, pa为正整数);②计算负整数指数幕时,一定要根据负整数指数幕的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幕的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a z 0);②00工1 •2.下列图形是中心对称图形的是()【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,绕旋转中心旋转 180。

2016年江苏省苏州市中考数学试卷(含解析)

2016年江苏省苏州市中考数学试卷(含解析)

2016年江苏省苏州市中考数学试卷一、选择题(共 小题,每小题 分,满分 分).( 分)( 苏州)的倒数是(). . . ..( 分)( 苏州)肥皂泡的泡壁厚度大约是 , 用科学记数法表示为(). ﹣ . ﹣ . ﹣ . ﹣.( 分)( 苏州)下列运算结果正确的是(). . ﹣. .(﹣ ) ( ) ﹣.( 分)( 苏州)一次数学测试后,某班 名学生的成绩被分为 组,第 ~ 组的频数分别为 、 、 、 ,则第 组的频率是(). . . ..( 分)( 苏州)如图,直线 ,直线 与 、 分别相交于 、 两点,过点 作直线 的垂线交直线 于点 ,若 ,则 的度数为(). . . ..( 分)( 苏州)已知点 ( , )、 ( , )都在反比例函数 ( < )的图象上,则、的大小关系为(). > . < . .无法确定.( 分)( 苏州)根据国家发改委实施 阶梯水价 的有关文件要求,某市结合地方实际,决定从 年 月 日起对居民生活用水按新的 阶梯水价 标准收费,某中学研究学习小组的同学们在社会实践活动中调查了 户家庭某月的用水量,如表所示:用水量(吨)户数 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.(3分)(2016•苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.(3分)(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)10.(3分)(2016•苏州)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2016•苏州)分解因式:x2﹣1=.12.(3分)(2016•苏州)当x=时,分式的值为0.13.(3分)(2016•苏州)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差(填“甲”为0.008(s2),则这10次测试成绩比较稳定的是运动员.或“乙”)14.(3分)(2016•苏州)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.(3分)(2016•苏州)不等式组的最大整数解是.16.(3分)(2016•苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C 的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.(3分)(2016•苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.(3分)(2016•苏州)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P 的坐标为.三、解答题(共10小题,满分76分)19.(5分)(2016•苏州)计算:()2+|﹣3|﹣(π+)0.20.(5分)(2016•苏州)解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.(6分)(2016•苏州)先化简,再求值:÷(1﹣),其中x=.22.(6分)(2016•苏州)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.(8分)(2016•苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.(8分)(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.(8分)(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.(10分)(2016•苏州)如图,AB是⊙O的直径,D、E为⊙O上位于AB 异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.(10分)(2016•苏州)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD 交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm 为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM 与⊙O是否也相切?说明理由.28.(10分)(2016•苏州)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•苏州)的倒数是()A.B.C.D.【解答】解:∵×=1,∴的倒数是.故选A.2.(3分)(2016•苏州)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【解答】解:0.0007=7×10﹣4,故选:C.3.(3分)(2016•苏州)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.(3分)(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.(3分)(2016•苏州)如图,直线a∥b,直线l与a、b分别相交于A、B 两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.(3分)(2016•苏州)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.(3分)(2016•苏州)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.(3分)(2016•苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.(3分)(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.(3分)(2016•苏州)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△AB C=•AB•AC=×2×2=4,∴S△ADC=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△B EF=•EF•BH=×2×=,故选C.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2016•苏州)分解因式:x2﹣1=(x+1)(x﹣1).【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.(3分)(2016•苏州)当x=2时,分式的值为0.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.13.(3分)(2016•苏州)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.14.(3分)(2016•苏州)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.15.(3分)(2016•苏州)不等式组的最大整数解是3.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.16.(3分)(2016•苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C 的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.17.(3分)(2016•苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.18.(3分)(2016•苏州)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P 的坐标为(1,).【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(共10小题,满分76分)19.(5分)(2016•苏州)计算:()2+|﹣3|﹣(π+)0.【解答】解:原式=5+3﹣1=7.20.(5分)(2016•苏州)解不等式2x﹣1>,并把它的解集在数轴上表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:21.(6分)(2016•苏州)先化简,再求值:÷(1﹣),其中x=.【解答】解:原式=÷=•=,当x=时,原式==.22.(6分)(2016•苏州)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.23.(8分)(2016•苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.24.(8分)(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.(8分)(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.26.(10分)(2016•苏州)如图,AB是⊙O的直径,D、E为⊙O上位于AB 异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.27.(10分)(2016•苏州)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD 交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm 为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM 与⊙O是否也相切?说明理由.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,∴t=,故答案为.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8,∴MH=0.8(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴0.8(+1)≠,矛盾,∴假设不成立.∴直线PM与⊙O不相切.28.(10分)(2016•苏州)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=,∴D的坐标为(,﹣m2+2m+3),∴DM=m﹣=,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°参与本试卷答题和审题的老师有:ZJX;sd2011;sks;王学峰;弯弯的小河;gsls;fangcao;zcx;张其铎;lantin;三界无我;wd1899;sjzx;szl;gbl210;1987483819;梁宝华;神龙杉(排名不分先后)菁优网2016年7月3日。

江苏省苏州市2016年中考数学试卷及答案解析(word版)

2016年江苏省苏州市中考数学试卷一、选择题(共10小题, 21 . 1的倒数是()A 3 r 3-2A .一B .- — C . — D .22 3每小题3分,满分30分)2 •肥皂泡的泡壁厚度大约是0.0007mm , 0.0007用科学 记数法表示为( ) -3- 3- 4- 5A . 0.7 X 10B . 7 X10C . 7 X10D . 7 X10 3 .下列运算结果正确的是()2 2A. a+2b=3ab B . 3a - 2a =12482332C . a ?a =aD . ( - a b ) +( a b ) = - b4. 一次数学测试后,某班40名学生的成绩被分为5组,第1〜4组的频数分 别为12、10、6、8,则第5组的频率是()A . 0.1B . 0.2C . 0.3D . 0.4(y 1=y 2D .无法确定阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的 阶梯水价”标准收费,某中学 研究学习小组的同学们在社会实践活动中调查了 30户家庭某月的用水量,如 用水量(吨)1520 25 30 35 户数36795则这30户家庭该用用水量的众数和中位数分别是( )A . 25 , 27B . 25 , 25C . 30 , 27D . 30 , 258.如图,长4m 的楼梯AB 的倾斜角/ ABD 为60 °为了改善楼梯的安全 性 能,准备重新建造楼b 分别相交于A 、B 两点,过点A 作直线I °则/ 2的度数为() (4, y 2) 都在反比例函数y= — ( k v 0)的图象上,则 A. y 1、y 2的大小关系为 y 1 > y 2B . y 1v y 2C .根据国家发改委实施28已知点A ( 2, y 1)、 B 6. 5.如图,直线a // b ,直线I 与a 、若/仁58梯,使其倾斜角/ ACD为45。

2016年江苏省苏州市中考数学试卷(解析版)

2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活:是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=.12.当x=时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE 沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P 作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA 的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a <0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b 于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活30:则这户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE 的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG 和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△AB C=•AB•AC=×2×2=4,∴S△ADC=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△B EF=•EF•BH=×2×=,故选C.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.当x=2时,分式的值为0.【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形【考点】条形统计图;扇形统计图.【分析】根据文学类人数和所占百分比,求出总人数,然后用总人数乘以艺术类读物所占的百分比即可得出答案.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.15.不等式组的最大整数解是3.【考点】一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【考点】切线的性质;圆周角定理;扇形面积的计算.【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【考点】翻折变换(折叠问题).【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∴AG=10﹣6=4,∴AB′===2.故答案为:2.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P 作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【考点】坐标与图形性质;平行线分线段成比例;相似三角形的判定与性质.【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP 的长,最后根据PE、DP的长得到点P的坐标.【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.【考点】实数的运算;零指数幂.【分析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案.【解答】解:原式=5+3﹣1=7.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据分式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:21.先化简,再求值:÷(1﹣),其中x=.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式=÷=•=,当x=时,原式==.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【考点】二元一次方程组的应用.【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【考点】列表法与树状图法;坐标与图形性质;概率公式.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA 的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】菱形的性质;平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【考点】反比例函数与一次函数的交点问题.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【考点】圆的综合题.【分析】(1)直接利用圆周角定理得出AD⊥BC,劲儿利用线段垂直平分线的性质得出AB=AC,(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,再求出AE的长,进而得出△AEG∽△DEA,求出答案即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【考点】圆的综合题.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得=列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,∴t=,故答案为.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8,∴MH=0.8(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴0.8(+1)≠,矛盾,∴假设不成立.∴直线MQ与⊙O不相切.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a <0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【考点】二次函数综合题.【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)过点M作ME⊥y轴于点E,交AB于点D,所以△ABM的面积为DM•OB,设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,即可求出S的最大值,其中m的取值范围是0<m<3;(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,所以d1+d2=BF,所以求出BF的最小值即可,由题意可知,点F在以BM′为直径的圆上,所以当点F与M′重合时,BF可取得最大值.【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=,∴D的坐标为(,﹣m2+2m+3),∴DM=m﹣=,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°2016年6月30日。

江苏省苏州市2016年中考数学模拟试卷二 苏科版【优质】

2012年苏州市中考数学模拟试卷二(考试时间:120分钟,满分:130分)一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填入括号内)1.(-1)2012的相反数是 ( )A.1 B.-1 C.2011 D.-22.用计算器求2012的平方根时,下列四个键中,必须按的键是 ( )3.下列运算正确的是 ( )A.x3·x2=x6 B.2a+3b=5ab C.(a+1)2=a2+1 D.2·18=64.(2011南京)在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学记数法表示约为 ( )A.0.736×106人 B.7.36×104人 C.7.36×105人 D.7.36×106人5.(2011南通)下列水平放置的几何体中,俯视图是矩形的为 ( )6.一副扑克牌,去掉大小王,从中任抽一张,恰好抽到的牌是6的概率是 ( )A.154B.113C.152D.147.如图,⊙O是△ABC的外接圆,AB是直径,若∠BOC=80°,则∠A等于 ( ) A.60° B.50° C.40° D.30°8.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC 绕着原点顺时针旋转90°得到矩形OA'B'C',则点B'的坐标为 ( )A.(2,4) B.(-2,4) C.(4,2) D.(2,-4)9.(2011杭州)如图,函数y1=x-1和函数y2=2x的图象相交于点M(2,m),N(-1,N),若y1>y2,则x的取值范围是 ( )A.x <-1或0<x<2B.x<-1或x>2C.-1<x<0或0<x<2D.-1<x<0或x>210.世界上著名的莱布尼茨三角形如图所示:则排在第10行从左边数第3个位置上的数是 ( )A.1132B.1360C.1495D.1660二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.使式子2x-有意义的x的取值范围是_______.12.因式分解:x2y-9y=_______.13.如图所示,数轴上A、B两点分别对应实数a,b,则a2-b=_______0.(填“>”、“=”或“<”)14.若一个圆锥的底面圆的周长是4π cm,母线长是6 cm,则该圆锥的侧面展开图的圆心角的度数是_______.15.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是______ .16.等腰三角形的一个外角为110°,则这个等腰三角形的顶角的度数为______.17.如图所示,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则正八边形ABCDEFGH的面积是_______.18.我们规定运算符号⊗的意义是:当a>b时,a⊗b=a+b;当a≤b时,a⊗b=a-b,其它运算符号意义不变,按上述规定,计算3⊗32)-[(13)⊗(-12)]结果为______.三、解答题(本大题共有11小题,共76分,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题5分)计算:(1)21tan 452-⎛⎫-+︒ ⎪⎝⎭;(2)(2011南京)221a b a ba b b a ⎛⎫-÷ ⎪-+-⎝⎭.20.(本题5分)(2011南京)解不等式组523132x x x +≥⎧⎪+⎨>⎪⎩,并写出不等式组的整数解.21.(本题5分)为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?22.(本题6分)某校九年级(1)班课题研究小组对本校九年级全体同学的体育达标(体育成绩60分以上,含60分)情况进行调查.他们对本班50名同学的体育达标情况和其余班级同学的体育达标情况分别进行调查,数据统计结果如下:说明:每组成绩的取值范围中含最低值,不含最高值.根据以上统计图,请解答下面问题:(1)九年级(1)班同学体育达标率和九年级其余班级同学体育达标率各是多少?(2)如果全年级同学的体育达标率不低于90%,则全年级同学人数不超过多少人?23.(本题6分)一辆汽车从A地驶往B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.24.(本题6分)如图,⊙O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.(1)求证:AP是⊙O的切线;(2)若⊙O的半径R=5,BC=8,求线段AP的长.25.(本题8分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.26.(本题8分)花园小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高4米的小区商场,商场以上是居民住房.在该楼的前面16米处要盖一栋高18米的办公楼.当冬季正午的阳光与水平线的夹角为35°时,问:(1)商场以上的居民住房采光是否有影响,为什么?(2)若要使商场采光不受影响,两楼应相距多少米?(结果保留一位小数)(参考数据:sin 35°≈0.57,cos 35°≈0.82,t a n 35°≈0.70)27.(本题8分)七巧板是我国流传已久的一种智力玩具,小鹏在玩七巧板时把它画成了3幅图案并将它贴在3张完全相同的不透明卡片上,如图,小鹏将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.请你用列表法或画树状图法,帮助小鹏求出两张卡片上的图案都是小动物的概率.(卡片名称可用字母表示)28.(本题9分)某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止到15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率.那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)29.(本题10分)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-33,1)、C(-33,0)、O(0,0).将此矩形沿着过E(-3,1)、F(-43,0)的直线EF向右下方翻折,B、C的对应点分别为B'、C'.(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B'三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.参考答案1.B 2.C 3.D 4.C 5.B 6.B 7.C 8.C 9.D 10.B11.x≥2 12.y(x+3)(x-3) 13.> 14.120° 15.2 16.70°或40° 17.40 18.2319.(1)-2 (2)-1a b20.-1,0,1.21.甲工厂每天加工40件产品,乙工厂每天加工60件产品.22.(1)九年级(1)班同学体育达标率和其余班级同学体育达标率分别是98%和87.5%.(2)全年级同学人数不超过210人.23.略 24.(1)略 (2)AP=20325.略26.(1)居民住房的采光有影响 (2)25.7米27.如图4 928.(1) 4万升时销售利润为4万元.(2)线段AB所对应的函数关系式为y=1.5x-2(4≤x≤5).BC所对应的函数关系式为y=1.1x(5≤x≤10).(3)线段AB.29.(1)y3+4 (2)y=-13x2-433x-2 (3)能 (18311,-1011)以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。

2016年江苏省苏州市中考数学试卷带答案解析

2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)的倒数是()A.B.C.D.2.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.(3分)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8 D.(﹣a2b)3÷(a3b)2=﹣b4.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.(3分)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°6.(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.(3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.(3分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,)C.(3,)D.(3,2)10.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x2﹣1=.12.(3分)当x=时,分式的值为0.13.(3分)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.(3分)不等式组的最大整数解是.16.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.(3分)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D 出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.(5分)计算:()2+|﹣3|﹣(π+)0.20.(5分)解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.(6分)先化简,再求值:÷(1﹣),其中x=.22.(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.(8分)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x >0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.(10分)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC 向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.(10分)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)的倒数是()A.B.C.D.【解答】解:∵×=1,∴的倒数是.故选A.2.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【解答】解:0.0007=7×10﹣4,故选:C.3.(3分)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8 D.(﹣a2b)3÷(a3b)2=﹣b【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.(3分)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=∠ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.(3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.(3分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,)C.(3,)D.(3,2)【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△ABC=•AB•BC=×2×2=4,∴S△ADC=2,∵=2,∵△DEF∽△DAC,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.方法二:S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED,易知S△ABE +S△BCF=S四边形ABCD=3,S△EDF=,∴S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED=6﹣3﹣=.故选C.二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x2﹣1=(x+1)(x﹣1).【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.(3分)当x=2时,分式的值为0.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.13.(3分)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.15.(3分)不等式组的最大整数解是3.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.16.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.17.(3分)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.18.(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D 出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,设BP与CE交于点F,则∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(共10小题,满分76分)19.(5分)计算:()2+|﹣3|﹣(π+)0.【解答】解:原式=5+3﹣1=7.20.(5分)解不等式2x﹣1>,并把它的解集在数轴上表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:21.(6分)先化简,再求值:÷(1﹣),其中x=.【解答】解:原式=÷=•=,当x=时,原式==.22.(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.24.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.(8分)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x >0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),P(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.26.(10分)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=A E2=18.PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC 向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为1;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=8﹣5t,故答案为:1.(补充:直接利用角平分线的性质得到DP=DC=6,BP=4,从而t=1)(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,延长QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD 交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=,FO=FM=,∴MH=(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴(+1)≠,矛盾,∴假设不成立.∴直线PM与⊙O不相切.28.(10分)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=×m×3+×1×(﹣m2+2m+3)﹣×1×3 =﹣(m﹣)2+∴当m=时,S取得最大值.(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD=d1,ME=d2,=×AC×(d1+d2)∵S△ABM′当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.根据B(0,3)和M′(,)可得BM′=,=×AC×BM′=,∴AC=,∵S△ABM当AC⊥BM′时,cos∠BAC===,∴∠BAC=45°.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年苏州市中考数学模拟试卷(二)(满分:130分 考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1. 在2-,02,12-, 最大的数是 ( ) A. 2- B. 02 C. 12-D.2. 下列图形是中心对称图形的是 ( )A .B .C .D .3. 下列运算正确的是 ( )A. ()32626aa = B. 2232533ab ab a b -=-C.21111a a a -=-+ D. 1b a a b b a +=--- 4. 如图,在数轴上标注了四段范围,则表示的点落在 ( )(第4题)A. ①段B. ②段C. ③段D. ④段 5.函数y =x 的取值范围是 ( )A. 1x ≥-B. 1x ≤-C. 1x >-D. 1x <-6. 如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为 ( )A. B. C. D.7. 在数轴上表示5±的两点以及它们之间的所有整数点中,任意取一点P ,则点P 表示的数大于3的概率是 ( )A.14 B. 29 C. 15 D. 2118. 已知一次函数y kx b =+的图像如图所示,则关于x 的不等式()420k x b -->的解集为 ( ) A. 2x >- B. 2x <- C. 2x > D. 3x <9. 如图,在平面直角坐标系中,x 轴上一点A 从点(-3,0)出发沿x 轴向右平移,当以A 为圆心,半径为1的圆与函数y x =的图像相切时,点A 的坐标变为 ( ) A. (-2,0) B. () C. (D. (-2,0)或(2,0)(第8题) (第9题) (第10题) 10. 如图,ABC ∆和EFG ∆均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当EFG ∆绕点D 旋转时,线段BM 长的最小值是 ( )A. 2B.1C.D. 1二、填空题(本大题共8小题,每小题3分,共24分) 11. ()()2222--+-= .12. 计算773.810 3.710⨯-⨯,结果用科学记数法表示为 . 13. 分解因式:22242x xy y -+= .14.则全体参赛选手年龄的中位数是 岁.15. 如图,在正六边形ABCDEF 中,连接AE ,则tan 1∠= .(第15题) (第16题) (第17题)16. 如图,点A 、B在反比例函数(0,0)ky k x x=>>的图像上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM MN NC ==,AOC ∆的面积为6,则k 的值为 .17. 如图,将矩形纸片的两个直角分别沿EF 、DF 翻折,点B 恰好落在AD 边上的点B '处,点C 恰好落在边B F '上.若AE =3,BE =5,则FC = .18. 某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元. 三、解答题(本大题共10小题,共76分) 19. (本小题满分5分)计算: 021153)6()(1)32--+⨯-+-.20. (本小题满分5分)计算:2222()a b ab b a a a--÷- .21. (本小题满分6分)解不等式组253(2),x x+≤+① 并写出它的整数解.123x x-<, ②22. (本小题满分8分)为增强学生环保意识,某中学组织全校2 000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图. (第22题)请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79. 5~ 89. 5 )”的扇形的圆心角为 °;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖; (3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传.则选出的同学恰好是1男1女的概率为 .23. (本小题满分8分)如图,在ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD . (1)求证:ABF ∆∽CEB ∆;(2)若DEF ∆的面积为2,求ABCD 的面积.(第23题)24. (本小题满分8分)如图,把一张长方形卡片ABCD 放在每格宽度为12 mm 的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.(精确到 1 mm ,参考数据:sin360.60,cos360.80,tan360.75︒≈︒≈︒≈)(第24题)如图,每个网格都是边长为1个单位长度的小正方形,ABC ∆的每个顶点都在网格的格点上,且90C ∠=︒,AC =3,BC =4.(1)试在图中作出ABC ∆以点A 为旋转中心,按顺时针方向旋转90°后得到的图形AB C ''∆;(2)试在图中建立直角坐标系,使x 轴//AC ,且点B 的坐标为 (-3,5);(3)在(1)与(2)的基础上,若点P 、Q 是x 轴上两点(点P 在点Q 左侧),PQ 长为2个单位长度,则当点P 的坐标为 时,AP PQ QB '++最小,最小值是 个单位长度.(第25题)26. (本小题满分8分)如图,AB 是⊙O 的直径、C 是AB 延长线上一点,CD 与⊙O 相切于点E ,AD CD ⊥于点D .(1)求证:AE 平分DAC ∠; (2)若AB =4,60ABE ∠=︒. ①求AD 的长;②求出图中阴影部分的面积.(第26题)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为 (4,3).平行于对角线AC 的直线m 从原点O 出发.沿x 轴正方向 以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边 分别交于点M 、N ,直线m 运动的时间为t s.(1)点A 的坐标是 ,点C 的坐标是 ;(2)当t = s 或 s 时,12MN AC =; (3)设OMN ∆的面积为S ,求S 与t 的函数关系式;(4)探求(3)中得到的函数S 有没有最大值? 若有,求出最大值: 若没有,请说明理由.(第27题)28. (本小题满分10分)如图,抛物线2(0)y ax bx c a =++<与双曲线ky x=全相交于点A 、B ,且抛物线经过坐标原点,点A 的坐标为(一2,2),点B 在第四象限内.过点B 作直线BC //x 轴,点C为直线BC 与抛物线的另一交点,已知直线BC 与x 轴之间的距离是点B 到y 轴的距离的4倍.记抛物线顶点为E . (1)求双曲线和抛物线的解析式; (2)计算ABC ∆与ABE ∆的面积;(3)在抛物线上是否存在点D ,使ABD ∆的面积等于ABE ∆的面积的8倍?若存在,请求出点D 的坐标;若不存在,请说明理由.(第28题)参考答案二、填空题 11.17412. 6110⨯ 13. 22()x y - 14. 15 15.16. 4 17. 4 18. 838或910 三、解答题19. 解:原式=4 . 20.解:原式=a ba b+- . 21. 解:不等式组的整数解是-1,0,1,2 . 22. 解: (1) 144 ;(2) 640名同学获奖; (3)2323. 解:(1) 因ABCD ,所以,A C AB ∠=∠∥CD ,ABF CEB ∠=∠;所以ABF∆∽CEB ∆ (2)ABCD 的面积为24. 24. 解:长方形卡片周长为200mm. 25. 解:(1)(2)如下图:(3) P 点坐标为2(,0)5P 2. 26. 解: (1)如图,连接OE ,90,90,OEC ADC OE ∠=︒∠=︒∥AD ,所以AE 平分DAC ∠.(2)AD =cos303AE ︒=. 43OAE S S S π∆=-=阴影扇OAE . 27. 解: (1)A (4,0) ,C (0,3);(2)t =2或6;(3)当04t <≤时,21328S OM ON t == . 当4t <<8时,如图①,2338S t t =-+.(4)有最大值.如图②,当04t <≤时,当t =4时,S 可取到最大值=6.当48t <<时,抛物线2338S t t =-+的开口向下,所以6S <,综上,4t =时,S 有最大值为6.28. 解: (1)因为点A (-2,2)在双曲线ky x=上,4k =-,所以双曲线的解析式为4y x=-.设B 的坐标为(,4m m -)(m >0),代入双曲线解析式,得1m =,抛物线的解析式为23y x x =--.(2)15ABC S ∆=.ABE AEF BEF S S S ∆∆∆=+=158. (3)存在点D (3,-18)满足条件.。

相关文档
最新文档