伸臂梁设计

合集下载

钢筋混凝土伸臂梁设计结构巧妙功能卓越伸臂梁承载力无敌

钢筋混凝土伸臂梁设计结构巧妙功能卓越伸臂梁承载力无敌

钢筋混凝土伸臂梁设计结构巧妙功能卓越伸臂梁承载力无敌钢筋混凝土伸臂梁设计——结构巧妙,功能卓越,承载力无敌伸臂梁作为一种常见的建筑结构元素,在现代建筑中扮演着重要的角色。

其设计需要兼顾结构强度、功能性和美观性。

钢筋混凝土材料的广泛应用,使得伸臂梁的设计及施工变得更加灵活与高效。

本文将会介绍钢筋混凝土伸臂梁的设计结构、巧妙功能以及承载力的特点。

一、平衡原理:确保结构稳定钢筋混凝土伸臂梁的设计中,平衡原理是关键之一。

其通过合理的悬挑长度、伸出角度以及梁体厚度的选择,使伸臂梁在负载作用下保持平衡,确保结构的稳定性。

此外,选择适当的钢筋布置和布置方式,有效提高梁体的抗弯承载力,增加结构的稳定性,进一步确保伸臂梁的安全性能。

二、伸缩功能:实现灵活使用伸臂梁的结构设计中,伸缩功能被广泛应用。

通过可调节的伸缩机构,伸臂梁可以在不同长度的需求下进行灵活伸展。

这种设计使得伸臂梁的使用更加多样化,适应了不同建筑场景和工程的需求。

例如,在桥梁建设中,伸缩功能可以使得梁体在不同梁柱间距情况下仍然能够保持稳定,提高了结构的可靠性。

三、荷载传递:承载力强劲伸臂梁的结构设计要能够承受各种荷载作用。

钢筋混凝土材料的优越性使得伸臂梁具备了强大的承载力。

合理的钢筋布置和混凝土强度的选择可以有效提高梁体的抗弯和抗剪能力,保证其在承受荷载时不会发生破坏。

此外,通过采用预应力技术,还可以进一步增加伸臂梁的承载力,以应对更大的荷载环境。

四、美观性:与建筑风格相得益彰除了功能性和承载力,伸臂梁的设计还需要考虑与建筑风格的协调性。

钢筋混凝土材料致密度高、抗腐蚀性强,并且可以通过模具成型达到各种形状和纹理效果,因此能够满足各种建筑风格和设计需求。

无论是现代简约的建筑风格还是复古的古典风格,伸臂梁都能够与之相得益彰,提升整个建筑的美观性。

总结:钢筋混凝土伸臂梁作为一种重要的结构元素,其设计结构巧妙,功能卓越,承载力无敌。

通过平衡原理保证其结构稳定性,通过伸缩功能实现灵活使用,通过荷载传递确保承载力强劲,在满足基本功能的同时,还能与建筑风格相得益彰。

钢筋混凝土伸臂梁设计伸臂梁设计中的常见问题与解决方案

钢筋混凝土伸臂梁设计伸臂梁设计中的常见问题与解决方案

钢筋混凝土伸臂梁设计伸臂梁设计中的常见问题与解决方案钢筋混凝土伸臂梁设计中的常见问题与解决方案钢筋混凝土伸臂梁是一种常用于桥梁和大跨度建筑的重要结构元素。

在设计和施工过程中,会遇到一些常见问题,本文将探讨这些问题,并提供相应的解决方案。

一、问题一:梁截面尺寸设计不合理梁截面尺寸是伸臂梁设计的关键参数,过小会导致强度不足,过大则会增加材料成本。

常见的解决方案是使用合理的截面尺寸,通过合理的布置钢筋和增加混凝土强度等方法来提高梁截面承载力。

二、问题二:伸臂段钢筋连接设计不合理伸臂段钢筋的连接设计直接影响到梁的整体性能。

常见问题包括连接节点强度不足、锚固长度不合适等。

解决方案包括采用合理的连接节点类型,增加钢筋锚固长度,并使用足够的键结构来增强连接强度。

三、问题三:伸臂段与悬臂段的连接设计问题伸臂梁通常由伸臂段和悬臂段组成,两者的连接设计也是设计中的关键。

常见问题包括接头刚度不足、受力不均匀等。

解决方案包括采用合理的接头类型,增加连接刚度,并在设计中考虑受力分布的均匀性。

四、问题四:伸臂梁的挠度控制问题伸臂梁在使用过程中容易出现挠度过大的问题,这会对梁的使用安全性和舒适性造成影响。

解决方案包括采用合理的截面形状、减小梁自重、增加钢筋数量等方法来控制梁的挠度。

五、问题五:施工技术问题伸臂梁的施工技术直接影响梁的质量和性能。

常见问题包括浇筑质量不合格、钢筋布置不规范等。

解决方案包括严格按照设计要求进行施工,加强施工质量控制,优化工艺流程等。

综上所述,钢筋混凝土伸臂梁设计中存在着一系列常见问题,但这些问题均有相应的解决方案。

通过合理的截面尺寸设计、合理的连接设计、挠度控制以及施工质量控制等方法,可以有效地解决这些问题,保证伸臂梁的性能和安全性。

设计人员和施工人员应密切合作,共同努力,为工程质量的提高而努力。

只有在不断总结和改进的基础上,钢筋混凝土伸臂梁的设计和施工才能更加科学、高效。

(注:此文章属于技术类文章,可能会提及一些专业术语,如有需要,可以根据具体情况进行增删修改,以符合实际需求。

钢筋混凝土伸臂梁设计实例

钢筋混凝土伸臂梁设计实例

钢筋混凝土伸臂梁设计实例在建筑结构设计中,钢筋混凝土伸臂梁是一种常见且重要的结构构件。

它能够有效地增加结构的跨度,提高结构的承载能力和稳定性。

下面,我们将通过一个具体的设计实例来详细介绍钢筋混凝土伸臂梁的设计过程。

一、设计资料某框架结构中的一根钢筋混凝土伸臂梁,其跨度为 8m,伸臂长度为 2m。

梁上承受的恒载标准值为 15kN/m,活载标准值为 10kN/m。

混凝土强度等级为 C30,钢筋采用 HRB400 级。

二、内力计算1、荷载计算恒载设计值:g = 12×15 = 18kN/m活载设计值:q = 14×10 = 14kN/m2、弯矩计算在均布荷载作用下,简支梁的弯矩计算公式为:M = 1/8×ql²跨中最大弯矩:M1 = 1/8×(18 + 14)×8²= 224kN·m伸臂端最大负弯矩:M2 =-1/2×(18 + 14)×2²=-72kN·m3、剪力计算在均布荷载作用下,简支梁的剪力计算公式为:V = 1/2×ql支座处最大剪力:V1 = 1/2×(18 + 14)×8 = 128kN三、截面设计1、梁的截面尺寸初选根据经验,梁高一般取跨度的 1/10 1/18,梁宽一般取梁高的 1/2 1/3。

初选梁高 h = 600mm,梁宽 b = 250mm。

2、混凝土受压区高度计算根据正截面受弯承载力计算公式:α1fcbx = fyAs其中,α1 为系数,对于 C30 混凝土,α1 = 10;fc 为混凝土轴心抗压强度设计值;b 为梁宽;x 为混凝土受压区高度;fy 为钢筋抗拉强度设计值;As 为受拉钢筋面积。

3、钢筋面积计算将已知数据代入公式,计算出所需的受拉钢筋面积 As。

4、钢筋配置根据计算结果,选择合适的钢筋直径和根数进行配置。

四、斜截面受剪承载力计算1、复核截面尺寸根据公式:hw/b ≤ 4 时,V ≤ 025βcfcbh0其中,hw 为截面的腹板高度;βc 为混凝土强度影响系数。

钢筋混凝土伸臂梁设计例题

钢筋混凝土伸臂梁设计例题

钢筋混凝土伸臂梁设计例题设计条件:某支承在370mm厚砖墙上的钢筋混凝土伸臂梁,其跨度为7m,伸臂长度为1.86m。

由楼面传来的永久荷载设计值为34.32kN/m,活荷载设计值为30kN/m。

采用混凝土强度等级C25,纵向受力钢筋为HRB335,箍筋和构造钢筋为HPB235。

试设计该梁并绘制配筋详图。

设计步骤:截面尺寸选择:按高宽比的一般规定,取梁的高为h=700mm,宽为b=250mm。

荷载计算:(1)永久荷载:包括梁自重和楼面传来的永久荷载。

梁自重标准值为2kN/m(包括梁侧15mm厚粉刷重),楼面传来的永久荷载标准值为34.32kN/m。

(2)活荷载:包括楼面活荷载和施工荷载。

楼面活荷载标准值为30kN/m,施工荷载标准值为100kN/m。

内力和内力包络图计算:(1)在均布恒载作用下,梁跨中弯矩为M1=34.32×7×7/8=204.67kN·m,支座弯矩为M2=2k×7/2=7kN·m。

因此,总弯矩M=M1+M2=211.67kN·m。

(2)在均布活载作用下,梁跨中弯矩为M3=30×7×7/8=196.88kN·m,支座弯矩为M4=100×7/2=350kN·m。

因此,总弯矩M'=M3+M4=546.88kN·m。

(3)绘制内力包络图,根据最大弯矩和剪力值确定截面尺寸和配筋。

由于本例题未给出具体配筋计算结果和配筋详图,因此无法提供具体数据。

配筋计算:根据最大弯矩和剪力值计算梁的配筋。

由于本例题未给出具体配筋计算结果和配筋详图,因此无法提供具体数据。

总结:通过以上步骤,可以完成钢筋混凝土伸臂梁的设计。

在设计过程中,需要注意选择合适的截面尺寸、合理计算各种荷载下的弯矩和剪力值,并依据内力包络图进行配筋计算。

本例题仅供参考,具体设计时应根据实际情况进行调整和完善。

钢筋混凝土伸臂梁设计的实用案例分析

钢筋混凝土伸臂梁设计的实用案例分析

钢筋混凝土伸臂梁设计的实用案例分析钢筋混凝土伸臂梁是一种常用的结构形式,在建筑工程中起到承重和支撑的重要功能。

本文将通过分析一个实际的设计案例,探讨钢筋混凝土伸臂梁设计的实用性和相关要点。

一、项目概述本案例是某大型商业综合体的主体结构设计,其中包括多层办公楼和商业中心。

伸臂梁被用于连接办公楼和商业中心之间的通道,起到连接和承重的作用。

设计目标是保证伸臂梁的安全可靠,且符合建筑美学要求。

二、荷载计算在进行伸臂梁设计之前,首先需要对荷载进行计算。

根据建筑设计规范和实际使用要求,我们考虑了以下几种主要荷载:自重荷载、活载、风载和地震作用。

通过结构分析软件进行模拟计算,得出了各个方向上的荷载值。

三、材料选择钢筋混凝土伸臂梁由混凝土和钢筋组成,因此在设计过程中需要选择合适的材料。

混凝土的强度等级和配合比需要根据结构设计要求确定。

而钢筋的选用则要考虑到强度、粘结性能和耐久性等因素,以确保梁的整体性能。

四、截面设计伸臂梁的截面设计是关键的一步。

设计时需要根据荷载计算结果,确定适合的截面尺寸和形状。

常见的截面形状包括矩形、T型、I型等。

在实际设计中,我们采用了矩形截面,以满足承载能力和美观度的要求。

五、配筋设计钢筋的布置对伸臂梁的强度和刚度起着至关重要的作用。

根据截面设计的计算结果,我们进行了配筋设计。

通过合理布置主筋和箍筋,使其能够承受荷载并满足强度和变形要求。

具体的配筋参数根据相关规范和实验数据确定。

六、施工工艺伸臂梁的施工工艺直接影响到结构的质量和安全性。

在实际施工中,我们遵循了以下几个方面的要求:首先,严格按照设计图纸和相关规范进行施工;其次,保证模板和钢筋的准确安装;最后,控制混凝土的浇筑和养护过程,确保混凝土的强度和密实性。

七、验收和监测设计完成后,伸臂梁需要进行验收和监测。

验收过程包括检查结构的几何尺寸、表面质量等,以确保符合设计要求。

同时,还需要进行结构监测,包括运用传感器监测变形、应力和裂缝等,以了解结构的工作状态并及时采取相应的维修措施。

钢筋混凝土伸臂梁设计钢筋混凝土伸臂梁设计的要点与技巧让你轻松掌握

钢筋混凝土伸臂梁设计钢筋混凝土伸臂梁设计的要点与技巧让你轻松掌握

钢筋混凝土伸臂梁设计钢筋混凝土伸臂梁设计的要点与技巧让你轻松掌握钢筋混凝土伸臂梁设计要点与技巧让你轻松掌握钢筋混凝土伸臂梁是一种常见的构造形式,广泛应用于建筑和桥梁工程中。

正确的设计和施工是确保伸臂梁结构安全可靠的关键。

本文将介绍钢筋混凝土伸臂梁设计的要点和技巧,帮助读者轻松掌握这一领域。

一、设计要点1. 荷载分析:在伸臂梁的设计中,首要任务是进行荷载分析。

通过考虑静荷载、动荷载和温度荷载等因素,确定伸臂梁所承受的荷载类型和大小。

同时,还需考虑实际工程中可能出现的特殊荷载,并合理设置安全系数。

2. 结构选型:结构选型是伸臂梁设计中的关键问题。

首先,需要确定梁的截面形状和尺寸,根据荷载情况和要求选择合适的材料进行计算。

其次,要根据工程实际情况,选择合适的预应力或不预应力设计方案,以提高伸臂梁的承载能力。

3. 抗弯设计:伸臂梁常受到弯矩荷载作用,因此抗弯设计非常重要。

在设计过程中,需要确定伸臂梁的受力范围及剪力、弯矩等参数,并根据材料的强度特性进行计算。

同时,在伸臂梁的设计中,还需考虑正弯矩和负弯矩的作用,采取相应的加强措施。

4. 剪力设计:伸臂梁在受力过程中还会发生剪力载荷,因此在设计中需要充分考虑这一因素。

剪力设计要合理设置钢筋的类型、布置和数量,以保证伸臂梁的抗剪强度满足要求。

根据设计规范,需要确定剪力传递机制、极限剪力及相关验算等。

5. 防水设计:伸臂梁在使用中往往遭受风雨侵蚀,因此防水设计是非常重要的一环。

在设计中应采用防水措施,如设置防水层、做好结构的防漏处理,以保证伸臂梁在使用寿命内不受水分侵蚀,延长其使用寿命。

二、设计技巧1. 合理选用材料:在设计伸臂梁时,应根据工程实际需求合理选用材料。

钢筋的选择应符合规范要求,并根据实际情况确定钢筋的截面积、数量和布置方式。

同时,在混凝土配合比中,要考虑强度、耐久性和施工要求等因素,以确保结构的稳定性和耐久性。

2. 正确计算荷载:荷载计算是伸臂梁设计的基础工作,要准确计算静荷载、动荷载和温度荷载等。

钢筋混凝土伸臂梁设计实例

钢筋混凝土伸臂梁设计实例

钢筋混凝土伸臂梁设计实例在建筑结构设计中,钢筋混凝土伸臂梁是一种常见且重要的结构构件。

它能够有效地承受较大的荷载,并在特定的结构体系中发挥关键作用。

接下来,我们将通过一个具体的实例来详细了解钢筋混凝土伸臂梁的设计过程。

首先,我们需要明确设计的基本要求和条件。

假设我们要设计的伸臂梁位于一座多层工业厂房中,跨度为 8 米,伸臂长度为 2 米,梁上承受的均布恒载为 5kN/m,均布活载为 8kN/m,集中恒载为 15kN,集中活载为 25kN。

混凝土强度等级为 C30,钢筋采用 HRB400 级。

根据这些条件,我们开始进行荷载计算。

恒载包括梁自身的自重以及作用在梁上的其他永久性荷载。

通过计算,梁的自重约为 25kN/m。

因此,总的均布恒载为 5 + 25 = 75kN/m。

集中恒载为 15kN。

活载同样需要分别计算均布活载和集中活载。

均布活载为 8kN/m,集中活载为 25kN。

接下来,我们进行内力计算。

根据结构力学的方法,可以计算出梁在各种荷载作用下的弯矩和剪力。

在均布荷载和集中荷载作用下,跨中最大弯矩和支座处的最大剪力是我们关注的重点。

经过计算,跨中最大弯矩为:\M_{max} =\frac{1}{8} \times 75 \times 8^2 +\frac{1}{4} \times 8 \times 8^2 +\frac{1}{4} \times 15 \times 8 +\frac{1}{4} \times 25 \times 8 = 240kN·m\支座处的最大剪力为:\V_{max} =\frac{1}{2} \times 75 \times 8 +\frac{1}{2} \times 8 \times 8 + 15 + 25 = 105kN\有了内力结果,我们就可以进行配筋计算。

根据混凝土结构设计规范,首先计算相对受压区高度。

\\xi =\frac{\beta_1 f_c b x}{f_y A_s}\其中,\(\beta_1\)为系数,对于 C30 混凝土,\(\beta_1 =08\);\(f_c\)为混凝土轴心抗压强度设计值,C30 混凝土为143N/mm²;\(b\)为梁的截面宽度;\(x\)为受压区高度;\(f_y\)为钢筋抗拉强度设计值,HRB400 级钢筋为 360N/mm²;\(A_s\)为受拉钢筋的截面面积。

伸臂梁设计

伸臂梁设计

伸臂梁设计(一)设计条件某支撑在370mm厚砖墙上的钢筋混凝土伸臂梁(伸臂梁去是由两个支撑物品支撑),其跨度(跨度:建筑物中,梁、拱券两端的承重结构之间的距离,两支点中心之间的距离)为L1 =7.0m,伸臂长度L2=1.86m,由楼面传来的永久荷载标准值(永久荷载:永久荷载(恒荷载)是指在结构使用期间,其值不随时间变化,或其变化与平均值相比可以忽略不计的荷载,例如结构和固定设备的自重)g1k=28.60kN/m(未包括梁自重),活荷载标准值(可变荷载﹐是施加在结构上的由人群﹑物料和交通工具引起的使用或占用荷载和自然产生的自然荷载。

如工业建筑楼面活荷载﹑民用建筑楼面活荷载﹑屋面活荷载﹑屋面积灰荷载﹑车辆荷载﹑吊车荷载﹑风荷载﹑雪荷载﹑裹冰荷载﹑波浪荷载等均是)q1k=21.43kN/m,q2k=71.43k N/m,采用强度等级为C25的混凝土,纵向受力钢筋为HRB335级,箍筋和构造钢筋为HP B235,设计类别为一类,试设计该梁并绘制配筋详图。

我决定不用图解释了,我一定要用用语言表达出来……(二)梁的内力和内力图1,截面尺寸选择取高跨比H/L=1/10,则H=700mm,按高宽比的一般规定,取B=250mm,H/B=2.8(在梁式桥的立面布置中,梁高h与跨径l的比值h/l称为高跨比。

一般的,简支体系中装配式板桥h/l取1/12~1/16;装配简支梁h/l经济范围为1/11~1/18,在跨径偏大时取用偏小的值;预应力混凝土梁h/l取1/15~1/25左右。

在其它体系中,梁高的变化根据受力特点在跨中与支点所取的范围有所不同,矩形截面梁的高宽比H/B一般为2.0~2.5,T形梁截面的尺寸一般取2. 5~4.0,为了统一模板尺寸,梁通常的宽度为B=120,150,180,200,220,250,300,350……,而梁的常用高度则为H=250,300,350,……,750,800,900,1000……尺寸)初选H o=H-as=700-60=640(按两排布置纵筋)(梁的纵向受力钢筋按一排布置时,Ho=H-35;梁的纵向受力钢筋按两排布置时,Ho=H-60;板的截面有效高度Ho=H-20)2,荷载计算梁自重标准值(包括梁侧15mm厚粉刷重)g2k=0.25*0.7*25kN/m3+17kN/m3*0.015*0.7*2=4.73kN/m(g1k:0.25*0.7*25kN/m3是钢筋混凝土的线密度,17kN/m3*0.015*0.7*2是15mm厚粉刷线密度)梁的恒荷载(包括桥结构本身的自重,预加应力、混凝土的收缩和徐变的影响、土的重力、静水压力及浮力等)设计值g=g1+g2=1.2*28.60kN/m+1.2*4.73kN/m=40kN(1.2:当永久荷载效应对结构不利时,对由可变荷载效应控制的组合,应取1.2;对由永久荷载效应控制的组合应取1.35.当永久荷载效应对结构有利时,应取1.0)当考虑悬臂的恒载对跨正弯矩有利时,取Yc=1.0,则此时的悬臂恒载设计值为g’=1.0*28.60+1.0*4.73=33.33kN/m活荷载的设计值为q1=1.4*21.43=30kN/mq2=1.4*71.43=100kN/m(1.4:可变荷载分项系数一般情况取1.4,当对工业建筑楼面结构,当活荷载标准值大于4 kN/m3时,从经济效果考虑,应取1.3)3,梁的内力和内力包络图恒荷载g作用于梁上的位置是固定的,活荷载q1,q2的作用位置有三种可能情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说明采用 6@180箍筋能满足支座A右侧 斜截面要求,弯起钢筋按构造配置,但不能满 足支座B左侧和右侧斜截面抗剪要求,需设弯 起筋,弯起筋弯起角度
6.绘制抵抗弯矩图,进行钢筋布置 (1) 首先按跨中、支座截面处的钢筋实际配筋量 分别计算抵抗弯矩值 1) 跨中截面抵抗弯矩值,按单筋截面计算:
fy M u f y As h0 (1 ) 21 f c
3.内力计算:
1 2 1 l AB lBC (1)梁端反力: 2 q1l AB q2l AB 2 RB l AB 1 1.28 2 50 4.8 100 1.28 4.8 2 2 4.8 265.06kN
RA q1lAB q2lBC RB 50 4.8 100 1.28 265.06 102.94kN
1 2 s
As bh0
1 f c
fy
(mm2 )
1001
4 18 1017
741
2 18+2 14 817
选配钢筋 实配钢筋面积 (mm2)
5.腹筋计算
(1)复核截面尺寸: hw h0 415mm
hw h0 415 2.08 4, b b 200
Vmax VB左 127.81kN 0.25c f cbh0 0.25 111.9 200 415 246.93kN
内力图如图4.24所示。
q1
q2
V(kN)
M(kN.m)
图4.24
4.正截面承载力计算 计算过程及结果见表4.4,配筋如图4.24所示。
计算内容 计算截面 AB跨跨中截面 支座B截面 81.92 0.20 0.225 105.95 0.258 0.304
M (kN m)
s
M 1 f cbh02
则每1 14的钢筋的抵抗弯矩值为:
Asi 154 M ui M u 89.1 16.79kN m As 817
根据以上数值绘制抵抗弯矩图如下
(2)钢筋布置: 如图4.25所示,首先应按比例绘出构件纵剖面﹑横 剖面及设计弯矩图,然后进行钢筋布.当在配置跨中 截面正弯矩钢筋时,同时要考虑其中那些钢筋可以 弯起用做抗剪和抵抗负弯矩,钢筋布置时应较全面 地加以考虑.下面对图4.25的钢筋布置加以简要说 明.
解:1.材料强度指标:
fc 11.9N / mm2 , 1.0, c 1.0, f y 300N / mm2
f yv 210N / mm2 , ft 1.27 N / mm2 , h0 AB h0BC 450 35 415mm
2.计算跨度: lAB 4800mm, lBC 1280mm
300 1017 415 (1 107.06kN m 1017 300 ) 200 415 2 111.9
则每1 ቤተ መጻሕፍቲ ባይዱ8的钢筋的抵抗弯矩值为:
Asi 1 M ui M u 107.06 26.765kN m As 4
2) B截面的抵抗弯矩,按单筋截面计算:
Vcs 0.7 ft bh0 1.25 f yv
3
Asc h0 s
2 28.3 73.79 10 1.25 210 415 180 108.04kN VB左 127.8kN
且Vcs VB右 109.5kN , 但Vcs VA 93.69kN
Asv nAsv1 2 28.3 sv bs bs 200 200 0.157% sv ,min ft 0.24 f yv
1.27 0.24 0.145% 210
说明采用 6@180箍筋能满足支座A右侧 斜截面要求,弯起钢筋按构造配置,但不能满 足支座B左侧和右侧斜截面抗剪要求,需设弯 起筋,弯起筋弯起角度 s 45o
Vx RA q1x 0, x 2.06m, 则
1 1 2 2 M R x q x 102.94 2.06 50 2.06 105.95kN .m AB跨 max A 1 2 2 1 2 1 2 M q l 100 1.28 81.92kN .m BC跨 B 2 2 BC 2 MC 0
fy M u f y As h0 (1 ) 21 f c
817 300 300 817 415 (1 ) 200 415 2 111.9 89.1kN m
则每1 18的钢筋的抵抗弯矩值为:
Asi 254.5 M ui M u 89.1 27.76kN m As 817
伸臂梁的设计实例
结构教研组
[例4.5] 一钢筋混凝土矩形截面伸臂梁,计算简 图及承受荷载设计值(包括自重)如图4.24 所示,截面尺寸 bh 2000mm 450mm ,承受均 布荷载设计值(包括自重)q1 50kN / m , q2 100kN / m ,采用C25混凝土,箍筋和纵筋 分别采用HPB235级和HRB335级,若利用梁 底纵筋弯起承受剪力,试设计此梁,并画出 梁的抵抗弯矩图及配筋详图。
梁跨中:共配置4 18抵抗正弯矩所需的纵筋,其中 ①号的两根钢筋一端伸入A支座,另一端宜 伸过B支座通至梁断,也可在B支座内截断 与悬臂梁下部构造钢筋搭接;②号钢筋在 一端弯起;③号钢筋在两端弯起,参加抗剪 和抵抗负弯矩.
A支座: 因 VA Vcs ,③号钢筋按构造要求,离支 座边 50 mm处下弯,确定其下弯位置, 并按本章4.6.1的规定(锚固长度按公式 4.21计算,若考虑同条件需进行修正,则 经修正后取用的锚固长度小于 0.7la ,且不 600mm 的 应小于250 mm,取自支左座边伸入 锚固长度.⑤号筋是构造配置,无锚固要求
截面尺寸满足要求。
(2)确定是否需要按计算配置腹筋:
VA 93.69kN 0.7 ft bh0 0.7 1.27 200 415 73.79kN
应按计算配置腹筋。
(3)腹筋计算:
按优先选用箍筋原则,并满足箍筋最大间距和 最小直径 要求,选用 6@180双肢箍,则 Asv 28.3mm2 , n 2 ,实际配箍率:
(2)支座边缘截面的剪力:
AB跨 VA RA 50 0.185 102.94 50 0.185 93.69kN BC跨 VB左 VA q1l nAB 93.69 50 4.8 0.37 127.81kN VB右 q2l nBC 100 1.28 0.185 109.5kN 以A为起点根据剪力为零的条件由
相关文档
最新文档