氧中氢分析仪

合集下载

氢气分析仪

氢气分析仪

氢气分析仪氢气分析仪是一种用于测试氢气浓度的仪器。

它可以广泛应用于石油化工、电力、钢铁、医药、燃料电池等领域,对氢气的准确测量非常重要。

工作原理氢气分析仪一般采用红外吸收法和热导法两种测量原理。

其中红外吸收法是利用氢气对特定波长的红外线的吸收作用,来测量氢气浓度的。

而热导法则根据氢气导热系数的变化来进行测量。

氢气分析仪的测量原理较为简单,但仪器的内部结构却较为复杂。

仪器内部会安装红外吸收模块或热导模块、检测电路、数据处理模块等核心部件,以实现对氢气浓度的准确测量。

使用方法使用氢气分析仪时,需要将其安装在测试管道或容器上。

在测量之前,需要对仪器进行预热,以保证其准确性。

接下来,可以根据需要通过控制操作面板上的按键来进行调节,以获得所需的氢气浓度值。

最后,根据仪器所提供的检测结果,可以进行进一步的判断和分析。

技术规格氢气分析仪一般具有以下技术规格:•测量范围:0-100%(体积分数)•测量精度:±1%(体积分数)•反应时间:5s•工作温度:0-40℃•工作压力:0-1.0MPa其中测量精度是氢气分析仪最为重要的技术参数之一,对于保证其测量精确性非常关键。

应用领域氢气分析仪主要应用于以下领域:石油化工在石油化工领域,氢气分析仪被广泛用于炼化过程控制、储罐氢气浓度监测等方面。

它可以实时监测氢气浓度变化,为炼油企业提供精确的生产控制和安全监测手段。

电力在电力领域中,氢气分析仪主要被用于电力电缆绝缘材料的氧化稳定性检测。

氢气分析仪可以测量电缆中产生的氢气浓度,进而得出绝缘材料氧化稳定性的指标,为电力工程的可靠性评估提供依据。

钢铁在钢铁冶金领域中,氢气分析仪被广泛应用于认证、实验室分析、热处理等方面。

钢铁制品中含有大量的氢气,热加工时会产生更多的氢气,因此对其浓度进行准确测量,可以更好地掌握钢铁制品的物理化学性质。

医药在医药领域中,氢气分析仪可以用于制药过程中的氢气检测。

例如在生产过程中检测存放氢气的管道中是否泄漏,以避免操作人员的安全风险。

氢氧分离:水电解制氢的新篇章

氢氧分离:水电解制氢的新篇章

氢氧分离:水电解制氢的新篇章随着科技的发展,能源的可持续发展成为我们迫切的需求。

在这个背景下,水电解制氢成为了一个备受关注的研究领域。

其中,氧中氢分析仪的应用更是推动了这一领域的技术进步。

水电解是一种将水分解为氢气和氧气的过程,而氢气作为一种清洁、高效的能源,被广泛用于各种领域,如燃料电池、化工等。

然而,水电解过程中,氢气和氧气往往混合在一起,难以分离。

这时,氧中氢分析仪便发挥了重要的作用。

氧中氢分析仪是一种专门用于检测氧气中氢气含量的仪器。

通过该仪器,我们可以快速、准确地检测出氢气的含量,从而有效地分离氢气和氧气。

这一技术的应用,不仅提高了水电解的效率,而且为氢能源的广泛应用提供了有力支持。

水电解制氢中制氢设备产出的粗氢一般纯度为99.5~99.9之间,粗氢纯度检测选择氢中氧分析仪和氧中氢分析仪,量程均选择0~2%之间即可满足要求,一般选用热导原理。

HT-FX100-H2采用原装进口热导传感器,结合了当今世界先进的超低功耗微控制器技术,实现氢气浓度实时在线检测分析,具有信号稳定、精度高、重复性好等特点,并且采用防爆设计,应用于防爆等级要求为Exd IIC T6环境中的氢气浓度测量。

在实际应用中,成都鸿瑞韬科技氧中氢分析仪已经展现出了显著的优势。

首先,它具有高精度、高灵敏度的特点,可以准确测量出微量的氢气含量。

其次,该仪器操作简便、易于维护,能够满足各种工业生产的需求。

最后,氧中氢分析仪的应用还推动了水电解制氢技术的进步,为氢能源的发展奠定了坚实的基础。

随着环保意识的提高和能源需求的增加,氢能源的应用前景十分广阔。

而水电解制氢作为获取氢气的重要途径之一,其技术进步对于推动氢能源的发展具有重要意义。

氧中氢分析仪作为其中的关键技术之一,其应用和发展将为我们的生活带来更多的便利和福祉。

未来,我们期待看到更多的科研人员和企业投入到水电解制氢和氧中氢分析仪的研究和应用中,共同推动这一领域的技术进步,为构建可持续发展的未来贡献力量。

氧氮氢分析仪的特点与原理介绍

氧氮氢分析仪的特点与原理介绍

氧氮氢分析仪的特点与原理介绍氧氮氢分析仪是一种应用广泛的分析仪器,它能够精确地测量样品中的氧气、氮气以及氢气含量。

它的主要应用领域包括化工、制药、能源、冶金等领域。

本文将介绍氧氮氢分析仪的特点与原理。

氧氮氢分析仪的特点氧氮氢分析仪具有以下特点:1. 高精度氧氮氢分析仪能够通过精准的电子技术,快速、准确地检测样品中的气体成分。

其精度高达0.1% ~ 0.5%。

2. 安全可靠氧氮氢分析仪采用了多层防护措施,具有良好的避免气体泄漏的能力。

同时,在分析氧氮氢时,其对环境没有任何污染,使用过程非常安全可靠。

3. 易于操作氧氮氢分析仪采用了可视化的操作界面,使用者可以轻松地进行使用。

并且,其内置了多种数据分析功能,使得数据分析变得更加方便快捷。

氧氮氢分析仪的原理氧氮氢分析仪的原理基于电化学分析技术,主要包括以下三个方面:1. 氧气的检测氧气的检测基于电化学方法。

氧气会在阳极处发生氧化反应,并引起电流变化。

通过测量电流的变化,便可以得到样品中氧气的含量。

2. 氮气的检测氮气的检测基于红外线吸收光谱法。

氮气会在样品中吸收特定波长的红外线,从而形成光谱。

通过分析光谱,便可以得到样品中氮气的含量。

3. 氢气的检测氢气的检测同样基于电化学方法。

氢气会在阴极处发生还原反应,并引起电流变化。

通过测量电流的变化,便可以得到样品中氢气的含量。

总结氧氮氢分析仪具有高精度、安全可靠、易于操作等特点,其原理是基于电化学分析技术和红外线吸收光谱法。

氧氮氢分析仪在化工、制药、能源、冶金等领域具有广泛的应用前景。

氢分析仪原理

氢分析仪原理

氢分析仪原理氢分析仪是一种用于测量样品中氢含量的仪器,它在工业生产、科学研究和质量控制等领域有着广泛的应用。

氢分析仪的原理是基于氢在一定温度下与载气发生化学反应,通过测量反应前后的载气体积变化来确定样品中的氢含量。

下面将详细介绍氢分析仪的工作原理及其相关知识。

首先,氢分析仪的工作原理是基于氢气与载气(通常为惰性气体,如氮气或氦气)在一定温度下的反应。

当样品中的氢气与载气接触时,会发生化学反应生成水蒸气。

通过测量反应前后的载气体积变化,就可以确定样品中的氢含量。

这种原理是基于氢气与载气在一定温度下的定量反应,因此可以准确测量样品中的氢含量。

其次,氢分析仪通常采用热导法或者电解法来进行氢气的分析。

在热导法中,样品中的氢气会被加热至高温,使其与载气发生反应,生成水蒸气。

通过测量反应前后载气体积的变化,就可以计算出样品中的氢含量。

而在电解法中,样品中的水会被电解生成氢气和氧气,然后通过测量氢气的体积来确定样品中的氢含量。

这两种方法都可以准确测量样品中的氢含量,但其原理和操作方法有所不同。

此外,氢分析仪在实际应用中还需要考虑一些因素,如温度、压力、反应时间等。

在进行氢气分析时,需要控制好反应的温度和压力,以确保反应的准确性和稳定性。

此外,反应时间也是影响氢分析结果的重要因素,需要根据样品的特性和实验要求来确定合适的反应时间。

总的来说,氢分析仪是一种用于测量样品中氢含量的重要仪器,其工作原理是基于氢气与载气在一定温度下的化学反应。

通过热导法或者电解法,可以准确测量样品中的氢含量。

在实际应用中,需要控制好温度、压力和反应时间等因素,以确保分析结果的准确性和可靠性。

希望本文对您了解氢分析仪的原理有所帮助。

氧氮氢分析仪原理

氧氮氢分析仪原理

氧氮氢分析仪原理
氧氮氢分析仪是一种用于测量气体中氧氮氢含量的仪器,它可
以广泛应用于化工、环保、医药等领域。

其原理主要基于气体的化
学反应和物理性质进行分析,下面将详细介绍氧氮氢分析仪的原理。

首先,氧氮氢分析仪的原理是基于气体的化学反应。

在氧氮氢
分析仪中,氧气通常是通过化学方法进行分析的,通常使用的是电
化学法和化学发光法。

电化学法是利用电化学传感器,通过气体的
氧化还原反应来测定气体中氧气的含量。

而化学发光法则是利用气
体中氧气与化学试剂发生化学反应产生光信号,通过测量光信号的
强度来确定氧气的含量。

对于氮气和氢气的分析,通常采用热导法
和热导法结合化学反应法来进行测定。

热导法是利用气体的导热性
质来测定氮气和氢气的含量,而热导法结合化学反应法则是在热导
法的基础上,通过与化学试剂的反应来测定氮气和氢气的含量。

其次,氧氮氢分析仪的原理还基于气体的物理性质进行分析。

在氧氮氢分析仪中,气体的物理性质主要包括密度、导热性和热容等。

通过测量气体的密度、导热性和热容等物理性质,可以间接推
算氧氮氢的含量。

例如,氧气的密度和导热性与氧气的含量呈正相
关关系,因此可以通过测量氧气的密度和导热性来确定氧气的含量。

而氮气和氢气的含量则可以通过类似的方法来进行测定。

综上所述,氧氮氢分析仪的原理主要基于气体的化学反应和物理性质进行分析。

通过测量气体中氧氮氢的含量,可以为化工、环保、医药等领域的生产和研究提供重要的数据支持。

希望本文的介绍能够帮助大家更好地理解氧氮氢分析仪的原理,为相关领域的工作提供帮助。

氧氮氢分析仪的常见故障及解决方法

氧氮氢分析仪的常见故障及解决方法

氧氮氢分析仪的常见故障及解决方法1、氧和氮空白值超过20。

这是由于气流小,不能将炉子中的空气驱赶出去。

可调节气体流量,调节载气压力在0.2~0.4MPa。

接通仪器载气,放一个石墨坩埚在下电极上,打开主电源开关,点击软件上的关炉按钮,关闭炉子并等待10s。

调节流量调节器,直到流量计a显示为30L/h,打开炉子。

调节调节器直到流量计b显示为50L/h,再次关闭炉子。

如果以上设置不稳定,则增加流量至100L/h,反复调节直至仪器稳定。

2、供电正常、通讯正常,点击确认键后分析仪不工作。

这是没有水流,炉子温度太高或仪器通道电压不正常。

如没有水流,炉子温度太高这些信息会显示在显示器画面上,但没有信息显示说明这两项正常。

接下来检查仪器通道零位电压,如果比±3V高出1V以上,可能是因为气瓶空了,或者是空气进入到分析仪中。

检查并更换化学试剂,如果有空气进入热导池里,热导池的电压就会<-6V,此时打开右面的门,堵住炉子气体进口,10s后,热导池电压值必然升高。

经过逐一排查,*终确认碱石棉有问题,更换后仪器正常。

3、分析过程中电流表显示电流值为零。

这是炉子中电极接触**。

经观察炉子上部和下部之间有空隙,调整上下部之间的垫片消除空隙,但仪器仍未正常。

经进一步观察,确定是电极磨损导致接触**,更换上、下电极后仪器正常。

4、仪器启动时显示。

没有水流。

系统分析电流切断,分析停止。

这是水流探测器不正常,水泵不工作,管道堵塞。

将仪器的右面板取下,观察水流探测器,用手挤压补水塑料水瓶,发现水流正常,显示正常,证明水流探测器正常,管道畅通。

启动循环水泵,但分析仪显示没有水流,此时可判定水泵不正常。

打开水泵转子密封口,启动泵发现电机正常运转,此时关闭进水,拆下水泵,发现叶轮脱落。

经了解,判定是由于外部冷却水停水,仪器内循环水温过高(水温应≤70℃),致使叶轮(叶轮材料PVC)热胀并脱轴。

用粘合剂粘合叶轮后再粘于叶轮轴上,待粘合剂凝固后试车,仪器运行正常。

氧中氢仪表_热导和催化燃烧对比_概述及解释说明

氧中氢仪表_热导和催化燃烧对比_概述及解释说明

氧中氢仪表热导和催化燃烧对比概述及解释说明1. 引言1.1 概述本篇文章主要对比分析了氧中氢仪表热导和催化燃烧两种方式,并对其进行解释说明。

氧中氢仪表是一种常见的测量技术,可用于检测气体中的氧和氢成分,而热导和催化燃烧则是常用于测量气体成分的方法。

我们将探讨这两种方法的原理、优缺点以及在不同领域应用的案例。

1.2 文章结构本文按以下顺序展开内容:首先介绍整篇文章的大纲结构,然后开始论述引言部分,接着将进入第二部分讨论氧中氢仪表热导和催化燃烧的原理与分析方法,随后对这两种方式进行优缺点比较,然后介绍在各个应用领域及具体案例中的应用情况,并最终得出结论并展望未来发展趋势以及可能的研究方向。

1.3 目的本文旨在提供读者一个全面且准确的了解关于氧中氢仪表热导和催化燃烧两种方法的对比情况。

通过对这两种方法的分析和比较,读者可以更清楚地知道它们在测量气体成分方面的特点,以及各自的优缺点。

此外,我们将通过实际案例来说明这两种方法在不同领域的应用情况,以帮助读者理解其实际应用价值。

最后,我们将总结结论并展望未来发展趋势和潜在研究方向,为相关研究提供一定的参考和指导。

2. 氧中氢仪表热导和催化燃烧对比2.1 氧中氢仪表概述氧中氢仪表是一种用于测量气体中的氢含量的设备。

它通过监测气体传导性或使用催化剂来确定样品中的氢含量。

这种仪表广泛应用于各个领域,例如能源工业、环境监测和化学工程等。

2.2 热导方式分析热导方式是通过测量样品在单位温度下传导热量的能力来确定其中的氢含量。

当样品中的氢含量增加时,其传导热量也随之增加。

因此,可以根据样品与基准物质之间的温度差异来计算出氢含量。

热导方式具有以下优点:- 高灵敏度: 热导方式可以实现对微小变化的检测,因此非常适合于低浓度溶液或气体中的氢检测。

- 实时监测: 由于热导方式可以提供快速响应,并且无需进行复杂的操作步骤,因此可以实现实时监测和控制。

然而,热导方式也存在一些缺点:- 受干扰影响: 热导方式容易受到其他气体或杂质的干扰,可能会引起测量误差。

氢中氧分析仪

氢中氧分析仪

氢中氧分析仪JNYQ- O-14Ex系列型氧量分析仪西安聚能专业分析各类氢气中含氧量,优秀的分析仪表配合出色的预处理系统,能安全高效的分析氢中氧含量特点∙数字化自适应温度控制;∙热敏元件采用抗震防腐结构;∙信号数字化处理、蓝底液晶显示;∙测量输出线性表达;∙数字温度补偿;∙两组输出无源触点;∙隔离的输出标准信号;∙红外遥控操作;∙全中文菜单操作(英文版本订货说明);用途及应用范围JNYQ- O-14Ex系列型数字化氧量分析仪器为隔爆型,内带阻火器,可用于连续自动分析各种混合气体中氧气的不同浓度。

其结构适于安装在成套设备中,具有结构简单、维修量小、使用寿命长等特点。

适用于化工、化肥厂等防爆场所。

应用领域化肥厂:合成氨流程中半水煤气及再生CO2气中的氧气百分含量,尿素流程中半水煤气及解析气中的氧气百分含量。

工作原理JNYQ- O-14Ex系列型数字化氧量分析仪器的工作原理,采用磁氧和进口电化学氧传感器及先进的数字处理技术,实现对氧的连续自动快速在线检测。

技术参数:◆. 检测范围:0.00~99.99%;(量程可选)◆. 精度:≤±1%F.S(95.00~99.99%);≤±2%F.S(0.00~50.0%);◆. 分辨率:0.01%;◆. 稳定性:零点漂移≤±1%F.S/7d;量程漂移≤±1%F.S/7d;◆. 重复性:≤±0.5%;◆. 预热时间:≤15min;◆. 响应时间:T90≤15S;◆. 防爆等级:ExdⅡCT6;◆. 输出信号:4~20mA或0~10mA DC可选;◆. 触点容量:220V AC,1A 24VDC,1A;◆. 工作环境:温度:-10℃~+45℃;湿度:≤90%RH;◆. 工作电源:220V AC±10%,50Hz±5%;◆. 外形尺寸:450mm×500 mm×220 mm;◆. 重量:约35kg;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧中氢分析仪—GPR-2500H2
美国AII
技术参数
传感器:热导式原理
准确度:量程的1%(在常温,常压下)
测量分辨力:量程的0.01%
传感器寿命:大于36个月
线性度:R平方值>0.995
校准气:建议采用80%量程气校准
响应时间:10秒达到90%
操作条件
应用领域:制氢/制氮/CO2设备,净化/干燥设备等
测量介质:O2、空气、N2气体等
接口:进出气口采用1/8”卡套接头
压力:10~50psig
温度:5~+45℃
流量:0.1~0.5升/分钟
电器特征
认证:ISO9001,CE认证。

防爆:本安设计,加隔离栅可用于危险区:Class 1,Division 1,Groups B,C,D 显示:大屏幕LCD显示,可实时显示样气温度。

显示分辨率:0.01%
控制键:防水按键,可方便地选择量程、校准等。

补偿:自动压力和温度补偿功能。

输出:三线4~20mA模拟输出;可选配报警功能
电源:9~28 V DC(加隔离栅时24~28 V DC)。

物理特征
封装:氧化铝材质,NEMA 4X,壁挂式设计
体积:4” x 9” x3” 重量:8 lbs (约3.5公斤)
选件
系统包括:
—预处理单元
—内置稳流阀。

相关文档
最新文档