详细版——乳糖操纵子

合集下载

乳糖操纵子

乳糖操纵子

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵基因、一个启动子和一个调节基因。

结构基因能产生一定的酶系统和结构蛋白。

操纵基因控制结构基因的转录速度,位于结构基因和启动子之间,本身不能转录成mRNA。

启动基因也不能转录成mRNA。

调节基因可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白或调节蛋白。

2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。

所以,乳糖操纵子的这种调控机制为可诱导的负调控。

3、CAP的正性调节:CRP是cAMP受体蛋白(cAMP receptor protein),cAMP(环腺苷酸)是细胞内广泛存在的第二信使。

细菌中的cAMP含量与葡萄糖的分解代谢有关,当细菌利用葡萄糖分解供给能量时,cAMP生成少而分解多,cAMP含量低;相反,当环境中无葡萄糖可供利用时,cAMP含量就升高。

cAMP浓度低,CRP未与cAMP结合,CRP不能被活化,当cAMP浓度升高时,CRP 与cAMP结合并发生空间构象的变化而活化,称为CAP(CRP-cAMP activated protein),能以二聚体的方式与特定的DNA序列结合。

CAP的通用名称是分解代谢基因激活蛋白(catabolic gene activator protein)。

在启动子上游有CAP结合位点(CAP binding site),当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,增强RNA聚合酶的转录活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

(精选)乳糖操纵子简介

(精选)乳糖操纵子简介

操纵子(operon):很多功能相关的结构基因串联排列在染色体上,由一个共同的控制区来操纵这些基因的表达,包含这些结构基因和控制区的整个核苷酸序列就称为操纵子。

乳糖操纵子▪三个特异性序列:▪操纵序列 O (operator): 阻遏蛋白结合位点。

▪启动子 P (promoter): 位于结构基因的上游。

▪CAP结合位点:环cAMP受体蛋白(分解代谢物激活蛋白)结合位点。

▪一个调节基因●lac I:编码阻遏蛋白,能结合于操纵序列位点。

操纵子的组成:▪----结构基因(structural gene, SG) :操纵元中被调控的编码蛋白质的基因▪----启动子(promoter,P):是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。

▪----操纵基因(operator,O):是指能被调控蛋白特异性结合的一段DNA序列。

▪阻遏物基因(inhibitor,I),产生阻遏物(repressor)。

结构基因• Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。

•Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。

•A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。

当一个mRNA含有编码一个以上蛋白质的编码信息,而且这些蛋白质都是以独立的多肽被翻译时,这样的mRNA称之多顺反子mRNA。

▪多顺反子mRNA在细菌中是很普遍的。

▪多顺反子lac mRNA中的lacZ,lacY,lacA经翻译生成的产物分别生成代谢分解乳糖的三种酶▪始终存在着一定的比例关系( Z : Y : A = 5 : 2 : 1 )▪lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白R所控制。

lacI一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。

▪由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。

乳糖操纵子

乳糖操纵子

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。

2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。

所以,乳糖操纵子的这种调控机制为可诱导的负调控。

3、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

4、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。

5、在葡萄糖存在的情况下乳糖操纵子不表达,只有在葡萄糖不存在而乳糖存在的情况下表达。

色氨酸操纵子要点色氨酸操纵子负责色氨酸的生物合成,当培养基中有足够的色氨酸时,这个操纵子自动关闭,缺乏色氨酸时操纵子被打开,trp基因表达,色氨酸或与其代谢有关的某种物质在阻遏过程(而不是诱导过程)中起作用。

阻遏-操纵机制对色氨酸来说是一个一级开关,主管转录是否启动,相当于粗调开关。

trp操纵子中对应于色氨酸生物合成的还有另一个系统进行细调控,指示已经启动的转录是否继续下去。

这个细微调控是通过转录达到第一个结构基因之前的过早终止来实现的,由色氨酸的浓度来调节这种过早终止的频率。

当培养基中色氨酸的浓度很低时,前导区结构是2-3配对,不形成3-4配对的终止结构,所以转录可继续进行。

当培养基中色氨酸浓度较高时,核糖体可顺利通过两个相邻的色氨酸密码子,3-4区自由配对形成基一环终止子结构,转录被终止,trp操纵子被关闭。

基因调控-乳糖操纵子

基因调控-乳糖操纵子

乳糖操纵子在生物工程中的优化与应用
乳糖操纵子在生物工程领域具有潜在的应用价值,例如用于构建基因表达调控系统。通过优化乳糖操 纵子的元件和调控机制,可以开发出更高效、更精确的基因表达调控工具。
研究可以探索将乳糖操纵子与其他基因调控机制结合,以实现更复杂的基因表达模式。这种结合可以 为生物工程领域提供更多创新性的解决方案,例如用于生产生物药物、工业酶或改良作物品种等应用 。
特点
乳糖操纵子具有高度的可诱导性,当环境中乳糖浓度升高时,相 关基因的表达水平也随之升高,当乳糖浓度降低时,相关基因的 表达水平也随之降低。
乳糖操纵子的结构与组成
结构基因Z、Y、A
分别编码β-半乳糖苷酶、β-半乳糖苷 透酶和半乳糖苷乙酰转移酶,这些酶 在乳糖代谢中起关键作用。
调节基因I
编码阻遏蛋白,该蛋白可与乳糖操纵 子上的O序列结合,抑制结构基因的 表达。
适应性进化研究
乳糖操纵子可应用于适应性进化研究中,通过研究乳糖操纵子在不同环境下的适应性变化,揭示生物对环境的适 应机制。
05
未来展望与研究方向
乳糖操纵子与其他基因调控机制的关系
乳糖操纵子是原核生物中一种典型的基因调控机制,通过与 阻遏蛋白的相互作用来调节基因的表达。未来研究可以探索 乳糖操纵子与其他基因调控机制之间的相互作用和关系,以 更全面地理解基因表达的复杂性。
乳糖操纵子的功能与作用机制
功能
乳糖操纵子在乳糖存在时表达相关酶, 将乳糖转化为葡萄糖和半乳糖,供细 胞代谢利用。
作用机制
当环境中乳糖浓度升高时,乳糖通过 与阻遏蛋白结合,使阻遏蛋白失去活 性,从而解除对结构基因表达的抑制 作用,使相关酶得以表达。
02
基因调控的原理
基因表达的调控

详细描述乳糖操纵子系统的调控机制。

详细描述乳糖操纵子系统的调控机制。

详细描述乳糖操纵子系统的调控机制。

乳糖操纵子系统是细菌中的一种代谢途径,它能够将乳糖转化为能量和碳源。

这个系统的调控机制非常复杂,包括转录调控、翻译调控、磷酸化调控等多个层面。

下面我们将详细介绍乳糖操纵子系统的调控机制。

1. 转录调控乳糖操纵子系统的转录调控主要由两个转录因子LacI 和CRP 控制。

LacI 是一个负向转录因子,它能够结合到乳糖操纵子系统的启动子上,阻止RNA 聚合酶结合并启动转录。

当乳糖存在时,乳糖会结合到 LacI 上,使其失活,从而允许 RNA 聚合酶结合并启动转录。

CRP 是一个正向转录因子,它能够结合到乳糖操纵子系统的启动子上,促进RNA 聚合酶结合并启动转录。

当细菌处于低糖状态时,cAMP 的浓度会升高,从而使 CRP 活化,促进乳糖操纵子系统的转录。

2. 翻译调控乳糖操纵子系统的翻译调控主要由riboswitch 控制。

riboswitch 是一种RNA 分子,它能够结合到乳糖分子上,从而改变自身的构象,影响翻译的进行。

当乳糖存在时,riboswitch 会结合到乳糖上,从而使翻译终止子暴露在mRNA 上,阻止翻译的进行。

当乳糖不足时,riboswitch 会解离乳糖,从而使翻译终止子被遮盖,允许翻译的进行。

3. 磷酸化调控乳糖操纵子系统的磷酸化调控主要由两个蛋白激酶PhoR 和PtsG 控制。

PhoR 是一种膜蛋白激酶,它能够感知到细胞外的磷酸浓度,从而调控乳糖操纵子系统的磷酸化状态。

当细胞外的磷酸浓度低时,PhoR 会被激活,从而使乳糖操纵子系统的磷酸化水平升高。

PtsG 是一种磷转移酶,它能够将磷酸转移给乳糖,从而影响乳糖的代谢。

当细胞内的磷酸浓度低时,PtsG 会被磷酸化,从而使其活性降低,减少对乳糖的代谢。

乳糖操纵子系统的调控机制非常复杂,包括转录调控、翻译调控、磷酸化调控等多个层面。

这些调控机制相互作用,共同调节乳糖的代谢,从而使细菌能够适应不同的环境条件。

乳糖操纵子简介

乳糖操纵子简介

乳糖操纵子简介操纵子(operon):很多功能相关的结构基因串联排列在染色体上,由一个共同的控制区来操纵这些基因的表达,包含这些结构基因和控制区的整个核苷酸序列就称为操纵子。

乳糖操纵子三个特异性序列:操纵序列O (operator): 阻遏蛋白结合位点。

启动子P (promoter): 位于结构基因的上游。

CAP结合位点:环cAMP受体蛋白(分解代谢物激活蛋白)结合位点。

一个调节基因●lac I:编码阻遏蛋白,能结合于操纵序列位点。

操纵子的组成:----结构基因(structural gene, SG) :操纵元中被调控的编码蛋白质的基因----启动子(promoter,P):是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。

----操纵基因(operator,O):是指能被调控蛋白特异性结合的一段DNA序列。

阻遏物基因(inhibitor,I),产生阻遏物(repressor)。

结构基因Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。

Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。

A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。

当一个mRNA含有编码一个以上蛋白质的编码信息,而且这些蛋白质都是以独立的多肽被翻译时,这样的mRNA称之多顺反子mRNA。

多顺反子mRNA在细菌中是很普遍的。

多顺反子lac mRNA中的lacZ,lacY,lacA经翻译生成的产物分别生成代谢分解乳糖的三种酶始终存在着一定的比例关系( Z : Y : A = 5 : 2 : 1 )lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白R所控制。

lacI一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。

由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。

它是能够分散到各处或结合到分散的DNA位点上。

详细版——乳糖操纵子

详细版——乳糖操纵子

Collaboration between mentor and student won a Nobel Prize. It has not been common in the history. Only the lucky ones, who were willing to share the credit and lived long, panned out in the end. That was why I remember this story: The teacher-student team: Franç Jacob (1920-2013), student. ois Jacques Monod (1910-1976), Lwoff's colleauge. AndréLwoff (1902-1994), Jacob's mentor. Notable awards: 1965 Nobel Prize in Medicine. He shared the 1965 Nobel Prize in Medicine with Jacques Monod and AndréLwoff (1902-1994).
25 2013-10-31
以乳糖操纵子中的操纵区为例,其操纵区 (o)序列位于启动子(p)与被调控的基因之 间,部分序列与启动子序列重叠。 仔细分析操纵区序列,可见这段双链DNA具 有回文(palindrome)样的对称性一级结构, 能形成十字形的茎环(stem loop)构造。不 少操纵区都具有类似的对称性序列,可能与特 定蛋白质的结合相关。
8 2013-10-31
9 2013-10-31
这种典型的诱导现象,是研究基因表达调 控极好的模型。针对大肠杆菌利用乳糖的适应 现象,法国的Jocob和Monod等人做了一系列遗 传学和生化学研究实验,于1961年提出乳糖操 纵子(lac operon)学说。

详细版乳糖操纵子

详细版乳糖操纵子
1.培养大肠杆菌时,如果不加入半乳糖,一个 抑制蛋白就会结合到操纵子上,阻止RNA聚合酶转录 操纵子基因。此时操纵子就处于关闭状态;
2.当加入诱导物半乳糖后,半乳糖就会和抑制 蛋白结合,并改变抑制蛋白的构象使得它不能结合 到操纵子上。只要没有抑制蛋白的结合,RNA聚合酶 就可以识别启动子并转录操纵子的结构基因,得到 mRNA。此时操纵子是开启的。
3
业内人士评论认为,沃森和克 里克发现了DNA结构,雅各布等人 的工作则揭示了遗传信息如何传递 。 "Anything found to be true of E. coli must also be true of elephants," claimed by Jacques Monod. “大肠杆菌的基因调控的任何发现, 也 适用于大象基因调控。”
5 它由依次排列的调节基因、cAMP受体蛋 白CRP位点、启动子、操纵基因和3个相连 的编码利用乳糖的酶的结构基因组成。
9
y基因长780bp,编码有260个氨基酸、分
子量为30,000的半乳糖透过酶,促使环境 中的乳糖进入细菌;
a基因长825bp,编码275氨基酸、分子
量为32,000的转乙酰基酶,以二聚体活性 形式催化半乳糖的乙酰化。
The teacher-student team:
François Jacob (1920-2013), student.
Jacques Monod (1910-1976), Lwoff's colleauge.
AndréLwoff (1902-1994), Jacob's mentor.
Notable awards: 1965 Nobel Prize in Medicine. He shared the 1965 Nobel Prize in Medicine with Jacques Monod and AndréLwoff (1902-1994).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档