流水行船问题及答案.docx
流水行船问题及答案

流水行船问题顺水速度=船速+水速逆水速度=船速-水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
小学奥数之流水行船问题

流水行船问题【例1】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【解析】乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。
水流速度:(60-30)÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。
甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。
甲船返【例2小时。
由.【例32710小时,【例4】一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
求水流的速度。
【解析】两次航行都用16时,而第一次比第二次顺流多行60千米,逆流少行40千米,这表明顺流行60千米与逆流行40千米所用的时间相等,即顺流速度是逆流速度的1.5倍。
将第一次航行看成是16时顺流航行了120+80×1.5=240(千米),由此得到顺流速度为240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时)。
【例5】一条河上有甲、乙两个码头,甲在乙的上游50千米处。
客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。
客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米。
客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇。
求水流的速度。
【解析】5÷1/6=30(千米/小时),所以两处的静水速度均为每小时30千米。
50÷30=5/3(小时),所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇。
由于两船静水速度相同,所以客船行驶20千米后两船仍相距50千米。
50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇。
小升初数学专题 流水行船问题

1.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行.已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A 地到B地所用时间的1.5倍,求水流速度.解:设水流速度是每小时x千米(20+x)×6=(20-x)×6×1.5120+6x=180-9x15x=60x=4答:水流速度是每小时4千米.2.水流速度是每小时15千米.现在有船顺水而行,8小时行480千米.若逆水行360千米需几小时?解:顺水船速:480÷8=60(千米)静水中的速度:60-15=45(千米)逆水船速:45-15=30(千米)逆水时间:360÷30=12(小时)答:逆水行360千米需12小时3.有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。
解:逆流速:120÷10=12(千米/时)顺流速:120÷6=12(千米/时)船速:(20+12)÷2=16(千米/时)水速:(20—12)÷2=4(千米/时)答:船速是每小时行16千米,水速是每小时行4千米。
4.一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时.已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?解:(15+3×2)×18=21×18=378(千米)答:甲乙两港相距378千米.5.一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?解:逆水速度:16×3÷4=12(千米/时)则船速:(12+16)÷2=14(千米/时)水速:(16-12)÷2=2(千米/时)答:船速为14千米/时;水速为2千米/时.6.一海轮在海中航行.顺风每小时行45千米,逆风每小时行31千米.求这艘海轮每小时的划速和风速各是多少?解:(45+31)÷2=76÷2=38(千米/小时)45-38=7(千米/小时)答:这艘海轮每小时的划速是38千米,风速是每小时7千米.7.轮船以同一速度往返于两码头之间.它顺流而下,行了8小时;逆流而上,行了10小时.如果水流速度是每小时3千米,求两码头之间的距离.解:(3×2)÷(18-110)=6÷1 40=240(千米)答:两码头之间的距离是240千米.8.有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。
流水行船题练习及答案

流水行船题练习及答案1、水流速度是每小时4千米。
现在有一艘船逆水在60千米长的河中航行需5小时,顺水航行需几小时?解:60÷5+4=16(千米/小时)60÷(16+4)=3(小时)答:顺水航行需要3小时。
2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?解:15+3=18(千米/小时),18×8=144(千米),15—3=12(千米/小时),144÷12=12(小时)。
答:从乙地返回甲地需要12小时。
3、有一艘船行驶于100千米的长河中,逆行需要10小时,顺行需要5小时,求船速和水速。
解:100÷10=10(千米/小时)10÷5=20(千米/小时)(10+20)÷2=15(千米/小时)(20-10)÷2=5(千米/小时)答:船速是每小时15千米,水速是每小时5千米4、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
5、一艘轮船每小时行21千米,在长120千米的河中逆流航行要10小时到达,返回需要几小时?解:21-120÷10+21=30(千米/小时)120÷30=4(小时)答:返回需要4小时。
6、两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
解:(352÷11-352÷16)÷2=5(千米/小时)。
(完整版)流水行船问题的公式和例题(含答案)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)十2 (7)水速=(顺水速度-逆水速度)十2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1 千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25 - 5=5 (千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/ 小时)综合算式:25 - 5-仁4 (千米/小时)答:此船在静水中每小时行 4 千米。
* 例2 一只渔船在静水中每小时航行4 千米,逆水4 小时航行12 千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12 -4=3 (千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。
流水行船问题面试题及答案

流水行船问题面试题及答案一、单选题1. 在静水中,船的速度是每小时5公里,水流速度是每小时2公里。
当船顺流而下时,船的实际速度是多少公里每小时?A. 3公里B. 7公里C. 5公里D. 2公里答案:B2. 一艘船在静水中的速度是每小时10公里,水流速度是每小时3公里。
当船逆流而上时,船的实际速度是多少公里每小时?A. 7公里B. 10公里C. 13公里D. 3公里答案:A二、多选题1. 以下哪些因素会影响船在河流中的实际速度?A. 船在静水中的速度B. 水流的速度C. 船的载重量D. 船的发动机功率答案:A、B三、判断题1. 船在静水中的速度和水流速度相加,就是船顺流而下时的实际速度。
答案:正确2. 船在静水中的速度和水流速度相减,就是船逆流而上时的实际速度。
答案:正确四、计算题1. 一艘船在静水中的速度是每小时8公里,水流速度是每小时4公里。
船顺流而下行驶了2小时,逆流而上行驶了3小时。
求船总共行驶了多少公里?答案:船顺流而下时的速度是8+4=12公里/小时,行驶了2小时,所以顺流行驶了12*2=24公里。
逆流而上时的速度是8-4=4公里/小时,行驶了3小时,所以逆流行驶了4*3=12公里。
总共行驶了24+12=36公里。
2. 一艘船在静水中的速度是每小时6公里,水流速度是每小时2公里。
船顺流而下行驶了3小时,逆流而上行驶了4小时。
求船总共行驶了多少公里?答案:船顺流而下时的速度是6+2=8公里/小时,行驶了3小时,所以顺流行驶了8*3=24公里。
逆流而上时的速度是6-2=4公里/小时,行驶了4小时,所以逆流行驶了4*4=16公里。
总共行驶了24+16=40公里。
五、简答题1. 请解释为什么船在逆流而上时的速度会比在静水中的速度慢?答案:当船逆流而上时,水流的方向与船行驶的方向相反,因此水流会对船产生阻力,减缓船的速度。
船的实际速度是船在静水中的速度减去水流速度。
2. 在计算船在河流中行驶的总距离时,为什么需要考虑顺流和逆流的速度?答案:因为顺流和逆流时船的速度不同,所以行驶相同时间的距离也会不同。
行程问题流水行船问题

---流水行船
流水行船问题基本关系式:
顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
牛刀小试: 船在静水中的速度为每小时15千米,水流速度是 每小时3千米,船从上游乙港到下游甲港航行了12小时, 甲、乙两港间距离多少千米?
例1: 游轮从A城市到B城市顺流而下需要48小时,游轮 在静水中的速度是每小时30千米,水流速度是每小时 6千米,游轮从B城市返回A城市需要多少小时?
练习: 某轮船在相距216千米的两个港口间往返运送货物, 已知轮船在静水中每小时21千米,两个港口间的水流 速度是每小时3千米,那么,这只轮船往返一次需要多 长时间?
例2 : 甲、乙两港间的航线长360千米,一只船从甲港求船在静水中的速度和水流速度?
练习: 某架飞机顺风飞行每小时飞1320千米,逆风飞 行每小时飞1080千米,这架飞机的速度和风速分别是 多少?
例3: A、B两码头间河流长为90千米,甲、乙两船分别 从A、B码头同时起航,如果相向而行3小时相遇;如 果同向而行15小时甲船追上乙船,求两船在静水中的 速度?
练习: 两个港口相距342千米,甲、乙两支轮船同时从 两个港口相对开出,甲船顺流而下,乙船逆流而上, 9小时后正好相遇,已知甲船每小时比乙船慢4千米。 甲、乙两船的速度分别是多少?
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
例5: 静水中,甲乙两船的速度分别为每小时20千米 和每小时16千米,两船先后自同一港口顺水开出, 乙船比甲船早出发2小时,若水速是每小时4千米, 甲船开出几小时后追上乙船?
(完整版)流水行船问题及答案

流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流水行船问题
顺水速度 =船速 +水速
逆水速度 =船速 - 水速
例 1:船在静水中的速度为每小时 13 千米,水流的速度为每小时 3 千米,船从
甲港到达乙港的距离为 240 千米,
船从甲港到乙港为顺风,求船往返
甲港和乙港所需要的时间?
顺水速度: 13+3=16千米 / 小时
逆水速度: 13-3=10 千米 / 小时
返甲港所需时间: 240÷10=24 小时
返乙港所需时间: 240÷16=15 小时
1、一艘轮船在静水中航行,每小时行 15
千米,水流的速度为每小时 3 千米。
这
艘轮船顺水航行270 千米到达目的地,
用了几个小时?如果按原航道返回,需
要几小时?
顺水速度: 15+3=18千米 / 小时
逆水速度: 15-3=12 千米 / 小时
到达目的地用时: 270÷18=15 小时
按原航道返回需用时: 270÷12=22.5 小时
例题 2:甲乙两码头相距144 千米 , 一只
船从甲码头顺水航行8 小时到达乙码头 ,已知船在静水中每小时行驶15 千米, 问这船返回甲码头需几小时?
顺水速度: 144÷8=18 千米 / 小时
水速: 18-15=3 千米 / 小时
逆水速度: 15-3=12 千米 / 小时
返回甲码头需用时: 144÷12=12小时1、甲乙两码头相距560 千米 , 一只船从甲码头顺水航行20 小时到达乙码头 , 已知船在静水中每小时行驶24 千米, 问这船返回甲码头需几小时 ?
顺水速度: 560÷20=28 千米/ 小时
水速: 28-24=4 千米 / 小时
逆水速度: 24-4=20 千米 / 小时
返回甲码头需用时: 560÷20=28小时2、两个码头相距360 千米,一艘汽艇顺水行完全程需 9 小时,这条河水流速度为每小时 5 千米,求这艘汽艇逆水行完
全程需几小时?
顺水速度: 360÷9=40 千米 / 小时
船速: 40-5=35 千米 / 小时
逆水速度: 35-5=30 千米 / 小时
逆水行完全程需用时: 360÷30=12小时
例 3:甲、乙两港间的水路长208 千米,逆水速度:418÷19=22千米/小时一只船从甲港开往乙港,顺水8 小时到水速:(38-22)÷ 2=3千米/小时达,从乙港返回甲港,逆水 13 小时到达,
求船在静水中的速度和水流速度。
顺水速度: 208÷8=26 千米 / 小时
逆水速度: 208÷13=16 千米 / 小时
船速:( 26+16)÷ 2=21 千米 / 小时
水速:( 26-16 )÷ 2=2 千米 / 小时
1、两个码头相距360 千米,一艘汽艇顺
水行完全程需9 小时,逆水 12 个小时行
完全程,求船在静水中的速度和水流速
度。
顺水速度: 360÷9=40 千米 / 小时
逆水速度: 360÷12=30 千米 / 小时
船速:( 40+30)÷ 2=35 千米 / 小时
水速:( 40-30 )÷ 2=5 千米 / 小时
2、两个码头相距418 千米,一艘客船顺
流而下行完全程需要11 小时,逆流而上
行完全程需要19 小时,求这条河的水流
速度。
顺水速度: 418÷11=38 千米 / 小时。