数控伺服系统

合集下载

数控机床进给伺服系统类故障诊断与处理(3篇)

数控机床进给伺服系统类故障诊断与处理(3篇)

数控机床进给伺服系统类故障诊断与处理数控机床进给伺服系统是数控机床中非常关键的一个组成部分,它直接影响机床加工的精度和效率。

然而,在使用过程中,由于各种原因,进给伺服系统可能会出现故障。

本文将介绍数控机床进给伺服系统的常见故障及其诊断与处理方法。

一、数控机床进给伺服系统常见故障1. 运动不平稳:机床在加工工件时,出现运动不平稳的情况,可能是由于进给伺服系统的故障引起的。

这种情况表现为运动过程中有明显的抖动或者不稳定的现象。

2. 运动失效:机床无法正常运动,不响应操作指令。

这种情况可能是由于进给伺服系统的电源故障、控制器故障或者连接线路故障引起的。

3. 位置误差过大:机床在加工过程中,位置误差超过了允许范围,导致加工工件的尺寸不准确。

这种情况可能是由于进给伺服系统的位置反馈元件(如编码器)故障引起的。

4. 加工速度过慢:机床在加工时,进给速度远低于预设值,导致加工效率低下。

这种情况可能是由于进给伺服系统的电机故障或者速度控制回路故障引起的。

二、故障诊断与处理方法1. 运动不平稳的诊断与处理:首先,检查机床的润滑系统,确保润滑油是否充足,并且清洁。

其次,检查机床的传动系统,确保螺杆和导轨的润滑良好。

如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。

2. 运动失效的诊断与处理:首先,检查进给伺服系统的电源供应情况,确保电源正常。

其次,检查进给伺服系统的连接线路,包括电源线、编码器连接线等,确保线路没有松动或者断裂。

如果问题还未解决,可以通过检查进给伺服系统的控制器和电机驱动器是否正常工作等方式进一步诊断。

3. 位置误差过大的诊断与处理:首先,检查进给伺服系统的位置反馈元件,如编码器是否损坏或者松动。

如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。

4. 加工速度过慢的诊断与处理:首先,检查进给伺服系统的电机是否正常工作,包括电机是否有异常声音或者发热等。

机床数控技术:第6章 数控伺服系统

机床数控技术:第6章 数控伺服系统
30
6.2 伺服电动机
伺服电动机是数控伺服系统的重要组成部分, 是速度和轨迹控制的执行元件。
数控机床中常用的伺服电机: ● 直流伺服电机(调速性能良好) ● 交流伺服电机(主要使用的电机) ● 步进电机(适于轻载、负荷变动不大) ● 直线电机(高速、高精度)
31
6.2.1 直流伺服电机及工作特性
6.1 概述
伺服系统的性能直接关系到数控机床执行件的 静态和动态特性、工作精度、负载能力、响应快慢 和稳定程度等。所以,至今伺服系统还被看做是一 个独立部分,与数控装置和机床本体并列为数控机 床的三大组成部分。
按ISO标准,伺服系统是一种自动控制系统,其 中包含功率放大和反馈,从而使得输出变量的值紧 密地响应输入量的值。
数控机床常用的直流电动机有: ●直流进给伺服系统:永磁式直流电机; ●直流主轴伺服系统:励磁式直流电机;
图6.5 直流伺服驱动系统的一般结构
32
6.2.1 直流伺服电机及工作特性
直流电动机原理
根据法拉第电磁感应定理 当载流导体位于磁场中,导
体上受到的电磁力F:
F = B ×L× i
B:磁场的磁通密度; L: 导体长度; i:导体中的电流。 F、B、i之间的方向关 系可用左手定则确定。
29
6.1 概述
6.1.4 伺服系统的发展 由于直流电动机存在换向火花和电刷磨损等问题
,美国通用电气(GE)公司于1983年研制成功采用 笼型异步交流伺服电动机的交流伺服系统。采用 矢量变换控制变频调速,使交流电动机具有和直 流电动机—样的控制性能,又具有机构简单、可 靠性高、成本低,以及电动机容量不受限制和机 械惯性小等优点。 日本于1986年又推出了全数字交流伺服系统。
28

第4章 数控机床伺服系统

第4章 数控机床伺服系统
图4-7 永磁直流伺服电动机
第4章 数控机床伺服系统
第4章 数控机床伺服系统 工作原理:假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对 齐。此时,B 相和 A 相空间差120,含 1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个 3 齿。所以,A 相的转子、定子的五个小齿对 齐时,B 相、C 相不能对齐,B相的转子、 定子相差 1/3 个齿(3),C相的转子、定 子相差2/3个齿(6)。
mz2 k
式中:n —转速(r/min); f —控制脉冲频率,即每秒输入步进电动机的脉冲数; 由上式可知:工作台移动的速度由指令脉冲的频率所控制。
第4章 数控机床伺服系统 特点:
(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
种类:
有励磁式和反应式两种。两种的区别在于励磁式步进电机的转 子上有励磁线圈,反应式步进电机的转子上没有励磁线圈。
第4章 数控机床伺服系统
计算机数控系统 机床 I/O 电路和装置 操作面板 键盘 输入输出 设备 机 床
PLC
计算机 数 装 控 置
主轴伺服单元
主轴驱动装置
进给伺服单元 测量装置
进给驱动装置
主进辅 运给助 传控 动 动制 机机机 构构构
数控机床的组成
第4章 数控机床伺服系统
第4章
数控机床伺服系统
第4章 数控机床伺服系统
360o s mz2 k
第4章 数控机床伺服系统
每个步距角对应工作台一个位移值,这个位移值称为脉 冲当量。 因此,只要控制指令脉冲的数量即可控制工作台移动的 位移量。步距角越小,它所达到的位置精度越高,因此实际 使用的步进电动机一般都有较小的步距角。 步进电动机的转速公式为:n 60 f

数控机床的伺服系统

数控机床的伺服系统

第6章 数控机床的伺服系统
伺服驱动装置
位置控制模块 速度控制单元
工作台 位置检测
速度环 速度检测 位置环
伺服电机
测量反馈
图6-1 闭环进给伺服系统结构
数控机床闭环进给系统的一般结构如图,这是一个双闭环系统,内 环为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。 速度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控 制系统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由 CNC装置中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组 成。
第6章 数控机床的伺服系统
A C1 B4 2 B 3C A
逆时针转30º
C 4 B
A 1 2 3 A
B
C 1 B
A 2
B 3 C
C
逆时针转30º
4 A
第6章 数控机床的伺服系统
采用三相双三拍控制方式,即通电顺序按AB→BC→CA→AB(逆时针 方向)或AC→CB→BA→AC(顺时针方向)进行,其步距角仍为30。由于 双三拍控制每次有二相绕组通电,而且切换时总保持一相绕组通电,所以 工作比较稳定。
第6章 数控机床的伺服系统
设 A 相首先通电,转子齿与定子 A 、 A′ 对齐(图 3a )。然后在 A 相继续通电的情 况下接通 B 相。这时定子 B 、 B′ 极对转子 齿 2 、 4 产生磁拉力,使转子顺时针方向转 动,但是 A 、 A′ 极继续拉住齿 1 、 3 ,因 此,转子转到两个磁拉力平衡为止。这时转 子的位置如图 3b 所示,即转子从图 (a) 位 置顺时针转过了 15° 。接着 A 相断电, B 相继续通电。这时转子齿 2 、 4 和定子 B 、 B′ 极对齐(图 c ),转子从图 (b) 的位置又 转过了 15° 。其位置如图 3d 所示。这样, 如果按 A→A 、 B→B→B 、 C→C→C 、 A→A… 的顺序轮流通电,则转子便顺时针 方向一步一步地转动,步距角 15° 。电流 换接六次,磁场旋转一周,转子前进了一个 齿距角。如果按 A→A 、 C→C→C 、 B→B→B 、 A→A… 的顺序通电,则电机 转子逆时针方向转动。这种通电方式称为六 拍方式。

数控伺服系统介绍

数控伺服系统介绍

数控伺服系统介绍数控伺服系统介绍随着数字化和自动化技术的发展,数控伺服系统在机械加工、自动化控制、机器人等领域中越来越得到广泛的应用。

数控伺服系统是一种利用数控技术和伺服技术相结合的控制系统,具有高精度、高可靠性、高速度和高灵敏度等特点,被广泛应用于高科技领域中。

数控伺服系统由伺服控制器、伺服电机、传感器和负载等几个基本组成部分构成。

其中伺服控制器是数控伺服系统的核心部分,负责对伺服电机进行控制和调节;伺服电机则是负责将电能转化为机械能的核心部件,将电信号转化为运动控制信号;传感器则是利用位置、速度和力等物理量进行测量,并通过反馈控制实现系统的闭环控制;而负载则是指受到控制力的物理对象,例如机器人等自动化设备。

伺服控制器是数控伺服系统的最核心部分,是将机器加工的动作进行可编程化的设定和控制,实现对机器的可靠控制。

伺服控制器的工作原理是将伺服电机控制信号传输到控制器内的电路板上,通过内部电路板将电器信号转化为脉冲信号,再通过编程控制,使伺服马达根据编程指令进行动作控制。

传感器是数控伺服系统的重要组成部分,被广泛应用于过程监测、异常诊断、故障预测等领域中。

传感器主要分为原理性传感器和物理量传感器两种类型,通过测量物理量来实现对系统状态的检测和控制。

原理性传感器主要包括温度传感器、气敏传感器、压力传感器、水质传感器等,主要用于测量温度、湿度、压力、水质等参数。

而物理量传感器主要是用于测量力、速度、方向等物理量的传感器,例如力传感器、速度传感器、角度传感器等。

伺服电机是数控伺服系统的控制核心部分,通过将电器信号转化为运动控制信号,实现对机器的精定位和高速控制。

伺服电机具有重力偏差小、力矩大、稳定性好等特点,常被应用于精密加工、自动化控制、机器人等领域中。

伺服电机根据不同的工作环境情况,可以分为交流伺服电机和直流伺服电机两种类型,而正弦伺服电机、矩形伺服电机、齿轮箱电机等则是根据不同的工作特点和应用场合而设计出来的。

数控机床对伺服系统的要求

数控机床对伺服系统的要求

数控机床对伺服系统的要求(1) 精度高伺服系统的精度:输出量能复现输入量的精确程度。

伺服系统的位移精度:指令脉冲要求机床工作台进给的位移量和该指令脉冲经伺服系统转化为工作台实际位移量之间的符合程度。

两者误差愈小,位移精度愈高。

(2) 快速响应特性好快速响应是伺服系统动态品质的重要指标,它反映了系统跟踪精度。

机床进给伺服系统实际上就是一种高精度的位置随动系统,加工时为保证所要求的轮廓外形精度和的表面粗糙度,要求伺服系统跟踪指令信号的响应要快,跟随误差小。

(3) 调速范围要大调速范围:生产机械要求电机能供应的最高转速和最低转速之比。

在数控机床中,由于所用刀具、加工材料及零件加工要求的不同,为保证在各种状况下都能得到最佳切削条件,就要求伺服系统具有足够宽的调速范围。

既能满意高速加工要求,又能满意低速进给要求。

在低速切削时,还要求伺服系统能输出较大的转矩。

(4) 系统牢靠性要好系统的牢靠性常用发生故障时间间隔的长短的平均值作为依据,即平均无故障时间,这个时间越长牢靠性越好。

对主轴伺服系统,除上述要求外,还应满意如下要求:(1)主轴与进给驱动的同步掌握为使数控机床具有螺纹和螺旋槽加工的力量,要求主轴驱动与进给驱动实现同步掌握。

(2)准停掌握在加工中心上,为了实现自动换刀,要求主轴能进行高精确位置的停止。

(3)角度分度掌握角度分度掌握有两种类型:一是固定的等分角度掌握;二是连续的任意角度掌握。

任意角度掌握是带有角位移反馈的位置伺服系统,这种主轴坐标具有进给坐标的功能,称为“C”轴掌握。

“C”轴掌握可以用一般主轴掌握与“C”掌握切换的方法实现,也可以用大功率的进给伺服系统代替主轴系统。

第五章 数控机床的伺服驱动系统

机可能在过载的条件下工作,这就要求电动机有较强的抗过 载能力。通常要求在数分钟内过载4~6倍而不损坏。
(7)惯性匹配 移动部件加速和降速时都有较大的惯量,由于要求系统
的快速响应性能好,因而电动机的惯量要与移动部件的惯量 匹配。通常要求电动机的惯量不小于移动部件惯量。
数控机床的伺服驱动系统
5.2 位置控制
D/A 转换器
伺服放大器
伺服 电动机
Pf 反馈脉冲
位置检测
脉冲处理
图 5-2 脉冲比较伺服系统结构框图
工作台
光栅或光 电编码器
数控机床的伺服驱动系统
(1) 由计算机数控制装置提供指令的脉冲。 (2) 反映机床工作台实际位置的位置检测器。 (3) 完成指令信号与反馈信号相比较的比较器。 (4) 将比较器输出数字信号转变成伺服电动机模拟控制 信号的数/模转换器。 (5) 执行元件(伺服电动机)。
数控机床的伺服驱动系统
(1)指令脉冲PC=0,这时反馈脉冲Pf=0,则Pe=0,则伺
服电动机的速度给定为零,工作台继续保持静止不动。
(2)现有正向指令PC+=2,可逆计数器加2,在工作台尚 未移动之前,反馈脉冲Pf+=0,可逆计数器输出Pe=Pc+-Pf+=2
-0=2,经转换,速度指令为正,伺服电动机正转,工作台 正向进给。
CP A9 ≥1
CP
RC
+Vcc B
A A10 RD Q +Vcc
A3
DS
A4
Q CP
≥1
A7
DS
CPQ
A8 ≥1
RC
+Vcc BQ
A A11 RD +Vcc
D Q7 A12

数控系统伺服驱动器接线及参数设定

数控系统伺服驱动器接线及参数设定数控系统是一种实现数控机床运动控制的系统,它通过数控程序控制伺服驱动器驱动电机实现机床各轴的精确定位和运动控制。

正确的接线和参数设定对于数控系统的稳定运行和良好性能至关重要。

一、数控系统伺服驱动器接线1.电源线接线:将电源线的两根火线分别接入伺服驱动器的AC1和AC2端口,将零线接入伺服驱动器的COM端口。

2.电动机线接线:将电动机的三根相线分别接入伺服驱动器的U、V、W端口,注意保持相序正确。

3.编码器线接线:将编码器的信号线分别接入伺服驱动器的A相、B相和Z相端口,注意保持对应关系。

4.I/O信号线接线:将数控系统的输入信号线分别接入伺服驱动器的I/O端口,将数控系统的输出信号线分别接入伺服驱动器的O/I端口。

二、数控系统伺服驱动器参数设定伺服驱动器的参数设定包括基本参数设定和运动参数设定。

1.基本参数设定:包括电源参数设定、电机参数设定和编码器参数设定。

-电源参数设定:设置电源电压和频率等基本参数,确保电源供电稳定。

-电机参数设定:设置电机类型、额定电流、极数等参数,确保驱动器与电机匹配。

-编码器参数设定:设置编码器型号、分辨率等参数,确保编码器信号精确反馈。

2.运动参数设定:包括速度参数设定、加速度参数设定和位置参数设定。

-速度参数设定:设置速度环的比例增益、积分增益和速度限制等参数,确保速度控制精度。

-加速度参数设定:设置加速度环的比例增益、积分增益和加速度限制等参数,确保加速度控制平稳。

-位置参数设定:设置位置环的比例增益、积分增益和位置限制等参数,确保位置控制准确。

3.其他参数设定:包括滤波参数设定、限位参数设定和插补参数设定等。

-滤波参数设定:设置滤波器的截止频率和衰减系数等参数,确保驱动器与电机的振动减小。

-限位参数设定:设置限位开关的触发逻辑和触发动作等参数,确保机床在限位时及时停止。

-插补参数设定:设置插补周期、插补梯度和插补速度等参数,确保插补运动的平滑与快速。

数控技术 第七章 数控机床的进给伺服系统


三 步进电动机的基本控制方法
(2) 双电压功率放大电路 优点:功耗低,改善了脉冲 优点:功耗低, 前沿。 前沿。 缺点:高低压衔接处电流波 缺点: 形呈凹形, 形呈凹形,使步进电机 输出转矩降低, 输出转矩降低,适用于 大功率和高频工作的步 进电机。 进电机。
三 步进电动机的基本控制方法
(3) 斩波恒流功放电路 优点: 优点:1)R3较小(小 R3较小( 较小 于兆欧) 于兆欧)使整个 系统功耗下降, 系统功耗下降, 效率提高。 效率提高。 2)主回路不串 电阻, 电阻,电流上升 快,即反应快。 即反应快。 3)由于取样绕 组的反馈作用, 组的反馈作用, 绕组电流可以恒定在确定的数值上, 绕组电流可以恒定在确定的数值上,从而保证在很大频率范 围内,步进电机能输出恒定的转矩。 围内,步进电机能输出恒定的转矩。
二 数控机床对伺服系统的基本要求
1 高精度 一般要求定位精度为0.01~0.001mm; ; 一般要求定位精度为 高档设备的定位精度要求达到0.1um以上。 以上。 高档设备的定位精度要求达到 以上 2 快速响应 3 调速范围宽 调速范围指的是 max/nmin 。 调速范围宽:调速范围指的是 调速范围指的是:n 进给伺服系统:一般要求 进给伺服系统 一般要求0~30m/min,有的已达到 一般要求 ,有的已达到240m/min 主轴伺服系统:要求 主轴伺服系统 要求1:100~1:1000恒转矩调速 要求 恒转矩调速 1:10以上的恒功率调速 以上的恒功率调速
一 直流伺服电动机调速原理
7-30 直流电动机的机械特性
二 直流电动机的PWM调速原理 直流电动机的 调速原理
7-24 脉宽调制示意图 脉宽调制示意图
Ud =
τ
T
U = δ T U δ T 称为导通率

第七章数控机床伺服系统


第一节 概述
2、数控机床对进给伺服系统的要求
(5) 调速范围要宽,低速时能输出大转矩 调速范围要宽,低速时能输出大转矩。机床的调速范围RN是指机床要求 电动机能够提供的最高转速nmax和最低转速nmin之比,即:
R
N
=
n max n min
其中nmax和nmin一般是指额定负载时 额定负载时的电动机最高转速和最低转速,对于 额定负载时 小负载的机械也可以是实际负载时最高和最低转速。一般的数控机床进 给伺服系统的调速范围RN为1:24 000就足够了,代表当前先进水平的速 度控制单元的技术已可达到1:100 000的调速范围。同时要求速度均匀、 稳定、无爬行,且速降要小。在平均速度很低的情况下(1mm/min以下) 要求有一定瞬时速度。零速度时要求伺服电动机处于锁紧状态,以维持 定位精度。
第 二 节 典 型 进 给 伺 服 系 统

柔性差: 柔性差:系统全由硬件构成,使得它的各调节器参数在机电联 调整定后就固定下来了,不易改变,这对负载惯量变化不大的 位置伺服系统(如车床刀架进给控制),可获得满意的控制性 。 对 负载惯量 大的系统, 。 的数 , 在整
(负载惯量变化) – 量 化成 , 响 电
第一节 概述
1、数控机床伺服系统的概念及组成 (1)在位置控制中,根据插补运算得到的为之指令 (即一串脉冲指令或二进制数据),与位置检测装置 反馈来的机床坐标轴的实际位置进行比较,形成位置 偏差,经变换得到速度给定电压。 (2)在速度控制中,伺服驱动装置根据速度给定电 压和速度检测装置反馈的实际转速对伺服电动机进行 控制,以驱动机床部件,从而把速度量变为位置量。
提高系统 精度 环 措施 的精度;
一. 开环进给伺服系统
传动间隙补偿 在整个行程范围内测量传动机构传动间隙,取其平均值存放 在数控系统中的间隙补偿单元,当进给系统反向运动时,数控 系统自动将补偿值加到进给指令中,从而达到补偿目的。 – 螺矩误差补偿 滚珠丝杆在数控机床应用广泛,虽然滚珠丝杆精度较高,但 的 精 , 将其精度控 在一 的范围内的, 的螺 存在 一 的误差的, 用 机的运 , 补偿滚珠丝 的螺矩 误差, 高进给 精度。 测量 进给丝 螺 误差 ( ),然 用 误差补偿 补偿 补偿。 补偿 –
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/11
6.1.2 伺服系统的分类
半闭环数控系统
半闭环数控系统的位置采样点如图所示,是从驱动装置(常 用伺服电机)或丝杠引出,采样旋转角度进行检测,不是直 接检测运动部件的实际位置。
CNC 插补 指令
位置控制单元 + -
位置控制调节 器
速度控制单元
+
-
速度控制 调节与驱动
实际 位置 反馈
200%
0
500
1000
1500 n
图6﹒8永磁直流伺服电机工作曲线
Ⅰ区为连续工作区; Ⅱ区为断续工作区,由负 载-工作周期曲线决定工作时间;Ⅲ区为瞬时加 减速区
0 1 3 tR 6 10 30 60 100 tR(min)
图6﹒9负载-工作周期曲线
2020/8/11
4.主轴直流伺服电机的工作原理和特性
速度控制 调节与驱动
实际 位置 反馈
实际 速度 反馈
检测与反馈 单元
机械执行部件 电机
2020/8/11
6.1.2 伺服系统的分类
从理论上讲,可以消除整个驱动和传动环节的误差、间 隙和失动量。具有很高的位置控制精度。
由于位置环内的许多机械传动环节的摩擦特性、刚性和 间隙都是非线性的,故很容易造成系统的不稳定,使闭 环系统的设计、安装和调试都相当困难。
图6.15 交流主轴伺服电机的特性曲线
2020/8/11
3、交流伺服电机的发展
(1)永磁交流同步伺服电机的发展 ① 新永磁材料的应用 钕铁硼 ② 永久磁铁的结构改革 内装永磁交流同步伺服电机 ③ 与机床部件一体化的电机 空心轴永磁交流同步伺服电机
(2)交流主轴伺服电机的发展 ① 输出转换型交流主轴电机 三角-星形切换,绕组数切换或二者组合切换。 ② 液体冷却电机 ③ 内装式主轴电机
和最低转速之比。0~24m / min。
5.低速大转矩 进给坐标的伺服控制属于恒转矩控制,在整个速度
范围内都要保持这个转矩;主轴坐标的伺服控制在低速时为恒转
矩控制,能提供较大转矩。在高速时为恒功率控制,具有足够大
的输出功率。
2020/8/11
6.1.2 对伺服系统的基本要求
对伺服电机的要求:
(1)调运范围宽且有良好的稳定性,低速时的速度平稳性 (2)电机应具有大的、较长时间的过载能力,以满足低速
P,T
1
2
2020/8/11
O
nj
nmax
n
图6.10 直流主轴电机特性曲线 1-转矩特性曲线 2-功率特性曲线
6.2 2 交流伺服电机及工作特性
直流伺服电机的缺点:
◆ 它的电刷和换向器易磨损;
◆ 电机最高转速的限制,应用环境的限制;
◆ 结构复杂,制造困难,成本高。
交流伺服电机的优点:
◆ 动态响应好;
度。包括定位精度和轮廓加工精度。
2.稳定性好 稳定是指系统在给定输入或外界干扰作用下,能在
短暂的调节过程后,达到新的或者恢复到原来的平衡状态。直接
影响数控加工的精度和表面粗糙度。
3.快速响应 快速响应是伺服系统动态品质的重要指标,它反映 了系统的跟踪精度。
4.调速范围宽 调速范围是指生产机械要求电机能提供的最高转速
Ua Ia Ra Ea
(6.2)
Ua─ 电枢上的外加电压;Ra─ 电枢电阻;Ea─ 电枢反电势。
电枢反电势与转速之间有以下关系:
Ea Ke
(6.3)
Ke─电势常数;ω─电机转速(角速度)。
根据以上各式可以求得:
Ua
Ra
TM
Ke Ke KT 2
(6.4)
2020/8/11
2一般直流电机的工作特性
大转矩的要求。 (3)反应速度快,电机必须具有较小的转动惯量、较大的
转矩、尽可能小的机电时间常数和很大的加速度 (400rad / s2以上)。 (4)能承受频繁的起动、制动和正反转。
2020/8/11
6.1.2 伺服系统的分类
1.按调节理论分类
(1)开环伺服系统
脉冲 驱动电路
步进电机
工作台
(2)闭环伺服系统
速度反馈
位置反馈
位置、速度和电流环均由:调节控制模块、检测和反馈 部分组成。电力电子驱动装置由驱动信号产生电路和功率 放大器组成。
严格来说:位置控制包括位置、速度和电流控制;速度 控制包括速度和电流控制。
2020/8/11
6.1.2 对伺服系统的基本要求
1.精度高
伺服系统的精度是指输出量能复现输入量的精确程
2020/8/11
6.1.2 伺服系统的分类
3.按被控对象分类 (1)进给伺服系统 指一般概念的位置伺服系统,包 括速度控制环和位置控制环。 (2)主轴伺服系统 只是一个速度控制系统。 C 轴控制功能。
4.按反馈比较控制方式分类 (1)脉冲、数字比较伺服系统 (2)相位比较伺服系统 (3)幅值比较伺服系统 (4)全数字伺服系统
图6﹒11 永磁交流同步伺服电机结构
1.永磁交流同步伺服电机的结构和工作原理
2020/8/11
1.永磁交流同步伺服电机的结构和工作原理
(2)永磁交流同步伺服电机工作原理和性能
N θ ns nr
S
图6﹒12 工作原理
T(N-cm)
12000
10000
8000
V

S
6000
4000
2000

0
1000 2000 3000 n(r/min)
该系统主要用于精度要求很高的镗铣床、超精车床、超 精磨床以及较大型的数控机床等。
2020/8/11
6.1.2 伺服系统的分类
2.按使用的执行元件分类
(1)电液伺服系统 电液脉冲马达和电液伺服马达。 优点:在低速下可以得到很高的输出力矩,刚性好,时间常 数小、反应快和速度平稳。 缺点:液压系统需要供油系统,体积大。噪声、漏油。
⑵ 动态特性
直流电机的动态力矩平衡方程式为
TM TL J d
dt
式中
TM ─电机电磁转矩; TL ─ 折算到电机轴上的负载转矩; ω ─ 电机转子角速度; J ─ 电机转子上总转动惯量;
t ─时间自变量。
(6.8)
2020/8/11
3.永磁直流伺服电机的工作特性
(1) 永磁直流伺服电机的性能特点 1) 低转速大惯量 2) 转矩大 3) 起动力矩大 4) 调速泛围大,低速运行平稳,力矩波动小 (2) 永磁直流伺服电机性能用特性曲线和数据表描述 1) 转矩-速度特性曲线(工作曲线) 2) 负载-工作周期曲线
2020/8/11
6.3 速度控制
概述:
速度控制系统由速度控制单元、伺服电机和速度检测 装置组成。分为主运动和进给运动。
2020/8/11
6.1.1 伺服系统的组成
组成:伺服电机
驱动信号控制转换电路 电子电力驱动放大模块 位置调节单元 速度调节单元 电流调节单元 检测装置 一般闭环系统为三环结构:位置环、速度环、电流环。
2020/8/11
位置调解
6.1.1 伺服系统的组成
速度调解
电流调解
转换驱动
M
工作台
电流反馈
G
(2)电气伺服系统 伺服电机(步进电机、直流电机和交流电机) 优点:操作维护方便,可靠性高。
1)直流伺服系统 进给运动系统采用大惯量宽调速永磁直流伺 服电机和中小惯量直流伺服电机;主运动系统采用他激直流伺 服电机。优点:调速性能好。缺点:有电刷,速度不高。
2)交流伺服系统 交流感应异步伺服电机(一般用于主轴伺服系 统) 和永磁同步伺服电机(一般用于进给伺服系统)。 优点:结构简单、不需维护、适合于在恶劣环境下工作。动 态响 应好、转速高和容量大。
过载倍数Tmd,负载工作周期比 d。 3) 数据表:N、T、时间常数、转动惯量等等。
2020/8/11
3.永磁直流伺服电机的工作特性
d%
M/(N-cm)
转矩极限
12000
80
10000
瞬时换向极限
8000

60
6000 Ⅱ
换向极限
4000
温度极限
2000 Ⅰ
速度极限 40
d 20
110% 120% 130% 140% 160% 180%
第 6 章 数控伺服系统
2020/8/11
6.1 概 述
伺服系统是指以机械位置或角度作为控制对象的自 动控制系统。它接受来自数控装置的进给指令信号, 经变换、调节和放大后驱动执行件,转化为直线或旋 转运动。伺服系统是数控装置(计算机)和机床的联系 环节,是数控机床的重要组成部分。
数控机床伺服系统又称为位置随动系统、驱动系 统、伺服机构或伺服单元。
2020/8/11
6.2 伺服电动机
伺服电动机为数控伺服系统的重要组成部分,是速 度和轨迹控制的执行元件。
数控机床中常用的伺服电机: 直流伺服电机(调速性能良好) 交流伺服电机(主要使用的电机) 步进电机(适于轻载、负荷变动不大) 直线电机(高速、高精度)
2020/8/11
6.2.1 直流伺服电机及工作特性
半闭环数控系统结构简单、调试方便、精度也较高,因 而在现代CNC机床中得到了广泛应用。
2020/8/11
6.1.2 伺服系统的分类
全闭环数控系统
全闭环数控系统的位置采样点如图的虚线所示,直接对 运动部件的实际位置进行检测。
CNC 插补 指令
位置控制单元 + -
位置控制调节 器
速度控制单元
+
-
常用的直流电动机有:永磁式直流电机(有槽、无槽、杯型、 印刷绕组)
励磁式直流电机 混合式直流电机 无刷直流电机 直流力矩电机
直流进给伺服系统: 永磁式直流电机类型中的有槽电枢永磁直 流电机(普通型);
相关文档
最新文档