三年高考2016-2018高考数学试题分项版解析专题24立体几何中综合问题文含解析

合集下载

三年高考2016_2018高考数学试题分项版解析专题28选修部分文含解析96.doc

三年高考2016_2018高考数学试题分项版解析专题28选修部分文含解析96.doc

专题28 选修部分 文考纲解读明方向 考纲解读分析解读 1.本章主要考查绝对值的几何意义,绝对值不等式的解法及不等式证明的基本方法.2.绝对值不等式及不等式的证明均为高考的常考点.本章在高考中以解答题为主,往往涉及含有两个绝对值的问题,考查分类讨论、等价转化和数形结合等思想方法,分值约为10分,难度中等.2018年高考全景展示1.【2018年文数天津卷】已知圆的圆心为C ,直线(为参数)与该圆相交于A ,B 两点,则的面积为___________.【答案】【解析】分析:由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可.详解:由题意可得圆的标准方程为:,直线的直角坐标方程为:,即,则圆心到直线的距离:,由弦长公式可得:,则.点睛:处文直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.2.【2018年文北京卷】在极坐标系中,直线与圆相切,则a=__________.【答案】【解析】分析:根据将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a.详解:因为,由,得,由,得,即,即,因为直线与圆相切,所以点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.3.【2018年江苏卷】在极坐标系中,直线l的方程为,曲线C的方程为,求直线l 被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为【解析】分析:先根据直线与圆极坐标方程得直线与圆的一个交点为A(4,0),且OA为直径.设直线与圆的另一个交点为B,根据直线倾斜角得∠OAB=.最后根据直角三角形OBA求弦长.点睛:本题考查曲线的极坐标方程等基础知识,考查运算求解能力.4.【2018年文新课标I卷】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.【解析】分析:(1)就根据,以及,将方程中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.【2018年全国卷Ⅲ文】在平面直角坐标系中,的参数方程为(为参数),过点5.且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】分析:(1)由圆与直线相交,圆心到直线距离可得。

三年高考2016_2018高考数学试题分项版解析专题20圆锥曲线的综合问题理含解析word格式

三年高考2016_2018高考数学试题分项版解析专题20圆锥曲线的综合问题理含解析word格式

专题20 圆锥曲线的综合问题考纲解读明方向分析解读 1.了解解析几何的基本思想和研究几何问题的方法——坐标法.2.理解轨迹的概念.能够根据所给条件选择适当的直角坐标系,运用求轨迹方程的常用方法(如:直接法、代入法、定义法、待定系数法、参数法、交轨法等)求轨迹方程.3.本节在高考中以求曲线的方程和研究曲线的性质为主,分值约为12分,属中高档题.分析解读 1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重对数学思想方法的考查,分值约为12分,难度偏大.全景展示高考年82011.【2018年江苏卷】如图,在平面直角坐标系中,椭圆C 过点,焦点,圆O 的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.2.【2018年理新课标I卷】设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.【答案】(1) AM的方程为或.(2)证明见解析.【解析】分析:(1)首先根据与轴垂直,且过点,求得直线l的方程为x=1,代入椭圆方程求得点A的坐标为或,利用两点式求得直线的方程;(2)当l与x轴重合时,.当l与x轴垂直时,OM为AB的垂直平分线,所以.当l与x轴不重合也不垂直时,设l的方程为,,则,直线MA,MB的斜率之和为.由得.将代入得.所以,.则.从而,故MA,MB的倾斜角互补,所以.综上,.点睛:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.2017年全景展示高考1.【2017课标1,理20】已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.【解析】试题分析:(1)根据,两点关于y轴对称,由椭圆的对称性可知C经过,两点.另外知,C不经过点P1,所以点P2在C上.因此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B的斜率分别为k1,k2,在设直线l的方程,当l与x轴垂直,通过计算,不满足题意,再设设l:(),将代入,写出判别式,韦达定理,表示出,根据列出等式表示出和的关系,判断出直线恒过定点.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,).则,得,不符合题设.从而可设l:().将代入得由题设可知.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.而.由题设,故.即.解得.当且仅当时,,欲使l:,即,所以l过定点(2,)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简.2.【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。

专题24 推理与证明—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)

专题24 推理与证明—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)

专题24 推理与证明一、选择题1.【2014山东.文4】用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是( )A.方程02=++b ax x 没有实根 B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根 D.方程02=++b ax x 恰好有两个实根2.【2014山东.文9】对于函数)(x f ,若存在常数0≠a ,使得x 取定义域内的每一个值,都有)2()(x a f x f -=,则称)(x f 为准偶函数,下列函数中是准偶函数的是( )A x x f =)( B 2)(x x f = C x x f tan )(= D )1cos()(+=x x f 3.【2015高考浙江,文8】设实数a ,b ,t 满足1sin a b t +==()A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin2b 唯一确定D .若t 确定,则2a a +唯一确定4.【2015高考广东,文10】若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=()A .50B .100C .150D .2005.【2014高考广东卷.文.10】对任意复数1w .2w ,定义1212w w w w *=,其中2w 是2w 的共轭复数.对任意复数1z .2z .3z ,有如下四个命题:①()()()1231323z z z z z z z +*=*+*;②()()()1231213z z z z z z z *+=*+*;③()()123123z z z z z z **=**;④1221z z z z *=*.则真命题的个数是( )A .1B .2C .3D .46.【2014年普通高等学校招生全国统一考试湖北卷10】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( )A.227 B.258 C.15750 D.3551137.【2015高考湖北,文10】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为() A .77 B .49 C .45 D .308.【2014福建,文12】在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L-距离”定义为121212.PP x x y y =-+-则平面内与x 轴上两个不同的定点12,FF 的“L-距离”之和等于定值(大于12|||F F )的点的轨迹可以是()二、填空题1.【2016高考新课标2文数】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.2.【2016高考山东文数】观察下列等式:;;;;……照此规律,_________.3.【2015高考山东,文14】定义运算“⊗”:22x y x y xy -⊗=(,0x y R xy ∈≠,).当00x y >>,时,(2)x y y x ⊗+⊗的最小值是.4.【2015高考陕西,文16】观察下列等式:1-1122=1-1111123434+-=+1-1111111123456456+-+-=++…………据此规律,第n 个等式可为______________________.5.【2014四川,文15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。

三年高考(2016-2018)高考数学试题分项版解析专题20圆锥曲线的综合问题文(含解析)

三年高考(2016-2018)高考数学试题分项版解析专题20圆锥曲线的综合问题文(含解析)

专题20圆锥曲线的综合问题文分析解读 1.会处理动曲线(含直线)过定点的问题2会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重对数学思想方法的考查,分值约为12分,难度偏大.2018年咼考全景展示1.【2018年江苏卷】在平面直角坐标系-中,A为直线' 上在第一象限内的点,.•,以AB为直径的圆C与直线I交于另一点D.若曲•处=0,则点A的横坐标为 ________________ .【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.W :设则由圆^AB 中点得口字⑷易得0口匕一5出-小十)0-2町=6与F = 2*联立解得点D 的横坐标嘉=1所以巩九2〕一所以而=〔5 - m -2⑰而=(1 一字,2 -町, 由■ CD = 0得(5 — a)(l — -^-) + (—2町(2 — Q ) ~ Q,a 2 — 2a — 3 = 0, a = 3或a = —1, 因为ci >0,所加=3.点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的 一类综合问题•通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一 般方法•2.【2018年浙江卷】如图,已知点 P 是y 轴左侧(不含y 轴)一点,抛物线 C : y 2=4x 上存在不同的两点 A, B 满足PA PB的中点均在C 上.(I)设AB 中点为M 证明:PM 垂直于y 轴;=1(x <0)上的动点,求△ PAB 面积的取值范围.皿十]【解析】分析:(I)设P,AB 的纵坐标为 ■,根据中点坐标公式得 PAPB 的中点坐标,代入抛物线v + v_2vA MIMF I方程,可得-,即得结论,(n)由(I)可得△ PAB 面积为,利用根与系数的关系(H)若 【答案】 P 是半椭圆x 2+; (I)见解析(n)可表示’为的函数,根据半椭圆范围以及二次函数性质确定面积取值范围详解:(I )设吩小),贞⑺二)因为阳的中点在抛物线上』所以”,比为方程,■4- ■*•(警尸=4・迂二即严- 2y o y+ 8x0-话=o的两个不同的实数根.所以比+)2 = 2)0・因此,PM垂直于£空(II )S( I 河知丁轴.因此』' P月节的面积S二*占=?|P」I卜1)\ —)z I = 08 - 4用0)=因为瑞十乎=1(珀V 0)j所臥y? -如=-4疵-4x0 + 4 e [4.5].因此'"加面积的取值范围是[6厲专珂点睛:求范围问题,一般利用条件转化为对应一元函数问题,即通过题意将多元问题转化为一元问题,再根据函数形式,选用方法求值域,如二次型利用对称轴与定义区间位置关系,分式型可以利用基本不等式,复杂性或复合型可以利用导数先研究单调性,再根据单调性确定值域3.【2018年江苏卷】如图,在平面直角坐标系•中,椭圆C过点.•,焦点’’’,圆0的直径为’「•(1)求椭圆C及圆0的方程;(2)设直线I与圆O相切于第一象限内的点P.①若直线I与椭圆C有且只有一个公共点,求点P的坐标;2出②直线I与椭圆C交于两点•若 ''的面积为,求直线I的方程.—+y -1 2 2 c【答案】(1)椭圆C的方程为. ;圆0的方程为(2)①点P的坐标为' •;②直线I的方程为■■ '■■【解析】分析:(1 )根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2 )第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标•第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间 距离公式,列方程,解得切点坐标,即得直线方程徉解:解:⑴因为榊圆亡的焦点为坯—岛0)迅內0),可设椭圆C 的方程为咅+琴二1〔心占》臥又因为圆o 的直径为&&,所以其方程为.V 2 +y : = 3.2(2[①设直线I 与圆O 相切于"■< :门,贝U,所以直线I 的方程为- .( * )因为直线I 与椭圆C 有且只有一个公共点,点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求 解;二是设出点S 在椭圆比斜杜弔榊圆u 的方程为- + y 2=4,消去y ,得所以心=(-24牝屮-4(牡〔笳-纱的=项眇『魚2_2) = °.因为心所以叼二羽风=1 .因此,2花12^/6 侦“ "一 ----- ZZ?— ---------,从而.设——— —AROP =点P 的坐标为乙匕二.②因为三角形 OAB 的面积为,所以科牝 ± j48y 02(x 02- 2)x 12 = ---------------------gyjRgy 』,由(*)得2(席+膚),所以222 %’ 48y 02(x 02 - 2) =(畫广七)2 +3 -切2二仃+飞)• —応2 2.因为 '-■ U2 1=20y 0 =-,即^0<4^02+100 = 0,解得対方程为 •’...综上,直线由直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况4. 【2018年全国卷川文】已知斜率为 的直线 与椭圆'• "交于」,两点•线段•的中点为【答案】(1)证明见解析(2)证明见解析【解析】分析:(1 )设而不求,利用点差法,或假设直线方程,联立方程组,由判别式和韦达定理进行证 明。

三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)

三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)

专题25 立体几何中综合问题考纲解读明方向分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.2018年高考全景展示1.【2018年理数天津卷】如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).详解:依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.点睛:本题主要考查空间向量的应用,线面平行的证明,二面角问题等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线F G方向向量数量积不为零,可得结论. 详解:解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D (1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.3.【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 4.【2018年江苏卷】在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A 1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明. 5.【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】分析:(1)首先从题的条件中确定相应的垂直关系,即BF⊥PF,BF⊥EF,又因为,利用线面垂直的判定定理可以得出BF⊥平面PEF,又平面ABFD,利用面面垂直的判定定理证得平面PEF⊥平面ABFD.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD的法向量,设DP与平面ABFD所成角为,利用线面角的定义,可以求得,得到结果.详解:(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.6.【2018年全国卷Ⅲ理】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】分析:(1)先证平面CMD,得,再证,进而完成证明。

三年高考(2016-2018)高考数学试题分项版解析 专题32 选修部分 理(含解析)

三年高考(2016-2018)高考数学试题分项版解析 专题32 选修部分 理(含解析)

专题32 选修部分考纲解读明方向等式及不等式的证明均为高考的常考点.本章在高考中以解答题为主,往往涉及含有两个绝对值的问题,考查分类讨论、等价转化和数形结合等思想方法,分值约为10分,难度中等.2018年高考全景展示1.【2018年理数天津卷】已知圆的圆心为C ,直线(为参数)与该圆相交于A ,B 两点,则的面积为___________.【答案】【解析】分析:由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可.详解:由题意可得圆的标准方程为:,直线的直角坐标方程为:,即,则圆心到直线的距离:,由弦长公式可得:,则.点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法. 2.【2018年理北京卷】在极坐标系中,直线与圆相切,则a =__________.【答案】点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.3.【2018年江苏卷】在极坐标系中,直线l的方程为,曲线C的方程为,求直线l 被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为【解析】分析:先根据直线与圆极坐标方程得直线与圆的一个交点为A(4,0),且OA为直径.设直线与圆的另一个交点为B,根据直线倾斜角得∠OAB=.最后根据直角三角形OBA求弦长.详解:因为曲线C的极坐标方程为,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为,则直线l过A(4,0),倾斜角为,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=.连结OB,因为OA为直径,从而∠OBA=,所以.因此,直线l被曲线C截得的弦长为.点睛:本题考查曲线的极坐标方程等基础知识,考查运算求解能力.4.【2018年理新课标I卷】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.【解析】分析:(1)就根据,以及,将方程中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果.详解:(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.【2018年全国卷Ⅲ理】在平面直角坐标系中,的参数方程为(为参数),过点5.且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,.点睛:本题主要考查直线与圆的位置关系,圆的参数方程,考查求点的轨迹方程,属于中档题。

三年高考(2016-2018)数学(理)试题分项版解析——专题32 选修部分(原卷版)

三年高考(2016-2018)数学(理)试题分项版解析——专题32 选修部分(原卷版)

专题32 选修部分考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.含绝对值不等式的解法理解绝对值的几何意义,会证明和求解绝对值不等式掌握2017课标全国Ⅰ,23;2016课标全国Ⅰ,24解答题★★★2.不等式的证明了解证明不等式的基本方法掌握2017课标全国Ⅱ,23;2016课标全国Ⅱ,24解答题★★☆分析解读 1.本章主要考查绝对值的几何意义,绝对值不等式的解法及不等式证明的基本方法.2.绝对值不等式及不等式的证明均为高考的常考点.本章在高考中以解答题为主,往往涉及含有两个绝对值的问题,考查分类讨论、等价转化和数形结合等思想方法,分值约为10分,难度中等.2018年高考全景展示1.【2018年理数天津卷】已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为___________.2.【2018年理北京卷】在极坐标系中,直线与圆相切,则a=__________.3.【2018年江苏卷】在极坐标系中,直线l的方程为,曲线C的方程为,求直线l 被曲线C截得的弦长.4.【2018年理新课标I卷】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.5.【2018年全国卷Ⅲ理】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.6.【2018年理数全国卷II】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.7.【2018年江苏卷】若x,y,z为实数,且x+2y+2z=6,求的最小值.8.【2018年理新课标I卷】已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.9.【2018年全国卷Ⅲ理】设函数.(1)画出的图像;(2)当,,求的最小值.10.【2018年理数全国卷II】设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.2017年高考全景展示1.【2017天津,理11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.2.【2017北京,理11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0), 则|AP |的最小值为___________.3. 【2016年高考北京理数】在极坐标系中,直线cos sin 10ρθθ--=与圆2cos ρθ=交于A ,B 两点,则||AB =______.4.【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l a.5.【2017课标1,理】已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.6. 【2017课标II ,理22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。

三年高考(2016-2018)高考数学试题分项版解析 专题21 三视图的辨别与应用 理(含解析)

三年高考(2016-2018)高考数学试题分项版解析 专题21 三视图的辨别与应用 理(含解析)

专题21 三视图的辨别与应用考纲解读明方向等几何体的形成过程,正确把握轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法.3.理解三视图的形成过程及掌握三视图及直观图的画法.4.注重空间想象能力的培养.5.高考对本节的考查以三视图的识别和应用为主,分值约为5分,属中档题.2018年高考全景展示1.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2017年高考全景展示1.【2017课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.2.【2017浙江,3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12+πB .32+πC .123+πD .323+π【答案】A 【解析】试题分析:12)122121(3312+=⨯⨯+⨯⨯⨯=ππV ,选A . 【考点】 三视图【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)(B)(C)(D)2【答案】B【解析】试题分析:几何体是四棱锥,如图l==,故选B.红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.2016年高考全景展示1.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A )18+(B )54+(C )90 (D )81 【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.基本性质及推论,线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题. 2.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )13+ (C )13+ (D )1+【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.3.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin120132V=⨯⨯⨯⨯︒⨯=考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.4.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.【答案】7232考点:1、三视图;2、空间几何体的表面积与体积.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.5.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此体积为1(21)323V=⨯⨯⨯=.故答案为2.【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题24立体几何中综合问题文考纲解读明方向分析解读1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.2018年高考全景展示1.【2018年浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A. θ1≤θ2≤θ3 B. θ3≤θ2≤θ1 C. θ1≤θ3≤θ2 D. θ2≤θ3≤θ1 【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年全国卷II文】在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.【答案】C【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.3.【2018年浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面的一个法向量,然后利用与平面法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4.【2018年天津卷文】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】分析:(Ⅰ)由面面垂直的性质定理可得AD⊥平面ABC,则AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.由几何关系可知∠DMN(或其补角)为异面直线BC与MD所成的角.计算可得.则异面直线BC与MD所成角的余弦值为.(Ⅲ)连接CM.由题意可知CM⊥平面ABD.则∠CDM为直线CD与平面ABD所成的角.计算可得.即直线CD与平面ABD 所成角的正弦值为.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=.又因为平面ABC⊥平面ABD,而CM平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD==4.在Rt△CMD中,.所以,直线CD与平面ABD所成角的正弦值为.点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.5.【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.6.【2018年江苏卷】在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明. 7.【2018年新课标I卷文】如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.【答案】(1)见解析.(2)1.【解析】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.2017年高考全景展示1.【2017课标3,文9】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.B.C.D.【答案】B【解析】如果,画出圆柱的轴截面,,所以,那么圆柱的体积是,故选B.【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.【2016高考新课标1文数】平面过正文体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的正弦值为()(A)(B)(C)(D)【答案】A【解析】考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.3.【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【答案】【解析】【考点】球与几何体的组合体【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱锥的外接球,这样做题比较简单.4.【2017课标II,文18】如图,四棱锥中,侧面为等边三角形且垂直于底面,(1)证明:直线平面;(2)若△面积为,求四棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】试题分析:(1)先由平几知识得BC∥AD,再利用线面平行判定定理证结论,(2)取AD的中点M,利用面面垂直性质定理证明PM⊥底面ABCD,得四棱锥的高,再通过平几计算得底面直角梯形面积,最后代入椎体体积得体积.试题解析:(1)在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又,,故BC∥平面PAD.(2)取AD的中点M,连结PM,CM,由及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.【考点】线面平行判定定理,面面垂直性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.5.【2017课标3,文19】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)详见解析;(2)1【解析】试题分析:(1)取中点,由等腰三角形及等比三角形性质得,,再根据线面垂直判定定理得平面,即得AC⊥BD;(2)先由AE⊥EC,结合平几知识确定,再根据锥体体积公式得,两者体积比为1:1.试题解析:(1)证明:取中点,连∵,为中点,∴,又∵是等边三角形,∴,又∵,∴平面,平面,∴.【考点】线面垂直判定及性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.6.【2017北京,文18】如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC;(Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.【答案】详见解析【解析】试题解析:证明:(I)因为,,所以平面,又因为平面,所以.(II)因为,为中点,所以,由(I)知,,所以平面,所以平面平面.(III)因为平面,平面平面,所以.因为为的中点,所以,.由(I)知,平面,所以平面.所以三棱锥的体积.【考点】1.线面垂直的判断和性质;2,。

相关文档
最新文档