2.2 提公因式法(含答案)-

合集下载

提公因式法(第2课时)

提公因式法(第2课时)

探究新知
因式分解: − + ( − )
因式分解
解: − + ( − )=( − )( + )
多项式乘多项式
注意:公因式既可以是一个单项式的形式,也可以
是一个多项式的形式.
探究新知
素养考点 1 提公因式为多项式的因式分解

因式分解: + + ( + )
(n是偶数)
(n是奇数)
(n是整数)
探究新知
素养考点 1
提符号不同的多项式的因式分解
例1 因式分解: ( − ) −( − )
解:( − ) −( − )
=( − ) − −( − )
=( − ) − −

=( − ) ( − − )
因式分解: − + ( − )
(1)多项式的公因式是什么?( − )
(2)如何将多项式因式分解? 可将( − )看做整体.
分析:设 − = ,则原式变形为 + ,
∴ + = ( + ),
整体思想 即 − + − = ( − )( + )

巩固练习
变式训练
把下列各式因式分解:
(1)( + ) + ( + );
(2) − − ( − );
解: (1)( + ) + ( + )=( + )( + );
(2) − − − = − − ;
巩固练习
(3)( + ) −( + );
D. − ( + − )
课堂检测

因式分解综合复习(含答案)

因式分解综合复习(含答案)

因式分解综合复习知识点一(提公因式法)【知识梳理】提取公因式法:如果一个多项式的各项含有公因式,那么可以把该公因式提取出来,作为多项式的一个因式,提出公因式后的式子放在括号里,作为另一个因式,这种分解因式的方法叫做提取公因式法. 注意事项(1)如果多项式的首项是负数时,一般先提出“—”号,使括号内的第一项系数是正数.(2)利用提取公因式法分解因式是,一定要“提干净”.(3)注意避免出现分解因式的漏项问题,一般提取公因式后,括号里的多项式项数应与原多项式的项数一致.(4)多项式的公因式可以是数字、字母,也可以是单项式,还可以是多项式. 【例题精讲】例1、(1)y x x 34488-- (2) ab b a b a 264223-+-点拨:提取公因式后剩余的多项式的项数与原多项式的项数相同,由此可以检验是否漏项.【课堂练习】1、将下列各式因式分解(1)32269a b a b c - (2)322812m m m -+- (3)2()3()m a b n b a ---2、多项式15m 3n 2+5m 2n-20m 2n 3的公因式是____.3、分解因式(1)x (x ﹣2)﹣3(2﹣x ) (2)2x (a ﹣b )﹣3(b ﹣a )知识点二(运用公式法) 【知识梳理】将乘法公式反过来写就得到因式分解中所用的公式,常见公式如下: 1. 平方差公式: ))((22b a b a b a -+=- 2. 完全平方公式:222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 三项和完全平方公式:2222)(222c b a bc ac ab c b a ++=+++++4. 完全立方公式:33223)(33b a b ab b a a +=+++33223)(33b a b ab b a a -=-+-5. 立方和公式:))((2233b ab a b a b a +-+=+6. 立方差公式:))((2233b ab a b a b a ++-=-【例题精讲】例1、(1)22169mn m n -+ (2)2221x xy y -+-【课堂练习】1、161)(21)(2+---y x y x =____________.222,248a b a b a b A B C +--+、已知为任何实数,则的值总是()、负数、正数、 0D 、非负数3、把下列多项式分解因式:(1) x 2+10x +25 (2) 4a 2+36ab +81b 2 (3)-4xy -4x 2-y24、因式分解(1)﹣3a 3b +6a 2b 2﹣3ab 3 (2)﹣3ma 2+12ma ﹣9m(3)x 3﹣4x (4)2x 2y ﹣8y知识点三(分组分解法) 【知识梳理】分组分解法:通过对多项式的项分组,将多项式分解因式的方法叫做分组分解法。

4.2.2提公因式法 教案 2021--2022学年北师大版八年级数学下册

4.2.2提公因式法  教案     2021--2022学年北师大版八年级数学下册

课题 4.2.2 提公因式法学习目标1.进一步探索寻找多项式各项公因式的过程,能通过转化确定带括号多项式各项的公因式;2. 会用提取公因式法较复杂的多项式进行因式分解;3. 领会确定多项式各项的公因式的一般方法,培养观察、转化与计算能力;重点难点重点:会用提取公因式法进行因式分解难点:会确定较复杂的多项式各项的公因式教法选择合作探究、练习指导课型新授课课前准备多媒体课件是否采用多媒体是教学时数2课时教学时数第2 课时备课总数第课时教学设计思路及其意图本节课的设计以上节课的知识为基础,在训练学生代数感觉的基础上,开展更深层次的练习。

教案设计了许多的关于解决多项式符号问题的题目,加强练习强化和归纳细化,让学生获得知识的同时,提升能力。

课堂教学过程设计教学内容教师活动学生活动一、回顾思考:(把下列各式因式分解)(1)am+an (2)a2b-5ab (3)m2n+mn2-mn (4)-2x2y+4xy2-2xy 二、引入新课,探索新知(一)知识链接1、计算① m(a+b+c)=② x(3x-6y+1)=2、请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=_____(a-2);(2)y-x=_____(x-y);(3)b+a=_____(a+b),(4)-m-n=____-(m+n);提问提取公因式的基本方法与步骤,然后让学生进行因式分解出示例2,引导学生通过观察、类比将提取单项式公因式的方法与步骤推广应用于提取例2的公因式出示2中问题,学生观察思考,为解决符号问题准备回顾提取公因式的方法与步骤,回答并进行练习用类比的方法找到式子中相同的因式,说出公因式的特征(多项式),并尝试说出分解的结果观察式子特征,进行恒等变形,并寻找规律,总结探究注意的事项主备人:备课组长签字:教学内容教师活动 学生活动 (二)自主学习,合作探究 1、议一议;多项式ma+mb+mc 各项都含有的相同因式是 ,多项式3x2-6xy+x 各项都含有的相同因式是 。

2.2 提公因式法 课件5(北师大版八年级下)

2.2 提公因式法 课件5(北师大版八年级下)

+
6y) ② 3x2 - 6xy+x= x(3x-6y)
③ - x2+xy-xz=
- x(x+y-z)
Page
7
学以致用
(1) 13.8×0.125+86.2×0.125
解:原式=13.8×0.125+86.2×0.125
=0.125×(13.8+86.2)
=0.125×100
=12.5
(2)已知a+b=5,ab=3,求a2b+ab2的值.
第四组: ① 8a3b2+12ab3c ②15a3-10a2
公因式是:各项系数的最大公约数与各项都含有的
相同字母(或相同因式)的最低次数幂的积。
Page 5
几点注意:
① a(x-y)+b(y-x) ② -4x2y-16xy+8x2 ③ 3x2
- 6xy+x
Page
6
火眼金睛
① 12x2y+18xy2= 3xy(4x
7.xy-x2y2-x3y3;
8.27x3+9x2y.
Page
10
以 m所得的商,像这种分解因式的方法叫做 ___________. 提公因式法
Page
4
你能把下列各式进行因式分解(写成乘积形式)吗?
第一组:①3x+3② 3x+3y ③ 2a-4b ④ 6m+4n
第二组:①ax+a ②mx+xy ③x2-x④x2+x3
第三组:①2a(b+c ) -3(b+c)
②(a+b)(a-b)-(a+b )
这个多项式分解因式.

2.2提公因式法(1课时)

2.2提公因式法(1课时)

2.2提取公因式法(1课时)授课教师:张娟【教材分析】因式分解是进行代数恒等变形的重要手段之一,它是在学习有理数和整式四则运算的基础上进行的,因式分解不仅在多项式的除法、简便运算中有直接作用,也为以后学习分式运算、解方程、方程组及代数式的恒等变形提供了必要的基础。

进行因式分解的途径很多,技巧性强,逆向思维能力要求较高。

所以因式分解是发展学生智力、培养能力、深化学生的逆向思维能力的良好载体。

【教材背景】“提取公因式法”是北师大版初中八年级数学下册“因式分解”一章的重点内容之一,是学生学习因式分解的第一种分解因式的方法。

是最基本也是最重要的因式分解方法。

应该培养学生的观察、分析、判断能力和预见能力。

【教学方法】(一)教法分析1.为了调动学生的学习的积极性,充分肯定学生的主体地位,使学生变被动学习为主动的学习,应采用师生问答,启发诱导法和练习法,,及组织学生活动法。

2.教具准备:课件,多媒体(二)、学法分析为了培养学生的数学思维能力、自学能力,这节课主要采用指导学生通过讨论完成相应的学习过程:预习—听课(问答)—反馈巩固—系统小结—完成作业。

以达到巩固、熟练知识的目的,同时指导学生注意运用观察分析的学习方法。

【教学目标】知识技能目标:理解公因式的概念,会找出多项式的公因式,并能用提取公因式法因式分解过程方法目标:初步形成观察、分析、概括的能力和逆向思维方式情感态度目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。

【教学重难点】教学重点:掌握公因式的概念,会使用提取公因式法进行因式分解教学难点:准确找出公因式。

【教学过程】一.回顾旧知1. 多项式的分解因式的概念:把一个多项式__________________的形式,叫做把这个多项式分解因式.2. 分解因式与整式乘法是_____过程.3. 分解因式要注意以下几点:①分解的对象必须是_______.②分解的结果一定是几个整式的_____的形式.二.探究新知1.公因式的定义及确定方法下列各多项式的各项有没有共同的因式?(1)ma+mb+mc (2)8 a 3 b2 –12ab 3 + ab从上面的代数式中,大家注意观察每一个代数式有什么特点?各项之间有什么联系?由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.①首先找各项系数的最大公约数,如8和12的最大公约数是4.②其次找各项中含有的相同的字母,如(2)中相同的字母有ab,相同字母的指数取次数最低的.【注意】多项式各项的公因式可以是单项式,也可以是多项式。

2.2提公因式法2

2.2提公因式法2
2n n x(a b)2n y (b a) 2 (b a) x(a b)2n y(a b)2n (b a)
1.解:x(a b)2n y(b a)2n1
(a b)2n [ x y(b a)]
(a b)2n ( x by ay)
试证明: 81 27 9 能被45整除.
7 9 13
证明: 81 27 9 (9 ) (9 3) 9
7 9 13 2 7 9
13
914 99 39 913 914 99 (32 ) 4 3 913
9 3 9 9
14 13 13
分解下列因式 (1)a( x y) b( y x); (2)6(m n)3 12(n m)2 ;
(x x y y) y x x)) 解: (1)a( ) b((y a( x y) b( x y)
( x y)(a b)
开 阔 视 野
(2)6(m n)3 12(n m)2
展 示 自 我
912 (9 2 3 9 9)
9 45
12
817 279 913能被45整除.
这节课你学到些什么?
1.用到哪些数学思想?
2.知道哪些解决的方法?
构 建 网 络
3.学到哪些数学知识?

作业:书上第47页习题2.3
补充作业:
1.分解因式: x( x y )(a b) y ( y x)(b a );
课 后 韵 味
2.解关于x的方程: 5 x( x 2) 4( x 2) 0.
结束寄语
• 要珍惜时间,思考一下一天之中做

提公因式法

提公因式法

⑴提公因式法各项都含有得公共得因式叫做这个多项式各项得公因式。

如果一个多项式得各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积得形式,这种分解因式得方法叫做提公因式法.具体方法:当各项系数都就是整数时,公因式得系数应取各项系数得最大公约数;字母取各项得相同得字母,而且各字母得指数取次数最低得;取相同得多项式,多项式得次数取最低得。

如果多项式得第一项就是负得,一般要提出“-”号,使括号内得第一项得系数成为正数。

提出“-”号时,多项式得各项都要变号.口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形瞧奇偶。

例如:-am+bm+cm=-m(a—b-c);a(x-y)+b(y-x)=a(x-y)—b(x—y)=(x-y)(a—b)。

注意:把2a+1/2变成2(a+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab+b^2=(a±b)^2;注意:能运用完全平方公式分解因式得多项式必须就是三项式,其中有两项能写成两个数(或式)得平方与得形式,另一项就是这两个数(或式)得积得2倍。

立方与公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a—b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)例如:a^2+4ab+4b^2 =(a+2b)^2。

(3)分解因式技巧1、分解因式与整式乘法就是互为逆变形.2、分解因式技巧掌握:①等式左边必须就是多项式;②分解因式得结果必须就是以乘积得形式表示;③每个因式必须就是整式,且每个因式得次数都必须低于原来多项式得次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

提取公因式

提取公因式

提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。

注意相同因数的提取。

例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)借来借去法看到名字,就知道这个方法的含义。

用此方法时,需要注意观察,发现规律。

还要注意还哦,有借有还,再借不难。

考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。

例如:9999+999+99+9=9999+1+999+1+99+1+9+1—4拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。

这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。

分拆还要注意不要改变数的大小哦。

例如:3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×25加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

例如:5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)拆分法和乘法分配律结这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。

例如:34×9.9 = 34×(10-0.1)案例再现:57×101=?利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。

例如:2072+2052+2062+2042+2083=(2062x5)+10-10-20+21利用公式法(1) 加法:交换律,a+b=b+a,结合律,(a+b)+c=a+(b+c).(2) 减法运算性质:a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法(与加法类似):交换律,a*b=b*a,结合律,(a*b)*c=a*(b*c),分配率,(a+b)xc=ac+bc,(a-b)*c=ac-bc.(4) 除法运算性质(与减法类似):a÷(b*c)=a÷b÷c,a÷(b÷c)=a÷bxc,a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2提公因式法
一、选择题:
1.多项式-4a2b2+12a2b2-8a3b2c的公因式是()
A.-4a2b2c B.-a2b2 C.-4a2b2D.-4a3b2c
2.若多项式-6mn+18mnx+24mny的一个因式是-6mn,那么另一个因式是()
A.-1-3x-4y B.1-3x-4y C.-1-3x+4y D.1+3x-4y
3.分解-3a2bc2+12a3b2c2+9a2bc3的结果是()
A.-a2bc2(3-12ab-9c) B.a2bc2(-3+12ab+9c)
C.-3(a2bc2-4a3b2c2-3a2bc3) D.-3a2bc2(1-4ab-3c)
4.下列提公因式法分解因式正确的是()
A.12abc-9a2b2=3abc(4-3ab) B.3x2y-3xy+6y=3y(x2-x+2y)
C.-a2+ab-ac=-a(a-b+c) D.x2y+5xy-y=y(x2+5x)
5.下列多项式中的公因式与多项式8x3+24x2+4x的公因式相同的有()
①8y3+24y2+4y;②32x3y+16xy2+28x3;③4x4-12x3+16x2+20x;④-8x3+4x2-24x A.1个B.2个C.3个D.4个
6.下列各组多项式中,提取公因式后的剩余因式相同的是( )
A.3m2n+6mn2与2m2n+4mn2+mn B.a3+a2+a与b3+b2+b
C.6x3+4x2+2x与6x2y+4xy+2y D.a(m-n)3-b(n-m)3与a(m-n)3-b(m-n)3
二、填空题:
1.单项式4a3,8a2b2,-30a2bc的公因式是_________;单项式8x m y n-1与–4x m+1y n的公因式是_________。

2.在下列各式右边的括号前填写“+”号或“-”号,使等式成立:
(1)(b-a)2=_________(a-b)2; (2)(x-y)3=________(y-x)3
(3)-a-b=___________(a+b); (4)(-x-y)2=________(x+y)2
3.-6m3n2+12m2n3-3m2n2的公因式是_________;5a(x-y)-10b(y-x)的公因式是________.
4.在下列括号内填写适当的多项式,使等式成立:
(1)14abx-8ab2x=2abx( ); (2)-7ab-14abx+49aby=-7ab( ) 5.分解因式:3a(m+n)-6(m+n)=___________.
6.利用分解因式计算:(-2)2003+(-2)2004-22003=__________。

三、计算题:
1.分解因式:(1)-24x2-12xy+28x (2)9a4x2-18a3x3-36a2x4
2.分解因式:(1)2x(a-b)-5y(a-b) (2)7ab(m+n)+21bc(m+n)
3.分解因式:(1)(a+b)(x+y)-(a+b)(x-y) (2)3(a-b)3+(b-a)2
(3)(3a+b)(a-2b)-2a(2b-a) (4)x(x-y-z)+y(y-x+z)+z(z-x+y)
四、求满足下列等式的x的值:
1.(x-2)(x+3)+(2-x)2-(x-2)(2x-3)=0; 2.5x(x-3)-4(3-x)=0
五、利用因式分解说明:对于任意整数n,n2-n必是偶数。

六、把多项式x(x+1)3+x(x+1)2+x(x+1)+x+1分解因式。

七、任意写出一个多项式,使其满足以下条件:
(1)公因式是-2ab;(2)共有四项;(3)最高次项的次数不大于4;(4)多项式中出现的字母
不超过3个。

答案:
一、1.C 2.B 3.D 4.C 5.C 6.C
二、1.2a2; 4x m y n-12.(1)+ (2)-(3)-(4)+ 3.-3m2n2; 5(x-y) 4.(1)7-4b
(2)1+2x-7y 5.3(m+n)(a-2) 6.0
三、1.(1)解:原式=-(24x2+12xy-28x)=-4x(6x+3y-7)
(2)解:原式=9a2x2(a2-2ax-4x2)
2.(1)解:原式=(a-b)(2x-5y)
(2)解:原式=7b(m+n)(a+3c)
3.(1)解:原式=(a+b)[(x+y)-(x-y)]=(a+b)(x+y-x+y)=2y(a+b)
(2)解:原式=3(a-b)3+(a-b)2=(a-b)2[3(a-b)+1]=(a-b)2(3a-3b+1)
(3)解:原式=(3a+b)(a-2b)+2a(a-2b)=(a-2b)[(3a+b)+2a]=(a-2b)(5a+b)
(4)解:原式=x(x-y-z)-y(x-y-z)-z(x-y-z)=(x-y-z)(x-y-z)=(x-y-z)2
四、1.解:(x-2)(x+3)+(x-2)2-(x-2)(2x-3)=0
(x-2)[(x+3)+(x-2)-(2x-3)]=0
(x-2)(x+3+x-2-2x+3)=0
4(x-2)=0
x-2=0
∴x=2
2.解:5x(x-3)+4(x-3)=0
(5x+4)(x-3)=0
5x+4=0或x-3=0
∴x=-4
5
或x=3
即x的值为-4
5
或3。

五、解:n2-n=n(n-1)
对于任意整数,n和n-1是两个连续整数,因此必有一个为偶数。

所以,对于任意整数,n2-n必是偶数。

六、解:x(x+1)3+x(x+1)2+x(x+1)+x+1
=x(x+1)3+x(x+1)2+x(x+1)+(x+1)
=(x+1)[x(x+1)2+x(x+1)+x+1]
=(x+1)(x+1)[x(x+1)+x+1]
=(x+1)(x+1)(x+1)(x+1)
=(x+1)4
七、答案不惟一,如:-8a3b+6a2b+4ab2-2ab。

相关文档
最新文档