Polymer Physics 高分子物理
高分子物理第七章 聚合物的粘弹性资料

恒定应力下的蠕变柔 量函数
D(t ) D1 D2 (t )
t
第七章 聚合物的粘弹性
聚合物蠕变柔量与时间的关系
第七章 聚合物的粘弹性
高分子的蠕变
玻璃态 1 蠕变量很小,工程材料,作结构材料的
Tg远远高于室温
高弹态 1+2
粘流态 1+2+3 存在永久形变
第七章 聚合物的粘弹性
理想弹性体的应力取决于
d dt
模量与时间有关 E(,,T,t)
,理想粘性体的应力取决于 。
第七章 聚合物的粘弹性
粘弹性
实际材料同时显示弹性和粘性,即所谓的粘弹 性( Viscoelasticity )。与其他材料相比,聚 合物材料的粘弹性表现的更为显著。 线性粘弹性 非线性粘弹性
第七章 聚合物的粘弹性
第七章 聚合物的粘弹性
高分子的蠕变
(ii)高弹形变
(t) 材料受力,高分子链通过链段运动 产生的形变,形变量比普弹形变大 得多,但不是瞬间完成,形变与时 间相关。当外力除去后,高弹形变 可逐渐回复。
(t)
t 2(t)= t1 t2 t
0 (t<t1)
0
E2
(t )(t1 t t2 ) 0 D2 (t )
0 (t→)
E2-高弹模量 第七章 聚合物的粘弹性
高分子的蠕变
(iii)粘性流动
(t ) 受力时发生分子链的相对位移,外 力除去后粘性流动不能回复,是不 可逆形变,称为粘性流动.
(t )
t 3(t)= t1 t2 t
0 (t<t1)
0 t (t1 t t2 ) 3
0 (t2 t1 )(t t 2 ) 3
高分子物理 聚合物流变学

small molecule hole
高分子熔体的流动:链段向 “孔穴” 相继跃迁 Reptation 蛇行
13
Flow curve
a
Kn
第一牛顿区
0零切粘度
第二牛顿区
无穷切粘度,极限粘度
假塑性区
流动曲线斜率n<1 随切变速率增加,ηa值变小 加工成型时,聚合物流体所经受的 切变速处于该范围内(100-103 s-1)
PC聚碳酸酯
63.9 79.2 108.3-125
PVC-U硬聚氯乙烯
147-168
PVC-P增塑聚氯乙烯
210-315
PVAc聚醋酸乙烯酯
250
Cellulose纤维素醋酸酯
293.320
Temperature
温度
Activation energy
粘流活化能是描述材料粘-温依赖性的物理量,表示流动单元(即链段) 用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量
183℃/PS
242k 217k 179k 117k 48.5k
28
分子量的影响
log
从成型加工的角度
降低分子量可增加流动性,改善加工性 能,但会影响制品的力学强度和橡胶的 弹性
牛顿流动定律
: Melt viscosity
液体内部反抗流动 的内摩擦力
1Pa s = 10 poise (泊)
牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关
7
Types of Melt Flow
液体流动的类型
类型
曲线 公式 实例
Shear stress Shear stress Shear stress Shear stress Viscosity
高分子物理第四章 聚合物的分子量与分子量分布

分子量分布宽度
第四章
聚合物的分子量与分子量分布
分子量分布宽度
分布宽度指数
n M Mn
2
2
n
Mw Mn 1 M n
2
w M Mw
2
M
2 n
2 w
Mz 1 M w
Mw
Mn
Mz
Mw
通过实验分别测定若 干不同浓度溶液的渗 透压π,用π/c对c作图 将得到一条直线,直 线的截距可以求得分 子量 M ,斜率可以求 得A2
第四章
聚合物的分子量与分子量分布
例
某种聚合物溶解于两种溶剂 A和B中,渗透压π和浓度c的关系
如图所示: (1)当浓度c→0时,从纵轴上的截距能得到什么? (2)从曲线A的初始直线段的斜率能得到什么? (3)B是良溶剂还是劣溶剂?
w
i
i
1
mi ni M i
分子量的 离散分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
间断函数变为连续函数,则得到
分子量的 微分分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
聚合物分子量积分分布函数
分子量的 积分分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
微分分布函数与积分分布函数之间的关系
大粒子Zimm图
第四章
聚合物的分子量与分子量分布
聚合物分子量的测定方法
粘度法-粘均分子量
液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏 性,粘度是表征液体流动时受内摩擦的大小。 高分子的 分子量影响 其在溶液中 的形态,进 而会影响其 溶液粘度。 第四章 聚合物的分子量与分子量分布
二级学科___高分子化学与物理_

二级学科:___ 高分子化学与物理_____________英文名称:Polymer Chemistry & Physics代码:____ 070305____________一、学科简介高分子化学与物理是化学学科重要的组成部分,其与有机化学及海洋化学密切相关,在海洋资源的开发利用中作用巨大。
近几年高分子化学与物理得到了快速发展,高分子材料是最重要的材料之一。
在海洋功能材料与分离膜材料制备及其应用等其领域发展迅速,形成了鲜明特色,取得了丰硕得成果。
高分子化学与物理拥有实验室近千平米, 拥有扫描电镜、原子显微镜、元素分析、元素分析-同位素质谱仪、换红外光谱、中高压微型反应设备、电化学工作站、原子吸收分光光度计、差热-热重分析仪、等离子发射光谱仪、膜性能分析测试等基本仪器。
二、培养目标德、智、体、能全面发展,学风严谨、作风正派、具有可持续发展技能得的高分子化学与物理学科专门人才。
掌握高分子化学与物理基本理论知识、基本研究方法和基本技能,并能熟练地应用于本学科方向的研究,了解学科发展方向和研究前沿,具有一定的材料科学、海洋化学、生命科学、物理化学等相关学科的基本知识。
有较高外语水平,能熟练应用与工作及学术交流。
能较熟练地使用计算机和互联网。
毕业后,能在有关企业、科研机构、高校从事产品开发、科研、教学工作,也可以从事有关部门的科技管理工作。
四、修读年限2-3年五、培养体系(一)核心模块核心模块学分要求不低于16学分。
(二)拓展模块公共选修课公共选修课由学校统一组织,面向全校研究生开设,鼓励各学院对全校开设。
硕士研究生至少获得公共选修课2学分。
专业英语学术活动论文写作与学术规范实践训练跨校选修课程选修“211”院校与所学专业相关的课程,取得的相应学分予以承认,但不能超过5学分。
鼓励研究生在有条件的情况下,选修国外一定层次水平的相应高校或研究机构的课程,取得的相应学分予以承认。
具体修课计划由导师和研究生共同制订并报研究生教育中心审批。
高分子物理教案

授课教案专业名称高分子材料与工程班级课程名称高分子物理课程性质专业基础课使用教材《高分子物理》主编金日光开设学期2011-2012(1)周数1-16 总学时数64(实验学时10)周学时数 4授课教师赵亚奇职称讲师2011年8月~12月《高分子物理》课程详细信息教学要点:绪论一、《高分子物理》教学大纲英文名称:Polymer physics学分:4学分学时:64学时(实验10学时)先修课程:有机化学、物理化学、高分子化学等教学对象:高分子材料与工程专业的本科生二、教学目的本课程是高分子材料科学与工程系本科生的专业基础课,是学生学习专业课和从事本专业的科研、生产工作必备的理论基础。
通过本课程的学习,使学生掌握高分子物理的基本概念和基本规律,正确地理解和掌握高聚物结构和性能之间的关系,为分析和解决高分子材料的科研和生产中的问题提供坚实的理论基础。
三、教学要求本课程的教学与学习要侧重于准确理解高分子物理的基本概念和基本规律;掌握高聚物结构和性能之间的关系;对重要的公式要会推导,明确这些公式的物理意义,结合课后的习题练习和专业实验加深对高分子物理的理解;使学生能顺利学习后续的专业课,提高自学与更新本专业知识的能力。
主要内容1. 高分子科学的三个主要分支高分子科学是以高分子化合物为研究对象,在有机化学、物理化学、生物化学、物理学和力学等学科的基础上逐渐发展而成的一门新兴学科。
三个主要分支为:高分子物理、高分子化学和高分子加工。
2. 高分子科学的发展历程(1)蒙昧期:19世纪中叶以前,无意识地使用高分子材料;(2)萌芽期:20世纪初期,出现化学改性和人工合成的高分子;(3)争鸣期:20世纪初期到30年代,高分子(Macromolecule,Polymer)概念形成;(4)发展期:20世纪30年代到50年代,随着大批新合成高分子的出现,对这些聚合物的性能表征,以及了解其结构对性能的影响等问题也随之变得必要了,从20世纪50年代,随着物理学家、化学家的投入,开始形成高分子物理研究领域。
《高分子物理》课程电子教案

《高分子物理》课程教学大纲英文名称: Polymer Physics课程类别:学科基础课学时:64学分:4适用专业:高分子材料与工程一、本课程的性质、任务高分子物理课程包括:高聚物的结构、高高分子物理学是高分子材料与工程专业的基础课。
通过本门课程的学习,要求学生对高分子的合成、加工、应用、改性等具有全面的了解。
并使学生重点掌握结构、性能及两者之间关系的一些基本概念、必要的知识、分析测试方法、一定的计算能力,从而为专业课的学习打下理论基础,并为高分子材料的合成、加工、选材、应用、改性、性能测试等提供理论依据,进而指导生产实践。
高分子物理课程教学包括理论教学和实验教学。
结合本门课程的实验,对学生进行相关的基本训练,培养学生分析问题和解决问题的实际工作能力。
总之,通过本门课程的学习及实验为后续专业课的学习提供必备的基础知识。
二、本课程的基本要求本课程包括高分子的链结构和聚集态机构、高分子的溶液性质、高分子的运动和高分子力学性能和电性能四大部分。
通过学习,要使学生对教学内容达到“了解”、“认识和理解”、“掌握”和“熟练掌握”层次要求。
即通过学习要求学生对基本分析方法、各种测试方法、各种实验的基本原理、高分子尺寸表示方法及其推导要全面了解。
对高聚物的结晶结构模型、非晶态结构、液晶结构、织态结构有明确的认识和理解。
掌握高聚物的各种力学状态、力学行为、各种性能曲线的详细分析和典型推导。
熟练掌握高聚物结构、性能及两者之间相互关系的基本概念、必要的知识。
熟练掌握高聚物的各种特征温度、测定方法。
三、讲授内容1 高分子链的结构1.1 概论1.1.1 高分子科学的诞生与发展1.I.2 高分子结构的特点I.1.3 高分子结构的内容1.2 高分子链的近程结构1.2.1 结构单元的化学组成1.2.2 键接结构1.2.3 支化与交联1.2.4 共聚物的结构1.2.5 高分子链的构型1.3 高分子链的远程结构1.3.1 高分子的大小1.3.2 高分子涟的内旋转构象1.3.3 高分子链的柔顺性1.4 高分子链的构象统计1.4.1 均方末端距的几何计算法1.4.2 均方末端距的统计计算法.1.4.3 高分子链柔顺性的表征.1.4.4 高分子链的均方旋转半径.2 高分子的聚集态结构2.1 高聚物分子间的作用2.1.1 范德华力与氢链.2.1.2 内聚能密度2.2 高聚物结晶的形态和结构2.2.1 高聚物结晶的形态学2.2.2 高分子在结晶中的构象和晶胞., 2.3 高分子的聚集态结构模型2.3.I 高聚物的晶态结构模型2.3.2 高聚物的非晶态结构模型.2.4 高聚物的结晶过程2.4.1 高分子结构与结晶能力.2.4.2 结晶速度及其测定方法2.4.3 Avrami方程用于高聚物的结晶过程..2.4.4 结晶速度与温度的关系2.4.5 影响结晶速度的其他因素2.5 结晶对高聚物物理机械性能的影响“2.5.1 结晶度概念及其测定方法2.5.2 结晶度大小对高聚物性能的影响2.5.3 结晶高聚物的加工条件—结构—性质的互相作用 2.5.4 分子量等因素对结晶高聚物的聚集态结核2.6 结晶热力学...”2.6.1 结晶高聚物的熔融与熔点2.6.2 结晶温度对熔点的影响2.6.3 晶片厚度与熔点的关系2.6.4 拉伸对高聚物熔点的影响2.7 高聚物的取向态结构2.7.1 高聚物的取向现象2.7.2 高聚物的取向机理2.7.3 取向度及其测定方法2.7.4 取向研究的应用2.8 高聚物的液晶态结构2.8.1 液晶态的结构2.8.2 高分子液晶的结构和性质2.8.3 高分子液晶的应用2.9 高分子合金的形态结构2.9.1 高分子混合物的溉念2.9.2 高分子的相容性2.9.3 共混高聚物聚集态的主要特点2.9.4 非均相多组分聚合物的织态结构2.9.5 共混高聚物的聚集态结构对性能的影响’.3 高分子的溶液性质3.1 高聚物的溶解3.1.1 高聚物溶解过程的特点3.1.2 高聚物溶解过程的热力学解释 3.1.3 溶剂的选择3.2 高分子溶液的热力学性质.3.2.1 Flory-Huggins高分子溶液理论 3.2.2 Flory温区(θ温度)的提出3.3 高分子浓溶液3.3.1 高聚物的增塑3.3.2 纺丝液3.3.3 凝胶和冻胶3.4 共混聚合物的溶混性3.5 高分子溶液的流体力学性质3.5.1 高分子在溶液中的扩散3.5.2 高分子在溶液中的粘性流动4 高聚物的分子量4.1 高聚物分子量的统计意义4.1.1 平均分子量4.1.2 平均分子量与分布函数4.1.3 分子量分布宽度4.2 高聚物分子量的测定.4.2.1 端基分析4.2.2 沸点升高和冰点降低.‘4.2.3 膜渗透压4.2.5 光散射4.2.6 小角激光光散射(LALLS)4.2.7 超速离心沉降4.2.8 粘度4.2.9 凝胶色谱5 高聚物的分子量分布5.1 分子量分布的表示方法5.1.1 图解表示5.1.2 分布函数5.2 基于相平衡的分级方法5.2.I 高分子溶液的相分离5.2.3 分级实验方法5.2.4 数据处理5.3 凝胶色谱法5.3.1 基本原理5.3.2 仪器5.3.3 载体和色谱柱5.3.4 高效凝胶色谱5.4 凝胶色谱的特殊应用5.4.1 凝胶色谱与小角激光光散射联用5.4.2 高聚物长链支化度的测定5.4.3 共聚构组成分布与分子量分布的测定6 高聚物的分子运动6.1 高聚物的分子热运动6.1.1 高分子热运动的主要特点6.1.2 高聚物的力学状态和热转变6.1.3 高聚物的次级松弛6.2 高聚物的玻璃化转变6.2.1 玻璃化转变现象和玻璃化温度的测量 6.2.2 玻璃化转变理论6.2.3 玻璃化温度的影响因素及调节途径6.2.4 玻璃化转变的多维性6.3 高聚物的粘性流动6.3.1 高聚物粘性流动的特点6.3.2 影响粘流温度的因素6.3.3 聚合物熔体的切粘度6.3.4 剪切粘度的测量方法6.3.5 高聚物熔体的流动曲线6.3.6 加工条件对高聚物熔体剪切粘度的影响6.3.7 高聚物分子结构因素对剪切粘度的影响6.3.8 剪切流动的法向应力和高聚物熔体的弹性效应6.3.9 拉伸粘度7 高聚物的力学性质7.1 玻璃态和结晶态高聚物的力学性质7.1.2 描述力学性质的基本物理量7.1.2 几种常用的力学性能指标7.1.3 几类高聚物的拉伸行为7.1.4 高聚物的屈服7.1.5 高聚物的破坏和理论强度7.1.6 影响高聚物实际强度的因素7.2 高弹态高聚物的力学件质7.2.1 橡胶的使用温度范围..7.2.2 高弹性的特点7.2.3 橡胶弹性的热力学分析7.2.4 橡胶弹性的统计理论7.2.5 内能对橡胶弹性的贡献7.2.6 橡胶弹性与交联网结构的关系7.2.7 橡胶的极限性质7.3 高聚物的力学松弛7.3.1 高聚物的力学松弛现象7.3.2 粘弹性的力学模型7.3.3 粘弹性与时间、温度的关系——时温等效原理7.3.4 Boltzmann叠加原理7.3.5 测定高聚物粘弹性的实验方法7.3.6 高聚物的松弛转变及其分子机理8 聚合物的电学性质8.1 高聚物的极化及介电常数8.2 高聚物的介电损耗8.3 高聚物的导电性8.4 高聚物的介电击穿8.5 高聚物的静电现象四、实践性环节1.作业:讲授完两部分教学内容后,进行一次习题课,讲授完每一章的教学内容后,留一次作业题。
高分子物理知识点

高分子物理知识点高分子物理是研究聚合物分子在物理场中的行为和性质的学科。
聚合物是由一些单体分子通过化学键结合而成的巨大分子,其分子量多数达到百万或以上。
高分子物理的研究范围主要包括聚合物的物理结构、热力学性质、电学性质、机械性质、输运性质、光学性质等方面。
一、聚合物的物理结构聚合物的物理结构是指聚合物高分子链的构象状态。
聚合物高分子链的构象状态受到其化学结构、聚合反应的条件、处理温度等多种因素的影响。
根据高分子链形态的不同,可将聚合物的物理结构分为直线型、支化型和交联型。
1. 直线型聚合物物理结构直线型聚合物是高分子链结构较为简单、规则的聚合物。
它通常由一根直线型链构成,其中的结构单元重复出现,链端没有分支或交联结构。
高分子的线密度、分子量和分子结构对其物理性质有很大的影响。
2. 支化型聚合物物理结构支化型聚合物指非直线型、分子链有分支结构的聚合物。
分支结构对于聚合物的物理性质有很大的影响,由于支化结构的存在,使得聚合物高分子链的平均距离更大,聚合物的分子间距离变大,导致其性能发生变化。
支化型聚合物化学结构和分支类型的不同,会对聚合物的物理性质产生巨大的影响。
3. 交联型聚合物物理结构交联型聚合物是由互相交联的高分子链构成的聚合物。
它们通常具有三维结构,分子间有交联点连接。
交联型聚合物的物理性质比支化型聚合物更为复杂。
不同交联密度、交联桥、交联方式等会对其物理性质产生很大的影响。
二、热力学性质聚合物的热力学性质主要包括相变、热力学函数、相平衡、玻璃化转变等方面。
1. 相变相变是指物质从一个物理状态到另一个物理状态的变化。
聚合物相变通常指聚合物高分子间和高分子和外界环境间的相变。
聚合物的相变通常与聚合物的物理结构、温度和压强等相关。
2. 热力学函数热力学函数是描述物质宏观性质的基本物理量,它包括熵、焓、自由能等,具体热力学函数的选择取决于所研究的问题和体系。
3. 相平衡聚合物在不同温度和压强下处于不同的相态平衡中,可以通过研究相平衡来揭示聚合物的热力学性质。
高分子物理 励杭泉第二版怎么样

高分子物理是物理学的一个重要分支,主要研究聚合物材料的结构、性质和行为。
而《高分子物理》是由励杭泉编著的一本经典教材,第二版已经问世多年。
在本文中,我将为您全面评估《高分子物理》励杭泉第二版的内容,并共享我的个人观点和理解。
1. 书籍概况《高分子物理》励杭泉第二版是一部系统介绍高分子物理基本理论和应用的教材。
本书涵盖了高分子物理领域的基本概念、聚合物的结构与性能、高分子溶液和共混物、聚合反应动力学等内容。
励杭泉对书中的内容结构进行了全面完善和拓展,使得读者可以更好地理解和掌握高分子物理的知识。
2. 内容评价励杭泉第二版的《高分子物理》内容丰富,系统性强,对高分子物理领域的知识点覆盖全面,并具有较高的权威性和可靠性。
书中所涉及的理论知识和实践案例相结合,不仅有助于读者深入理解高分子物理的基本原理,还能帮助读者将理论知识应用于实际问题解决中。
第二版相较第一版的变化主要有两点:一是内容更加全面深入,尤其在新兴领域的内容涵盖更为广泛;二是对一些基础概念和相关理论进行了进一步的解释和完善,使得读者更容易理解和掌握知识。
3. 个人观点作为一个高分子物理的爱好者,我认为《高分子物理》励杭泉第二版是一本值得细细研读的书籍。
它不仅在理论知识方面涵盖全面深入,还能引导读者将知识运用到实际问题中。
我个人特别欣赏书中的案例分析和解决问题的方法论,这些内容对于我理解和应用高分子物理知识起到了很大的帮助。
总结回顾通过对《高分子物理》励杭泉第二版的内容全面评估,我深刻理解了高分子物理这一领域的相关知识,并且从中受益匪浅。
书中的内容涵盖了高分子物理领域的基本概念和最新进展,对于广大高分子物理爱好者和专业人士来说都是一本难得的经典教材。
在未来,我将继续深入学习和应用《高分子物理》励杭泉第二版中的知识,不断提升自己在高分子物理领域的理解和能力。
我也期待着励杭泉能够继续出版更多优质的高分子物理教材,为广大读者带来更多的学习收获和启发。