2019年郑州市高三质量检测 理科数学试卷及答案

合集下载

2019-2020学年河南省郑州市高考数学三模试卷(理科)有答案

2019-2020学年河南省郑州市高考数学三模试卷(理科)有答案

河南省郑州市高考数学三模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设命题p:∀x>0,log2x<2x+3,则¬p为()A.∀x>0,log2x≥2x+3 B.∃x>0,log2x≥2x+3C.∃x>0,log2x<2x+3 D.∀x<0,log2x≥2x+32.已知复数m=4﹣xi,n=3+2i,若复数∈R,则实数x的值为()A.﹣6 B.6 C.D.﹣3.已知双曲线+=1,焦点在y轴上,若焦距为4,则a等于()A.B.5 C.7 D.4.已知,则的值等于()A.B.C.D.5.设集合A={x1,x2,x3,x4},x i∈{﹣1,0,1},i={1,2,3,4},那么集合A中满足条件“x12+x22+x32+x42≤3”的元素个数为()A.60 B.65 C.80 D.816.如图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.7.设实数x,y满足,则2xy的最大值为()A.25 B.49 C.12 D.248.已知等比数列{a n},且a6+a8=,则a8(a4+2a6+a8)的值为()A.π2B.4π2C.8π2D.16π29.若实数a、b、c∈R+,且ab+ac+bc+2,则2a+b+c的最小值为()A.B.C.D.10.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.11.四面体A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体A﹣BCD外接球的表面积为()A.50π B.100πC.200πD.300π12.设函数f(x)满足2x2f(x)+x3f'(x)=e x,f(2)=,则x∈,求函数h(x)的最小值;(2)对任意x∈=﹣cos(+2θ)=﹣cos2(+θ)=﹣=﹣,解得:sin2(+θ)=,∴=±.故选:B.5.设集合A={x1,x2,x3,x4},x i∈{﹣1,0,1},i={1,2,3,4},那么集合A中满足条件“x12+x22+x32+x42≤3”的元素个数为()A.60 B.65 C.80 D.81【考点】1A:集合中元素个数的最值.【分析】将x的取值分为两组:M={0},N={﹣1,1},A中的四个元素中有1个取值为0,2个取值为0,个取值为0,4个取值为0,进行分类讨论,由此能求出集合A中满足条件“x12+x22+x32+x42≤3”的元素个数.【解答】解:集合A={x1,x2,x3,x4},x i∈{﹣1,0,1},i={1,2,3,4},集合A满足条件“x12+x22+x32+x42≤3”,设M={0},N={﹣1,1},①A中的四个元素中有1个取值为0,另外3个从M中取,取法总数有: =32,②A中的四个元素中有2个取值为0,另外2个从M中取,取法总数有: =24,③A中的四个元素中有3个取值为0,另外1个从M中取,取法总数有: =8,④A中的四个元素中有4个取值为0,取法总数有: =1,∴集合A中满足条件“x12+x22+x32+x42≤3”的元素个数为:32+24+8+1=65.故选:B.6.如图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.这个几何体体积V=+×()2×2=2+.故选:A.7.设实数x,y满足,则2xy的最大值为()A.25 B.49 C.12 D.24【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:由图象知y≤10﹣2x,则2xy≤2x(10﹣2x)=4x(5﹣x))≤4()2=25,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故2xy的最大值为25,故选:A.8.已知等比数列{a n},且a6+a8=,则a8(a4+2a6+a8)的值为()A.π2B.4π2C.8π2D.16π2【考点】67:定积分.【分析】先根据定积分的几何意义求出a6+a8==4π,再根据等比数列的性质即可求出.【解答】解:表示以原点为圆心以4为半径的圆的面积的四分之一,故a6+a8==4π,∴a8(a4+2a6+a8)=a8a4+2a8a6+a82=a62+2a8a6+a82=(a6+a8)2=16π2.故选:D9.若实数a、b、c∈R+,且ab+ac+bc+2,则2a+b+c的最小值为()A.B.C.D.【考点】RB:一般形式的柯西不等式.【分析】因为(2a+b+c)2=4a2+b2+c2+4ab+2bc+4ca,与已知等式比较发现,只要利用均值不等式b2+c2≥2bc 即可求出结果.【解答】解:∵ab+ac+bc+2,∴a2+ab+ac+bc=6﹣2(6﹣2)×4=(a2+ab+ac+bc)×4=4a2+4ab+4ac+4bc≤4a2+4ab+b2+c2+4ca+2bc=(2a+b+c)2,所以2a+b+c≥2﹣2,故选D.10.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.【考点】K4:椭圆的简单性质.【分析】设右焦点为F′,连接MF′,NF′,由于|MF′|+|NF′|≥|MN|,可得当直线x=a过右焦点时,△FMN的周长最大.c==1.把c=1代入椭圆标准方程可得: =1,解得y,即可得出此时△FMN的面积S.【解答】解:设右焦点为F′,连接MF′,NF′,∵|MF′|+|NF′|≥|MN|,∴当直线x=a过右焦点时,△FMN的周长最大.由椭圆的定义可得:△FMN的周长的最大值=4a=4.c==1.把c=1代入椭圆标准方程可得: =1,解得y=±.∴此时△FMN的面积S==.故选:C.11.四面体A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体A﹣BCD外接球的表面积为()A.50π B.100πC.200πD.300π【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,由此能求出球的半径,进而求出球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=100,x2+z2=136,y2+z2=164,设球半径为R,则有(2R)2=x2+y2+z2=200,∴4R2=200,∴球的表面积为S=4πR2=200π.故选C.12.设函数f(x)满足2x2f(x)+x3f'(x)=e x,f(2)=,则x∈=e2﹣=(x﹣2),当x∈.【考点】9H:平面向量的基本定理及其意义.【分析】根据题意画出图形,结合图形,设外接圆的半径为r,对=p+q两边平方,建立p、q的解析式,利用基本不等式求出p+q的取值范围.【解答】解:如图所示,△ABC中,∠A=,∴∠BOC=;设|=r,则O为△ABC外接圆圆心;∵=p+q,∴==r2,即p2r2+q2r2+2pqr2cos=r2,∴p2+q2﹣pq=1,∴(p+q)2=3pq+1;又M为劣弧AC上一动点,∴0≤p≤1,0≤q≤1,∴p+q≥2,∴pq≤=,∴1≤(p+q)2≤(p+q)2+1,解得1≤(p+q)2≤4,∴1≤p+q≤2;即p+q的取值范围是.故答案为:.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A、B、C所对的边分别是a、b、c,已知sinB+sinC=msinA(m∈R),且a2﹣4bc=0.(1)当a=2,时,求b、c的值;(2)若角A为锐角,求m的取值范围.【考点】HR:余弦定理.【分析】(1)sinB+sinC=msinA(m∈R),利用正弦定理可得:b+c=ma,且a2﹣4bc=0.a=2,时,代入解出即可得出.(2)利用余弦定理、不等式的解法即可得出.【解答】解:(1)由题意得b+c=ma,a2﹣4bc=0.当时,,bc=1.解得.(2).∴,又由b+c=ma可得m>0,所以.18.为了研究学生的数学核素养与抽象(能力指标x)、推理(能力指标y)、建模(能力指标z)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标w=x+y+z的值评定学生的数学核心素养;若w≥7,则数学核心素养为一级;若5≤w≤6,则数学核心素养为二级;若3≤w≤4,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:学生编号A1A2A3A4A5A6A7A8A9A10(x,y,z)(2,2,3)(3,2,3)(3,3,3)(1,2,2)(2,3,2)(2,3,3)(2,2,2)(2,3,3)(2,1,1)(2,2,2)(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为a,从数学核心素养等级不是一级的学生中任取一人,其综合指标为b,记随机变量X=a﹣b,求随机变量X的分布列及其数学期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)由题可知:建模能力一级的学生是A9;建模能力二级的学生是A2,A4,A5,A7,A10;建模能力三级的学生是A1,A3,A6,A8.记“所取的两人的建模能力指标相同”为事件A,利用互斥事件与古典概率计算公式即可得出,P(A).(2)由题可知,数学核心素养一级:A1,A2,A3,A5,A6,A8,数学核心素养不是一级的:A4,A7,A9,A10;X 的可能取值为1,2,3,4,5.利用相互独立事件、互斥事件与古典概率计算公式即可得出P(X=k)及其分布列与数学期望.【解答】解:(1)由题可知:建模能力一级的学生是A9;建模能力二级的学生是A2,A4,A5,A7,A10;建模能力三级的学生是A1,A3,A6,A8.记“所取的两人的建模能力指标相同”为事件A,则.(2)由题可知,数学核心素养一级:A1,A2,A3,A5,A6,A8,数学核心素养不是一级的:A4,A7,A9,A10;X 的可能取值为1,2,3,4, 5.;;;;.∴随机变量X的分布列为:X 1 2 3 4 5P∴=.19.如图,在四边形ABCD中,AB∥CD,∠BCD=,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定.【分析】(1)在梯形ABCD中,设AD=CD=BC=1,由题意求得AB=2,再由余弦定理求得AC2=3,满足AB2=AC2+BC2,得则BC⊥AC.再由CF⊥平面ABCD得AC⊥CF,由线面垂直的判定可得AC⊥平面BCF.进一步得到EF⊥平面BCF;(2)分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AD=CD=BC=CF=1,令FM=λ(),得到C,A,B,M的坐标,求出平面MAB的一个法向量,由题意可得平面FCB的一个法向量,求出两法向量所成角的余弦值,可得当λ=0时,cosθ有最小值为,此时点M与点F重合.【解答】(1)证明:在梯形ABCD中,∵AB∥CD,设AD=CD=BC=1,又∵,∴AB=2,∴AC2=AB2+BC2﹣2AB•BC•cos60°=3.∴AB2=AC2+BC2.则BC⊥AC.∵CF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥CF,而CF∩BC=C,∴AC⊥平面BCF.∵EF∥AC,∴EF⊥平面BCF;(2)解:分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AD=CD=BC=CF=1,令FM=λ(),则C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),∴=(﹣,1,0),=(λ,﹣1,1),设=(x,y,z)为平面MAB的一个法向量,由得,取x=1,则=(1,,),∵=(1,0,0)是平面FCB的一个法向量,∴cos<>==.∵,∴当λ=0时,cosθ有最小值为,∴点M与点F重合时,平面MAB与平面FCB所成二面角最大,此时二面角的余弦值为.20.已知圆C1:x2+y2=r2(r>0)与直线l0:y=相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足,设动点M的轨迹为曲线C.(1)求动点M的轨迹曲线C的方程;(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.【考点】KP:圆锥曲线的范围问题;J3:轨迹方程;KL:直线与椭圆的位置关系.【分析】(1)设动点M(x,y),A(x0,y0),由于AN⊥x轴于点N.推出N(x0,0).通过直线与圆相切,求出圆的方程,然后转化求解曲线C的方程.(2)①假设直线l的斜率存在,设其方程为y=kx+m,设P(x1,y1),Q(x2,y2),联立直线与椭圆方程,结合韦达定理,通过,以及弦长公式,利用基本不等式求出范围.②若直线l的斜率不存在,设OP所在直线方程为y=x,类似①求解即可.【解答】解:(I)设动点M(x,y),A(x0,y0),由于AN⊥x轴于点N.∴N(x0,0).又圆与直线即相切,∴.∴圆.由题意,,得,∴.∴,即∴将代入x2+y2=9,得曲线C的方程为.(II)(1)假设直线l的斜率存在,设其方程为y=kx+m,设P(x1,y1),Q(x2,y2),联立,可得(1+2k2)x2+4kmx+2m2﹣8=0.由求根公式得.(*)∵以PQ为直径的圆过坐标原点O,∴.即.∴x1x2+y1y2=0.即∴x1x2+(kx1+m)(kx2+m)=0.化简可得,.将(*)代入可得,即3m2﹣8k2﹣8=0.即,又.将代入,可得=.∴当且仅当,即时等号成立.又由,∴,∴.(2)若直线l的斜率不存在,因以PQ为直径的圆过坐标原点O,故可设OP所在直线方程为y=x,联立解得,同理求得,故.综上,得.21.已知函数f(x)=(x+a)ln(x+a),g(x)=﹣+ax.(1)函数h(x)=f(e x﹣a)+g'(e x),x∈,求函数h(x)的最小值;(2)对任意x∈上h'(x)≥0,h(x)递增,h(x)的最小值为.②当﹣1<a﹣1<1即0<a<2时,在x∈上h'(x)≤0,h(x)为减函数,在在x∈上h'(x)≥0,h(x)为增函数.∴h(x)的最小值为h(a﹣1)=﹣e a﹣1+a.③当a﹣1≥1即a≥2时,在上h'(x)≤0,h(x)递减,h(x)的最小值为h(1)=(1﹣a)e+a.综上所述,当a≤0时h(x)的最小值为,当0<a<2时h(x)的最小值为﹣e a﹣1+a,当a≥2时,h (x)最小值为(1﹣a)e+a.(II)设,F'(x)=ln(x﹣1)+1+a(x﹣1)(x≥2).①当a≥0时,在x∈[2,+∞)上F'(x)>0,F(x)在x∈[2,+∞)递增,F(x)的最小值为F(2)=0,不可能有f(x﹣a﹣1)﹣g(x)≤0.②当a≤﹣1时,令,解得:,此时∴.∴F'(x)在[2,+∞)上递减.∵F'(x)的最大值为F'(2)=a+1≤0,∴F(x)递减.∴F(x)的最大值为F(2)=0,即f(x﹣a﹣1)﹣g(x)≤0成立.③当﹣1<a<0时,此时,当时,F''(x)>0,F'(x)递增,当时,F''(x)<0,F'(x)递减.∴=﹣ln(﹣a)>0,又由于F'(2)=a+1>0,∴在上F'(x)>0,F(x)递增,又∵F(2)=0,所以在上F(x)>0,显然不合题意.综上所述:a≤﹣1.22.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.【解答】解:(1)由ρsin2θ﹣2cosθ=0,得ρ2sin2θ=2ρcosθ.∴曲线C的直角坐标方程为y2=2x;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0.设A,B两点对应的参数分别为t1,t2,则,,==.当时,|AB|的最小值为2.23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(1)若∃x∈R,使得f(x)≤m成立,求m的范围;(2)求不等式x2﹣8x+15+f(x)≤0的解集.【考点】R5:绝对值不等式的解法.【分析】(1)通过讨论x的范围,求出f(x)的分段函数的形式,求出m的范围即可;(2)通过讨论x的范围,求出不等式的解集即可.【解答】解:(1),当2<x<5时,﹣3<7﹣2x<3,所以﹣3≤f(x)≤3,∴m≥﹣3;(2)不等式x2﹣8x+15+f(x)≤0,即﹣f(x)≥x2﹣8x+15由(1)可知,当x≤2时,﹣f(x)≥x2﹣8x+15的解集为空集;当2<x<5时,﹣f(x)≥x2﹣8x+15,即x2﹣10x+22≤0,∴;当x≥5时,﹣f(x)≥x2﹣8x+15,即x2﹣8x+12≤0,∴5≤x≤6;综上,原不等式的解集为.。

河南郑州2019高三上第一次质量检测-数学(理)

河南郑州2019高三上第一次质量检测-数学(理)

河南郑州2019高三上第一次质量检测-数学(理)理科数学第I 卷【一】选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的、1.假设集合},2,1,0{x A =,A B A x B =⋃=},,1{2,那么满足条件的实数x 的个数有 A 、个B 2个C 、3个D 4个2.假设复数i z -=2,那么zz 10+等于 A.i -2 B.i +2 C.i 24+ D.i 36+3.直线1+=kx y 与曲线b ax x y ++=3相切于点)3,1(A ,那么b a +2的值等于 A.2B 、1-C 、D 、2-4.我国第一艘航母“辽宁舰”在某次舰截机起降飞行训练中,有5架歼15-飞机预备着舰假如甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法 A.12B.18C.24D.485.执行如下图的程序框图,假设输入2=x ,那么输出y 的值为 A 、5B.9C.14D.416.图中阴影部分的面积S 是h 的函数(H h ≤≤0),那么该函数的大致图象是7.双曲线)0,0(12222>>=-b a bx a y 的离心率为3,那么双曲线的渐近线方程为 A.x y 22±= B.x y 2±= C.x y 2±= D.x y 21±=8.把70个面包分5份给5个人,使每人所得成等差数列,且使较大的三份之和的61是较小的两份之和,问最小的份为A.2B.8C.14D.209.在三棱锥BCD A -中,侧棱AD AC AB ,,两两垂直,ADB ACD ABC ∆∆∆,,的面积分别为26,23,22,那么该三棱锥外接球的表面积为 A.π2 B.π6 C.π64 D.π2410.设函数x x x f cos sin )(+=,把)(x f 的图象按向量)0)(0,(>=m m a 平移后的图象恰好为函数)('x f y =的图象,那么m 的最小值为A.4πB.3πC.2πD.32π 11.抛物线y x 42=上有一条长为6的动弦AB ,那么AB 中点到x 轴的最短距离为A.43B.23C.D.2 12.设函数xx x f 1)(-=,对任意),1[+∞∈x ,⋅<+0)(2)2(x mf mx f 恒成立,那么实数m 的取值范围是A.)21,(--∞B.)0,21(-C.)21,21(-D.)21,0( 第II 卷本卷包括必考题和选考题两部分。

【解析版】2019河南省郑州市高三第二次质量预测数学理科试卷

【解析版】2019河南省郑州市高三第二次质量预测数学理科试卷

2019年高中毕业年级第二次质量预测理科数学试题卷【试卷综述】总体上看,整份试卷的阅读量、运算量和思维量都比较大,难度也稍偏大,区分度不是十分明显。

客观地说试题的设计、考查的要求和复习的导向都比较好,结构稳定。

整套试卷的题型设置,试题总体结构、考点分布、题型题量、赋分权重等方面均与历年考题保持一致,充分体现了稳定的特点。

试题紧紧围绕教材选材,注重基础知识和基本能力的检测。

考查了必要数学基础知识、基本技能、基本数学思想;考查基本的数学能力,以及数学的应用意识、创新意识、科学态度和理性精神等要求落到实处,模拟试卷有模仿性,即紧跟上一年高考试卷的命题,又有预见性,能够预测当年试卷的些微变化,具有一定的前瞻性,对学生有所启发,提高学生的应试备考能力,提升得分。

【题文】第I卷【题文】一、选择题:本大题共12小题.每小题5分,共60分.【题文】1、设i是虚数单位,复数21izi=+,则|z|=A.1B. 2C.3D. 2【知识点】复数代数形式的乘除运算L1【答案】【解析】B 解析:复数z====1+i,则|z|=.故选B.【思路点拨】利用复数的运算法则、模的计算公式即可得出.【题文】2.集合U={0,1,2,3,4},A={1,2},B={x∈Z}x2一5x+4<0},则C u(AUB)=A. { 0,1,3,4}B.{1,2,3}C.{0,4}D. { 0}【知识点】交、并、补集的混合运算.A1【答案】【解析】C 解析:集合B中的不等式x2﹣5x+4<0,变形得:(x﹣1)(x﹣4)<0,解得:1<x<4,∴B={2,3},∵A={1,2},∴A∪B={1,2,3},∵集合U={0,1,2,3,4},∴∁∪(A∪B)={0,4}.故选:C.【思路点拨】求出集合B中不等式的解集,找出解集中的整数解确定出B,求出A与B的并集,找出全集中不属于并集的元素,即可求出所求【题文】3.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n的比值mn=A.1B.13 C.29 D.38全品网【知识点】茎叶图.I2【答案】【解析】D 解析:根据茎叶图,得乙的中位数是33,∴甲的中位数也是33,即m=3;甲的平均数是=(27+39+33)=33,乙的平均数是=(20+n+32+34+38)=33,∴n=8;∴=.故选:D.【思路点拨】根据茎叶图,利用中位数相等,求出m的值,再利用平均数相等,求出n的值即可.【题文】4.某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有A. 3种B. 6种C. 9种D.18种【知识点】计数原理的应用.J1【答案】【解析】C 解析:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C21C32种不同的选法;②A类选修课选2门,B类选修课选1门,有C22C31种不同的选法.∴根据分类计数原理知不同的选法共有C21C32+C22C31=6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C【思路点拨】两类课程中各至少选一门,包含两种情况:A类选修课选1门,B类选修课选2门;A类选修课选2门,B类选修课选1门,写出组合数,根据分类计数原理得到结果.【题文】5.如图y= f (x)是可导函数,直线l: y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g' (x)是g(x)的导函数,则g'(3)=A. -1B. 0C. 2D. 4【知识点】利用导数研究函数的单调性.B11【答案】【解析】B 解析:∵直线L:y=kx+2是曲线y=f(x)在x=3处的切线,∴f(3)=1,又点(3,1)在直线L上,∴3k+2=1,从而k=,∴f′(3)=k=,∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x)则g′(3)=f(3)+3f′(3)=1+3×()=0,故选:B.【思路点拨】先从图中求出切线过的点,再求出直线L的方程,利用导数在切点处的导数值为切线的斜率,最后结合导数的概念求出g′(3)的值.【题文】6.有四个关于三角函数的命题:p1:sinx=siny =>x+y= 或x=y,其中真命题是A. p1,p3B. p2,p3C.p1,p4D. p2,p4【知识点】命题的真假判断与应用.A2【答案】【解析】D 解析:p1:若sinx=siny⇒x+y=π+2kπ或x=y+2kπ,k∈Z,故错误;p2:根据同角三角函数基本关系的平方关系,可得:∀x∈R,sin2+cos2=1,故正确;p3:x,y∈R,cos(x﹣y)=cosxcosy+sinxsiny,与cosx﹣cosy不一定相等,故错误;p4:∀x∈[0,],==|cosx|=cosx,故正确.故选:D.【思路点拨】根据三角函数的定义及周期性,可判断p1;根据同角三角函数基本关系的平方关系,可判断p2;根据两角差的余弦公式,可判断p3;根据二倍解的余弦公式,及根式的运算性质,可判断p4.【题文】7.若实数x、y 满足,且x=2x+y的最小值为4,则实数b的值为A.1B. 2C. 52 D. 3【知识点】简单线性规划.E5【答案】【解析】D 解析:作出不等式组对于的平面区域如图:∵z=2x+y的最小值为4,即2x+y=4,且y=﹣2x+z,则直线y=﹣2x+z的截距最小时,z也取得最小值,则不等式组对应的平面区域在直线y=﹣2x+z 的上方,由;,解得,即A(1,2),此时A也在直线y=﹣x+b上,即2=﹣1+b,解得b=3,故选:D【思路点拨】作出不等式组对于的平面区域,根据z=2x+y的最小值为4,利用数形结合即可得到结论.【题文】8.如图所示是一个几何体的三视图,则这个几何体外接球的表面积为A. 8πB. 16πC. 32πD. 64π【知识点】由三视图求面积、体积.G2【答案】【解析】C 解析:由已知中的三视图可得,该几何体是一个以正视图为底面的四棱锥,其外接球,与以俯视图为底面,以4为高的直三棱柱的外接球相同,如图所示:由底面底边长为4,高为2,故底面为等腰直角三角形,可得底面外接圆的半径为:r=2,由棱柱高为4,可得球心距为2,故外接球半径为:R==2,故外接球的表面积S=4πR2=32π,故选:C【思路点拨】由已知中的三视图可得,该几何体是一个以正视图为底面的四棱锥,其外接球,与以俯视图为底面,以4为高的直三棱柱的外接球相同,进而可得该几何体外接球的表面积.【题文】 9.已知函数f (x )=23,63,x x a x x x a +>⎧⎨++≤⎩,函数g(x) = f (x )一2x 恰有三个不同的零点,则实数a 的取值范围是A.[一1,3)B.〔-3,一1〕C.[-3,3)D.[一1,1) 【知识点】函数零点的判定定理;分段函数的应用.B9【答案】【解析】A 解析:∵f (x )=,∴g (x )=f (x )﹣2x=,而方程﹣x+3=0的解为3,方程x2+4x+3=0的解为﹣1,﹣3;若函数g (x )=f (x )﹣2x 恰有三个不同的零点,则,解得,﹣1≤a <3实数a 的取值范围是[﹣1,3).故选:A .【思路点拨】化简g (x )=f (x )﹣2x=,而方程﹣x+3=0的解为3,方程x2+4x+3=0的解为﹣1,﹣3;从而可得,从而解得.【题文】10.在△ABC 中,角A,B,C 所对的边分别是a ,b ,c ,已知sin (B 十A )+sin (B -A )=3sin2A ,且7,3c C π==,则△ABC 的面积是【知识点】两角和与差的正弦函数;正弦定理.C5 C8【答案】【解析】D 解析:在△ABC 中,3C π=,22,233B A B A A ππ∴=--=-,()()sin sin 2sin 2B A B A A ++-=,2sin sin 22sin 23C A Aπ⎛⎫∴+-= ⎪⎝⎭,33sin 2sin 62A C π⎛⎫∴-==⎪⎝⎭,1sin 262A π⎛⎫∴-= ⎪⎝⎭,又20,3A π⎛⎫∈ ⎪⎝⎭,解得6A π=或2π,当6A π=时,2B π=,7tan 3c C a a ===,解得213a =, 所以11217372236ABCSac ==⨯⨯=;当2A π=,6B π=,同理可得334ABCS=;故选D.【思路点拨】依题意,可求得223B A A π-=-,利用两角差的正弦可求得1sin 262A π⎛⎫-= ⎪⎝⎭,又20,3A π⎛⎫∈ ⎪⎝⎭,可求得6A π=或2π,分类讨论即可求得△ABC 的面积.【题文】11.如图,矩形ABCD 中,AB=2AD,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A1DE.若M 为线段A1C 的中点,则在△ADE 翻折过程中,下面四个命题中不正确的是A.|BM |是定值 B .点M 在某个球面上运动C.存在某个位置,使DE ⊥A1 CD.存在某个位置,使MB//平面A1DE 【知识点】平面与平面之间的位置关系.G3 【答案】【解析】C 解析:取CD 中点F ,连接MF ,BF ,则MF ∥DA1,BF ∥DE ,∴平面MBF ∥平面A1DE ,∴MB ∥平面A1DE ,故D 正确由∠A1DE=∠MNB ,MN=A1D=定值,NB=DE=定值,由余弦定理可得MB2=MN2+NB2﹣2MN•NB•cos ∠MNB ,所以MB 是定值,故A 正确. ∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故B 正确, ∵A1C 在平面ABCD 中的射影为AC ,AC 与DE 不垂直, ∴存在某个位置,使DE ⊥A1C 不正确.故选:C .【思路点拨】取CD中点F,连接MF,BF,则平面MBF∥平面A1DE,可得D正确;由余弦定理可得MB2=MN2+NB2﹣2MN•NB•cos∠MNB,所以MB是定值,M是在以B为圆心,MB 为半径的圆上,可得A,B正确.A1C在平面ABCD中的射影为AC,AC与DE不垂直,可得C不正确.【题文】12.已知双曲线()22221x ya ba b-=>0,>0的左、右焦点分别是Fl,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2 |QF2|,则该双曲线的离心率为A、75B、43C、2D、103【知识点】双曲线的简单性质.H6【答案】【解析】A 解析:如图,l为该双曲线的右准线,设P到右准线的距离为d;过P作PP1⊥l,QQ1⊥l,分别交l于P1,Q1;∵,3|PF2|=2|QF2|;∴,;过P作PM⊥QQ1,垂直为M,交x轴于N,则:;∴解得d=;∵根据双曲线的定义,|PF1|﹣|PF2|=2a,∴|PF2|=2c﹣2a;∴根据双曲线的第二定义,;整理成:;∴解得(舍去);即该双曲线的离心率为.故选A.【思路点拨】先作出图形,并作出双曲线的右准线l,设P到l的距离为d,根据双曲线的第二定义即可求出Q到l的距离为.过Q作l的垂线QQ1,而过P作QQ1的垂线PM,交x轴于N,在△PMQ中有,这样即可求得d=,根据已知条件及双曲线的定义可以求出|PF2|=2c﹣2a,所以根据双曲线的第二定义即可得到,进一步可整理成,这样解关于的方程即可.【题文】第II卷【题文】本卷包括必考题和选考题两部分.第13-21题为必考题.每个试题考生都必须作答.第22-24题为选考题.考生根据要求作答.【题文】二、填空题(本大题共4小题,每小题5分,共20分)【题文】13.已知点A(-1,1)、B(0,3)、C(3,4),则向量AB在AC方向上的投影为.【知识点】平面向量数量积的运算.F3【答案】【解析】2解析:由已知得到=(1,2),=(4,3),所以向量在方向上的投影为==2;故答案为:2.【思路点拨】首先分别求出,的坐标,然后利用向量的数量积公式求投影.【题文】14.已知实数m是2和8的等比中项,则抛物线y=mx2的焦点坐标为【知识点】抛物线的简单性质.H7【答案】【解析】)161,0(±解析:∵实数m是2和8的等比中项,∴m2=16,m=±4,由y=mx2,得,若m=4,则,即2p=,,焦点坐标为(0,);若m=﹣4,则,即2p=,,焦点坐标为) 161,0(±.∴抛物线y=mx2的焦点坐标为:)161,0(±.故答案为:)161,0(±.【思路点拨】由等比中项概念求得m的值,代入抛物线方程,分m=4和m=﹣4求得抛物线的焦点坐标.【题文】15.执行如图所示的程序框图,输出的S值是.【知识点】程序框图.L1【答案】【解析】212--解析:模拟程序框图的运行过程,如下;n=1,s=0,s=0+cos =;n=2,n≥2019?,否,s=+cos =;n=3,n≥2019?,否,s=+cos=0;n=4,n≥2019?,否,s=0+cosπ=﹣1;n=5,n≥2019?,否,s=﹣1+cos=﹣1﹣;n=6,n≥2019?,否,s=﹣1﹣+cos=﹣1﹣;n=7,n≥2019?,否,s=﹣1﹣+cos=﹣1;n=8,n≥2019?,否,s=﹣1+cos2π=0;n=9,n≥2019?,否,s=0+cos =;…;s的值是随n的变化而改变的,且周期为8,又2019=251×8+7,此时终止循环,∴输出的s值与n=6时相同,为s=212--.故答案为:212--.【思路点拨】模拟程序框图的运行过程,得出该程序运行后输出的是s=cos+cos +cos +cos +cos +…+cos的值,由此求出结果即可.【题文】16.已知偶函数y= f (x)对于任意的x[0,)2π∈满足f'(x)cosx+f(x)sinx>0(其中f'(x)是函数f (x)的导函数),则下列不等式中成立的有【知识点】函数奇偶性的性质.B4【答案】【解析】(2) (3) (4) 解析:∵偶函数y=f(x)对于任意的x∈[0,)满足f′(x)cosx+f(x)sinx>0∴g(x)=,g′(x)=>0,∴x ∈[0,),g (x )=是单调递增,且是偶函数,∴g (﹣)=g (),g (﹣)=g (),∵g ()<g (),∴,即f (>f (),(1)化简得出f (﹣)=f ()<f (),所以(1)不正确. (2)化简f (﹣)>f (﹣),得出f ()>f (),所以(2)正确.又根据g (x )单调性可知:g ()>g (0),∴>,∴f (0)<f (),∵偶函数y=f (x )∴即f (0)<f (﹣),所以(3)正确.∵根据g (x )单调性可知g ()>g (),∴,f ()>f().所以(4)正确.故答案为:(2)(3)(4)【思路点拨】运用g′(x )=>0,构造函数g (x )=是单调递增,且是偶函数,根据奇偶性,单调性比较大小.运用得出f (>f (),可以分析(1),(2),根据单调性得出g ()>g (0),g ()>g (),判断(3)(4).【题文】三、解答题(本大题共6小题,共70分,解答应写出文字说明、或演算步骤 17.(本小题满分12分)已知等差数列{n a }的各项均为正数,1a =1,且34115,,2a a a 成等比数列.(I )求na 的通项公式,(II )设11n n n b a a +=,求数列{n b }的前n 项和Tn.【知识点】数列的求和;等比数列的性质.D3 D4【答案】【解析】(Ⅰ)213-=n a n ;(Ⅱ)232n n T n =+. 解析:(Ⅰ)设等差数列公差为d ,由题意知0>d ,因为1143,25,a a a +成等比数列,所以11324)25(a a a =+, )101)(21()327(2d d d ++=+∴,即,04536442=+-d d 所以),2215(23舍去-==d d ……… 4分 所以213-=n a n . ……… 6分 (Ⅱ))231131(34)23)(13(411+--=+-==+n n n n a a b n n n , ……… 8分所以41111112().32558313232n nT n n n =-+-++-=-++. ……… 12分【思路点拨】(Ⅰ)由题意知11324)25(a a a =+,从而可得公差32d =,所以213-=n a n ;(Ⅱ)将4(31)(32)n b n n =-+列项为411()33132n n --+,求和即得Tn 的值.【题文】 18.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C 是边长为2的菱形,平面ABC ⊥平面AA1 C1C, ∠A1AC=600, ∠BCA=900. (I )求证:A1B ⊥AC1(II )已知点E 是AB 的中点,BC=AC ,求直线EC1与平面平ABB1A1所成的角的正弦值。

河南省郑州市2019届高三第三次质量检测数学(理)试题(含答案)

河南省郑州市2019届高三第三次质量检测数学(理)试题(含答案)

2019年高中毕业年级第三次质量预测理科数学参考答案一、选择题(本大题共12个小题,每小题5分,共60分)1.D 2.D 3.C 4.C 5.D 6.C 7.A 8.C 9.B 10.A 11.B 12.B二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡上.13..14.. 15..16..三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.解:(1)在中,由正弦定理得:,分在中,由正弦定理得:分因为,故分(2)在中,由余弦定理得分在中,由余弦定理得分又,解得分又,故分18.解:(1)分别为边的中点,所以………….1分因为,所以……….3分又因为所以.…………4分(2)取的中点,连接,由(1)知,,所以平面因为,所以,又因为,平面所以. ……….6分过作交于,分别以所在直线为轴建立空间直角坐标系,如图所示.,…….8分为线段上一动点设,由,得, ………..9分设平面的法向量为,则即取……..10分设直线与平面所成角,…..11分直线与平面所成角的正弦值的最大值为……….12 分19.解:(1)由题知………2分则…3分故与的线性相关程度很高,可用线性线性回归模型拟合………4分(2)①顾客选择参加两次抽奖,设他获得100元现金奖励为事件.……………6分②设表示顾客在三次抽奖中中奖的次数,由于顾客每次抽奖的结果相互独立,则………………8分所以……………10分由于顾客每中一次可获得100元现金奖励,因此该顾客在三次抽奖中可获得的奖励金额的均值为……………11分由于顾客参加三次抽奖获得现金奖励的均值120小于直接返现的150元,所以专营店老板希望顾客参加抽奖……………12分20.解:(1)抛物线的焦点为,……………1分由知,……………2分代入抛物线方程得,故抛物线的方程为:…………4分(2)当直线的斜率不存在时,过点的直线不可能与圆相切;所以过抛物线焦点与圆相切的直线的斜率存在,设直线斜率为,则所求的直线方程为,所以圆心到直线的距离为,当直线与圆相切时,有,所以所求的切线方程为或…………6分不妨设直线,交抛物线于两点,联立方程组,得.所以,,………………….8分假设存在点使,则. 所以即故存在点符合条件………………10分当直线时,由对称性易知点也符合条件………………11分综上存在点使………………12分21.解析:(1),定义域………………1分当时,,由于在恒成立,……………4分故在单调递减,在单调递增.故………………5分(2)当时,在单调递减,在单调递增. ,只有一个零点………………6分当时,,故在恒成立,故在单调递减,在单调递增.故当时,没有零点.………………8分当时,令,得,,,在单调递减,在单调递增. ,………………10分在有两个零点,,在单调递减,在单调递增,在单调递减,在单调递增,,又,此时有两个零点,综上有两个零点,则………………12分22.[选修4-4:坐标系与参数方程] (本小题满分10分)解:(1)由题意可知:直线的普通方程为,,,的方程可化为,设点的坐标为,,………………5分(2)曲线的直角坐标方程为:,直线的标准参数方程为,代入得:,设,两点对应的参数分别为,,故,异号,………………10分23.[选修4-5:不等式选讲](本小题满分10分)解析:(1)当时,当时解得当时恒成立,当时解得综上可得解集………………5分(2)当,即时,无最小值;当,即时,有最小值;当且,即时,当且,即时,综上:当时,无最小值;当时,有最小值;当时,当时, ………………10分。

精品解析:河南省郑州第一中学2019届高三第二次联合质量测评理科数学试题(解析版)

精品解析:河南省郑州第一中学2019届高三第二次联合质量测评理科数学试题(解析版)

河南省郑州一中2019届高三第二次联合质量测评数学(理科)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、试室号和座位号。

用2B型铅笔把答题卡上试室号、座位号对应的信息点涂黑。

2.选择题每小题选出答案后,用2B型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合,集合.则()A. B.C. D.【答案】A【解析】【分析】直接解一元二次不等式化简集合A,再求A交B,则答案可求.【详解】解:A={x|}={x|x<5}.又则A∩B=.故选:A.【点睛】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.2.已知复数(为虚数单位),则()A. B.C. D.【答案】C【解析】【分析】利用复数的运算法则、共轭复数的定义即可得出.【详解】解:∵z(1+i)2=1﹣i,∴2zi=1﹣i,∴﹣2z=i(1﹣i)=1+i,∴z i,∴═i,故选:C.【点睛】本题考查了复数的运算法则、共轭复数的定义,属于基础题.3.已知命题:方程表示双曲线;命题:.命题是命题的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】等价转化命题,利用充分必要性定义结合不等式性质判断即可.【详解】方程表示双曲线等价于,即命题:,由推不出,充分性不具备,由能推出,必要性具备,故命题是命题的必要不充分条件,故选:B【点睛】本题主要考查充分条件和必要条件的判断,利用好双曲线方程系数的关系是解决本题的关键,比较基础.4.已知等差数列各项均为正数,,,则数列的通项公式为()A. B.C. D.【答案】A【解析】【分析】利用等差数列的性质及通项公式求得首项与公差,即可得到数列的通项公式.【详解】设等差数列的公差为d,由可得:,即,又,∴,又∴是方程的两根,又等差数列各项均为正数,∴,∴d=2故数列的通项公式为故选:A【点睛】本题考查了等差数列的通项公式及性质,考查了推理能力与计算能力,属于中档题.5.函数的图象大致为()A. B. C. D.【答案】C【解析】【分析】利用函数的单调性及特殊值即可作出判断.【详解】由易得f(﹣x)+f(x)=0,∴f(x)是奇函数;当x=1时,排除A,当x>0时,,函数在上单调递减,故可排除B,D故选:C【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6.已知,分别为椭圆的两个焦点,为椭圆上任意一点.若的最大值为3,则椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】点到椭圆的焦点的最大距离为最小距离为,结合题意可得结果.【详解】点到椭圆的焦点的最大距离为最小距离为,又的最大值为3,∴,∴e=故选:B【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).7.如图所示的程序框图,则输出结果为()A. B. C. 3 D.【答案】D【解析】【分析】模拟执行程序框图,可得程序的功能是求的值,即可求得S 的值.【详解】解:模拟执行程序框图,可得程序的功能是求S的值,由于S.故选:D.【点睛】本题主要考查了程序框图和算法,模拟执行程序框正确得到程序的功能是解题的关键,属于基础题.8.已知函数,则不等式的解集为()A. B.C. D.【答案】D【解析】【分析】对x讨论,当x>0时,当x≤0时,运用分式函数和对数函数的单调性,解不等式,即可得到所求解集.【详解】解:当时,,即为:,解得x2;当时,,即为:,解得x0.综上可得,原不等式的解集为.故选:D.【点睛】本题考查分段函数的运用:解不等式,注意运用分类讨论的思想方法,以及分式函数和对数函数的单调性,考查运算能力,属于基础题.9.将曲线围成的区域记为Ⅰ,曲线围成的区域记为Ⅱ,曲线与坐标轴的交点分别为、、、,四边形围成的区域记为Ⅲ,在区域Ⅰ中随机取一点,此点取自Ⅱ,Ⅲ的概率分别记为,,则()A. B.C. D.【答案】C【解析】【分析】由题意分别计算出三个区域的面积,即可得到【详解】由方程,得:或,∴曲线围成的区域Ⅰ、Ⅱ、Ⅲ,如图:可知区域Ⅰ的面积为;区域Ⅱ的面积为;区域Ⅲ的面积为;∴由几何概率公式得:,,故。

2019年最新(统考)河南省郑州市高三第三次质量预测数学(理)试卷及答案解析

2019年最新(统考)河南省郑州市高三第三次质量预测数学(理)试卷及答案解析
16.在 中, , 为平面内一点,且 , 为劣弧 上一动点,且 ,则 的取值范围为.
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.在 中,角 、 、 所对的边分别是 、 、 ,已知 ,且 .
(1)当 , 时,求 、 的值;
(2)若角 为锐角,求 的取值范围.
记“所取的两人的建模能力指标相同”为事件 ,

(II)由题可知,数学核心素养一级: ,数学核心素养不是一级的: ; 的可能取值为1,2,3,4,5.
∴随机变量 的分布列为
1
2
3
4
5
∴ .
19.解:(I)在梯形 中,∵ ,设 ,
又∵ ,∴ ,∴
∴ ∴ .
∵ , ,
∴ ,而 ,

∵ ∴ .
(II)由(I)可建立分别以直线 , , 为 轴, 轴, 轴的如图所示建立空间直角坐标系,
学生编号
(1)从数学核心素养等级是一级的学生中任取一人,其综合指标为 ,从数学核心素养等级不是一级的学生中任取一人,其综合指标为 ,记随机变量 ,求随机变量 的分布列及其数学期望.
19.如图,在四边形 中, , ,四边形 为矩形,且 平面 , .
21.已知函数 , .
(1)函数 , ,求函数 的最小值;
(2)对任意 ,都有 成立,求 的范围.
22.以直角坐标系的原点 为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线 的参数方程为 ,( 为参数, ),曲线 的极坐标方程为 .
(1)求曲线 的直角坐标方程;
(2)设直线 与曲线 相交于 , 两点,当 变化时,求 的最小值.
表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是: ,则5288用算筹式可表示为.

2019届河南省高三下学期质量检测理科数学试卷【含答案及解析】

2019届河南省高三下学期质量检测理科数学试卷【含答案及解析】

2019届河南省高三下学期质量检测理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 设集合,若,则的值可以是()A. B. C. D.2. 已知复数在复平面内对应的点在第四象限,则实数的取值范围是()A. B. C. D.3. 为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个进行动物试验,根据四个实验室得到的列联表画出如下四个等高形图,最能体现该药物对预防禽流感有效果的图形是()A. B. C. D.4. 已知,且(),则等于()A. B. C. D.5. 我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,请人取半,中人三分取一,后人四分取一,余米一斗五升,问,米几何?”右图示解决该问题的程序框图,执行该程序框图,若输出点(单位:升)则输入的值为()A. B. C. D.6. 已知双曲线:(,)过点,过点的直线与双曲线的一条渐进线平行,且这两条平行线间的距离为,则双曲线的实轴长为()A. B. C. D.7. 若为奇函数,且是函数的一个零点,额下列函数中,一定是其零点的函数是()A. B. C. D.8. 某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.9. 在中,,,,是上一点,且,则等于()A. 6B. 4C. 2D. 110. 已知椭圆的右焦点为为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B. C. D.11. 如图,矩形中,为边的中点,将直线翻转成平面 ),若分别为线段的中点,则在翻转过程中,下列说法错误的是()A. 与平面垂直的直线必与直线垂直B. 异面直线与所成角是定值C. 一定存在某个位置,使D. 三棱锥外接球半径与棱的长之比为定值12. 若曲线和上分别存在点,使得是以原点为直角顶点的直角三角形,且斜边的中点轴上,则实数的取值范围是()A. B. C. D.二、填空题13. 已知实数满足条件,则的最小值为__________ .14. 把3男生2女生共5名新学生分配到甲、乙两个班,每个班分的新生不少于2名,且甲班至少分配1名女生,则不同的分配方案种数为 __________ .(用数字作答)三、解答题15. 函数的部分图象如图所示,将函数的图象向右平移个单位后得到函数的图象,若函数在区间上的值域为,则 __________ .四、填空题16. 在中,,,分别是角,,的对边,的面积为,,且,则__________ .五、解答题17. 已知等差数列的前项和为,且,在等比数列中, .(1)求数列及的通项公式;(2)设数列的前项和为,且,求 .18. 某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标 . 现从建筑设计院聘请专家设计了一个招标方案 : 两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.(1)求甲、乙两家公司共答对道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?19. 如图,四棱锥中,底面,底面是直角梯形,,,,,点在上,且.(Ⅰ)已知点在上,且,求证:平面平面;(Ⅱ)当二面角的余弦值为多少时,直线与平面所成的角为?20. 已知是抛物线上的一点,以点和点为直径的圆交直线于两点,直线与平行,且直线交抛物线于两点.(1)求线段的长;(2)若,且直线与圆相交所得弦长与相等,求直线的方程.21. 设函数 .(1)若直线和函数的图象相切,求的值;(2)当时,若存在正实数,使对任意,都有恒成立,求的取值范围.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为为参数,,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为 .(1)设是曲线上的一个动点,当时,求点到直线的距离的最小值;(2)若曲线上的所有点均在直线的右下方,求的取值范围.23. 选修4-5:不等式选讲已知函数 .(1)若关于的不等式有解,求实数的取值范围;(2)若关于的不等式的解集为,求的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】。

河南省郑州市2019年高三第二次质量检测理科数学(解析版)

河南省郑州市2019年高三第二次质量检测理科数学(解析版)

设 CBD ,则 A1BD ABD 45 ,显然 CBD A1BD ,所以 0 22.5 ,
BE 2 3 cos(45 )
BE A1B cos(45 ) 2
3 cos(45 ), BM
cos
cos
6(1 tan ) ,
2 tan 22.5
由 tan 45
1 ,解得 tan 22.5 2 1 ,因为 0 22.5 ,所以 0 tan 2 1,
径,即 2R
(3
2)2 (3
2)2 32 3
3 5,R
5 ,外接球的体积V 4 R3 45
5

2
3
2
A
B
D
C
9.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯
函数”为:设 x R ,用[x] 表示不超过 x 的最大整数,则 y [x] 称为高斯函数.例如:[2.1] 3 ,

13.答案:16
解析:设 {an } 的公比为
q
,则
a2 S3
a1q 2 a1(1 q
q2)
7
,所以
2q2
5q
2
0
,解得
q
2

q
1 2
,又
因为{an}是单调递增数列,所以 q 2 , a5 a2q3 16 .
43
14.已知 cos
3
cos
5
,则
cos
6

4
14.答案:
5
2x 3
[3.1] 3 ,已知函数 f (x)
,则函数 y [ f (x)]的值域为(

1 2x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18. (Ⅰ)证明:连接 AC
底面 ABCD 为菱形, ABC 60 ,
ABC 是正三角形, E 是 BC 中点, AE BC 又 AD // BC , AE AD
PA 平 面 A B C D, AE 平 面 A B C D, PA AE ,又 PA AE A
AE 平面 PAD , 又 AE 平面 AEF
15.144;
16.①②⑤.
17.解(Ⅰ)由 bn log2 an 和 b1 b2 b3 12 得 log2 a1a2a3 12 ,
a1a2a3 212.
------------------------------------2 分
设等比数列an的公比为 q ,a1 4 a1a2a3 4 4q 4q2 26 q3 212 ,
在 RtDAME 中, sin AME 15 ,即 AE 6 ,
5
AM 2
设 AB 2a ,则 AE 3a ,得 AM 2a ,
又 AD AB 2a ,设 PA = 2b ,则 M (0, a,b) ,
所以 AM = a2 + b2 = 2a ,
从而 b = a , PA AD 2a ,
设 n (x, y, z) 是平面 AEF 的一个法向量,则
n
AE
0
n AF 0
3ax 0
3ax 2
ay 2
az
0

z
a
,得
n
(0,2a, a)
………………9 分
又 BD 平面 ACF , BD ( 3a,3a,0) 是平面 ACF 的一个法向量, ……10 分
cos n, BD n BD 6a2 15
(Ⅱ)①由题意知,AQI 在[170,180)内的天数为 1,
由图可知,AQI 在[50,170)内的天数为 17 天,故 11 月份 AQI 小于 180 的天数为 1+17=18,
又 18 3 ,则该学校去进行社会实践活动的概率为 3 .---------------------------------5 分
2019 年高中毕业年级第一次质量预测
理科数学 参考答案
一、选择题(每小题 5 分,共 60 分)
1.C 2.D 3.B 4.C 5.A 6.C 7.B
二、填空题(每小题 5 分,共 20 分)
13. 20; 三、解答题(共 70 分)
14.[-13,-4];
8.B 9.A 10.C 11.B 12.D
(Ⅱ)由(1)得 bn log2 4n 2n ,
cn
4
2n 2n
1
4n
1
nn 1
4n
1 n
1 n 1
4n
--------------------------------7 分
设数列
1
nn
1
的前 n
项和为
An
,则
An
1
1 2
1 2
1 3
1 n
1 n 1
n n 1 -----9

设数列
n BD 5a 2 3a
5
……………………11 分
二面角 C AF E 的余弦值为 15 . 5
……………………12 分
19.(Ⅰ)设重度污染区 AQI 的平均值为 x,则 74×2+114×5+2x=118×9,解得 x=172.
即重度污染区 AQI 平均值为 172.-----------------------------------------------------------2 分
即 x0 x , y0
2y 3
又点 M 在为圆 C : x2 y 2 4 上
X0
1
2
3
204 459 297 11
P
1015 1015 1015 203
数学期望 EX= 0 204 +1 459 + 2 297 + 3 11 6 .----------------------------------12 分 1015 1015 1015 203 5
20.解:(Ⅰ)设点 M x0 , y0 , Px, y,由题意可知 Nx0 ,0 2PN 3MN ,2x0 x, y 3 0, y0 ,------------------------------------------------2 分
平面 AEF 平面 PAD. ………………………4 分 (Ⅱ)由(Ⅰ)得, AE, AD, AP 两两垂直,以 AE, AD, AP 所在直线分别为 x 轴, y 轴,
z 轴建立如图所示的空间直角坐标系, ……………………5 分 AE 平面 PAD , AME 就是 EM 与平面 PAD可能取值为 0,1,2,3,且
P(X=0)=
C138C102 C330
204 1015
,P(X=1)=
C128C112 C330
459 1015
,
P(X=2)=
C118C122 C330
297 1015
,P(X=3)=
C108C132 C330
11
,
203
则 X 的分布列为-------------------------------------------------------------10 分
计算得出 q 4
-------------------------------------4 分
an 4 4n1 4n --------------------------------------------------------------------------------------6 分
……………………7 分
则 A(0,0,0), B( 3a,- a,0) , C( 3a, a,0), D(0, 2a,0) , P(0,0, 2a) ,
E( 3a,0,0), F( 3a , a , a), 22
所以 AE ( 3a,0,0), AF ( 3a , a , a) , BD ( 3a,3a,0) ,…………8 分 22
4n
的前 n 项和为 Bn ,则 Bn
4 4n 4 1 4
4 3
4n 1
,--------------------------------11 分
Sn
n n 1
4 3
4n
1
--------------------------------------------------------------------------------------12 分
相关文档
最新文档