2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

合集下载

2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2019年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学一、选择题1.已知集合A={x|x>-1},B={x|x<2},则A∩B等于()A.(-1,+∞) B.(-∞,2)C.(-1,2) D.∅答案 C解析A∩B={x|x>-1}∩{x|x<2}={x|-1<x<2}.2.设z=i(2+i),则等于()A.1+2i B.-1+2iC.1-2i D.-1-2i答案 D解析∵z=i(2+i)=-1+2i,∴=-1-2i.3.已知向量a=(2,3),b=(3,2),则|a-b|等于()A. B.2 C.5 D.50答案 A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|==.4.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.6.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)等于()A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1答案 D解析当x<0时,-x>0,∵当x≥0时,f(x)=e x-1,∴f(-x)=e-x-1.又∵f(x)为奇函数,∴f(x)=-f(-x)=-e-x+1.7.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B解析对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确,对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确,综上可知选B.8.若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B. C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.9.若抛物线y2=2px(p>0)的焦点是椭圆 4+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.10.曲线y=2sin x+cos x在点(π,-1)处的切线方程为()A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=0答案 C解析设y=f(x)=2sin x+cos x,则f′(x)=2cos x-sin x,∴f′(π)=-2,∴曲线在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.11.已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.12.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q 两点.若|PQ|=|OF|,则C的离心率为()A. B. C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x=,所以|PQ|=2. 由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.二、填空题13.若变量x,y满足约束条件则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由解得即C点坐标为(3,0),故z max=3×3-0=9.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98.15.△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26-1解析依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.三、解答题17.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以四棱锥E-BB1C1C的体积V=×3×6×3=18.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).21.已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.证明(1)f(x)的定义域为(0,+∞).f′(x)=+ln x-1=ln x-(x>0).因为y=ln x在(0,+∞)上单调递增,y=在(0,+∞)上单调递减,所以f′(x)在(0,+∞)上单调递增.又f′(1)=-1<0,f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.又当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.由1<x0<α得0<<1<x0.又f=ln--1===0,故是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.22.[选修4-4:坐标系与参数方程]在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.解(1)因为M(ρ0,θ0)在C上,当θ0=时,ρ0=4sin =2.由已知得|OP|=|OA|cos =2.设Q(ρ,θ)为l上除P的任意一点,连接OQ,在Rt△OPQ中,ρcos=|OP|=2. 经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈.23.[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a的取值范围是[1,+∞).祝福语祝你考试成功!。

2019年全国统一高考数学试卷(理科)以及答案解析(全国1卷)

2019年全国统一高考数学试卷(理科)以及答案解析(全国1卷)

绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5B.a n=3n﹣10C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
16.已知双曲线C: 的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若 , ,则C的离心率为____________.
【答案】2.
【思路引导】
通过向量关系得到 和 ,得到 ,结合双曲线的渐近线可得 从而由 可求离心率.
【解析】如图,
由 得 又 得OA是三角形 的中位线,即 由 ,得 则 有 ,
【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.
7.已知非零向量a,b满足 =2 ,且(a–b) b,则a与b的夹角为
A. B. C. D.
【答案】B
【思路引导】
本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由 得出向量 数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
【解为 ,故选B.
【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为 .
1.已知集合 ,则 =
A. B. C. D.
【答案】C
【思路引导】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【解析】由题意得, ,则
.故选C.
【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.设复数z满足 ,z在复平面内对应的点为(x,y),则
【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.

2019年高考理科数学(全国1卷)答案详解(附试卷)

2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)

sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为

2019全国2卷高考数学理科含答案详解(珍藏版)

2019全国2卷高考数学理科含答案详解(珍藏版)

绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

 2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2019年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学一、选择题1.已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N等于()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}答案 C解析∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.x2+(y+1)2=1答案 C解析∵z在复平面内对应的点为(x,y),∴z=x+y i(x,y∈R).∵|z-i|=1,∴|x+(y-1)i|=1,∴x2+(y-1)2=1.故选C.3.已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a答案 B解析∵a=log20.2<0,b=20.2>1,c=0.20.3∈(0,1),∴a<c<b.故选B.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cm B.175 cm C.185 cm D.190 cm答案 B 解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.函数f(x)=在[-π,π]上的图象大致为()A. B.C. D.答案 D解析∵f(-x)==-=-f(x),∴f(x)为奇函数,排除A;∵f(π)==>0,∴排除C;∵f(1)=,且sin 1>cos 1,∴f(1)>1,∴排除B,故选D.6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A.7.已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.答案 B解析设a与b的夹角为α,∵(a-b)⊥b,∴(a-b)·b=0,∴a·b=b2,∴|a|·|b|cos α=|b|2,又|a|=2|b|,∴cos α=,∵α∈[0,π],∴α=,故选B.8.如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+答案 A解析A=,k=1,1≤2成立,执行循环体;A=,k=2,2≤2成立,执行循环体;A=,k=3,3≤2不成立,结束循环,输出A.故空白框中应填入A=.故选A.9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5 B.a n=3n-10C.S n=2n2-8n D.S n=n2-2n答案 A解析设等差数列{a n}的公差为d,∵∴解得∴a n=a1+(n-1)d=-3+2(n-1)=2n-5,S n=na1+d=n2-4n.故选A.10.已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.11.关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[-π,π]上有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是()A.①②④ B.②④ C.①④ D.①③答案 C解析f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x)为偶函数,故①正确;当<x<π时,f(x)=sin x+sin x=2sin x,∴f(x)在上单调递减,故②不正确;f(x)在[-π,π]上的图象如图所示,由图可知函数f(x)在[-π,π]上只有3个零点,故③不正确;∵y=sin|x|与y=|sin x|的最大值都为1且可以同时取到,∴f(x)可以取到最大值2,故④正确.综上,正确结论的编号是①④.故选C.12.已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8π B.4π C.2π D.π答案 D解析因为点E,F分别为P A,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面P AC,所以PB⊥平面P AC,所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为,所以该正方体的体对角线长为,所以三棱锥P-ABC的外接球的半径R=,所以球O的体积V=πR3=π3=π,故选D.二、填空题13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.答案y=3x解析因为y′=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,所以曲线在点(0,0)处的切线的斜率k=y′|x=0=3,所以所求的切线方程为y=3x.14.记S n为等比数列{a n}的前n项和.若a1=,=a6,则S5=________.答案解析设等比数列{a n}的公比为q,因为=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=,所以q=3,所以S5===.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.16.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________.答案 2解析因为F1B·F2B=0,所以F1B⊥F2B,如图.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.三、解答题17.△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc,由余弦定理得cos A==,因为0°<A<180°,所以A=60°. (2)由(1)知B=120°-C,由题设及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sinC,可得cos(C+60°)=-.由于0°<C<120°,所以sin(C+60°)=,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=.18.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.(1)证明连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.由题设知A1B1∥DC且A1B1=DC,可得B1C∥A1D且B1C=A1D,故ME∥ND且ME=ND,因此四边形MNDE 为平行四边形,MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.(2)解由已知可得DE⊥DA,以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(2,0,0),A1(2,0,4),M(1,,2),N(1,0,2),=(0,0,-4),=(-1,,-2),=(-1,0,-2),=(0,-,0).设m=(x,y,z)为平面A1MA的一个法向量,则所以可得m=(,1,0).设n=(p,q,r)为平面A1MN的一个法向量,则所以可取n=(2,0,-1).于是cos〈m,n〉===,所以二面角A-MA1-N的正弦值为.19.已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,令Δ>0,得t<,则x1+x2=-.从而-=,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2,由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得x1=3,x2=,即A(3,3),B,故|AB|=. 20.已知函数f(x)=sin x-ln(1+x),f′(x)为f(x)的导数,证明:(1)f′(x)的区间上存在唯一极大值点;(2)f(x)有且仅有2个零点.证明(1)设g(x)=f′(x),则g(x)=cos x-,g′(x)=-sin x+.当x∈时,g′(x)单调递减,而g′(0)>0,g′<0,可得g′(x)在有唯一零点,设为α.则当x∈(-1,α)时,g′(x)>0;当x∈时,g′(x)<0.所以g(x)在(-1,α)上单调递增,在上单调递减,故g(x)在上存在唯一极大值点,即f′(x)在上存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)上单调递增.而f′(0)=0,所以当x∈(-1,0)时,f′(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点;②当x∈时,由(1)知,f′(x)在(0,α)上单调递增,在上单调递减,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且当x∈(0,β)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(0,β)上单调递增,在上单调递减.又f(0)=0,f=1-ln>0,所以当x∈时,f(x)>0.从而,f(x)在上没有零点;③当x∈时,f′(x)<0,所以f(x)在上单调递减.而f>0,f(π)<0,所以f(x)在上有唯一零点;④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+ρsin θ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解(1)因为-1<≤1,且x2+2=2+=1,所以C的直角坐标方程为x2+=1(x≠-1).l的直角坐标方程为2x+y+11=0.(2)由(1)可设C的参数方程为 (α为参数,-π<α<π).C上的点到l的距离为=. 当α=-时,4cos+11取得最小值7,故C上的点到l距离的最小值为.23.[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.祝福语祝你考试成功!。

2019年高考全国2卷真题(含语文,理科数学,英语)及答案

2019年高考全国2卷真题(含语文,理科数学,英语)及答案

2019年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页。

考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。

而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。

杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物蒙蔽与局限,做到博观兼美而无所偏失。

这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。

就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。

我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。

就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。

其次值得注意的,则是杜甫严肃中之幽默与担荷中之欣赏,我以为每一位诗人对于其所面临的悲哀与艰苦,都各有其不同的反应态度,如渊明之任化,太白之腾跃,摩诘之禅解,子厚之抑敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M2 2M13α r绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z 对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB =(2,3),AC =(3,t),BC =1,则AB ⋅BC =A.-3 B.-2C.2 D.34.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:M1 +M2 = (R +r)M1 .(R +r)2r2R3α=r α3α3+ 3α4+α5≈3设,由于R 的值很小,因此在近似计算中(1+α)2,则的近似值为A.M2 RM1B.RD .3M2 R 3M15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉1 个最高分、1 个最低分,得到7 个有效评分.7 个有效评分与9 个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差6.若a>b,则A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x y2+=1 的一个焦点,则p= 3 p pA.2 B.3 C.4 D.8π 9.下列函数中,以2ππ为周期且在区间( ,4 2)单调递增的是A.f(x)=│cos 2x│B.f(x)=│sin 2x│C.f(x)=cos│x│D.f(x)= sin│x│π10.已知α∈(0,2 A.15),2sin 2α=cos 2α+1,则sin α=B.5C.3x2 y2 D.2 5511.设F 为双曲线C:a2 -=1(a > 0, b > 0) 的右焦点,O 为坐标原点,以OF 为直径的b2圆与圆x2+y2=a2交于P,Q 两点.若PQ =OF A.,则C 的离心率为B.C.3 3M2 RM15 3232C.2 D.12.设函数f (x) 的定义域为R,满足f (x +1) = 2 f (x) ,且当x ∈ (0,1] 时,f (x) =x(x -1) .若对任意x ∈(-∞, m] ,都有f (x) ≥-8,则m 的取值范围是9A.⎛-∞,9 ⎤B.⎛-∞,7 ⎤4 ⎥ 3 ⎥ ⎝⎦C.⎛-∞,5 ⎤⎝⎦D.⎛-∞,8 ⎤2 ⎥ 3⎥ ⎝⎦⎝⎦二、填空题:本题共4 小题,每小题5 分,共20 分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97,有20 个车次的正点率为0.98,有10 个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.14.已知f (x) 是奇函数,且当x < 0 时,f (x) =-e ax.若f (ln 2) = 8 ,则a =.15.△ABC 的内角A, B, C 的对边分别为a, b, c .若b = 6, a = 2c, B =π,则△ABC 的面积3为.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(.本题第一空2 分,第二空3 分.)三、解答题:共70 分。

解答应写出文字说明、证明过程或演算步骤。

第17~21 题为必考题,每个试题考生都必须作答.第22、23 为选考题,考生根据要求作答.(一)必考题:共60 分。

17.(12 分)5如图,长方体ABCD–A1B1C1D1 的底面ABCD 是正方形,点E 在棱AA1 上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1 的正弦值.18.(12 分)11 分制乒乓球比赛,每赢一球得1 分,当某局打成10:10 平后,每球交换发球权,先多得2 分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4 且甲获胜”的概率.19.(12 分)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1 = 3a n -b n + 4,4b n+1= 3b n-a n- 4 .(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.20.(12 分)已知函数f (x)= ln x - x +1. x -1(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0 是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线y = e x的切线. 21.(12 分)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM 与BM 的斜率之积为−1迹为曲线C. 2.记M 的轨(1) 求 C 的方程,并说明 C 是什么曲线;(2) 过坐标原点的直线交 C 于 P ,Q 两点,点 P 在第一象限,PE ⊥x 轴,垂足为 E ,连结 QE 并延长交 C 于点 G .(i ) 证明: △PQG 是直角三角形;(ii ) 求△PQG 面积的最大值.(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答。

如果多做,则按所做的第一题计分.22.[选修 4-4:坐标系与参数方程](10 分)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0) 在曲线C : ρ = 4 sin θ 上,直线 l 过点A (4, 0) 且与OM 垂直,垂足为 P .(1)当θ = π时,求 ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程. 23.[选修 4-5:不等式选讲](10 分)已知 f (x ) =| x - a | x + | x - 2 | (x - a ).(1) 当a = 1 时,求不等式 f (x ) < 0 的解集;(2) 若 x ∈(-∞,1] 时, f (x ) < 0 ,求a 的取值范围.32 2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案1.A2.C 3.C 4.D 5.A6.C7.B 8.D9.A10.B11.A12.B13.0.9814.–315.6 16.26; -117. 解:(1)由已知得, B 1C 1 ⊥ 平面 ABB 1 A 1 , BE ⊂ 平面 ABB 1 A 1 ,故 B 1C 1 ⊥ BE .又 BE ⊥ EC 1 ,所以 BE ⊥ 平面 EB 1C 1 .(2)由(1)知∠BEB 1 = 90︒ .由题设知Rt △ABE ≅ Rt △A 1B 1E ,所以∠AEB = 45︒ ,故 AE = AB , AA 1 = 2 AB .以 D 为坐标原点, DA 的方向为x 轴正方向, | DA | 为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0), C 1 (0,1,2),E (1,0,1), CE = (1, -1,1) ,CC 1 = (0, 0, 2) .设平面EBC 的法向量为n =(x ,y ,x ),则⎩ ⎧⎪CB ⋅ n = 0, ⎧x = 0, ⎨CE ⋅ n = 0,即⎨x - y + z = 0, ⎪⎩⎩所以可取n = (0, -1, -1) .设平面 ECC 1 的法向量为m =(x ,y ,z ),则⎧⎪CC 1 ⋅ m = 0, ⎨⎪⎩CE ⋅ m = 0,⎧2z = 0,即⎨x - y + z = 0.所以可取m =(1,1,0). n ⋅ m1于是cos < n , m >== - .| n || m | 2所以,二面角 B - EC - C 的正弦值为3. 1218. 解:(1)X =2就是10:10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+ (1–0.5)×(1–04)=05.(2)X =4且甲获胜,就是10:10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1 .19. 解:(1)由题设得4(a+ b ) = 2(a + b ) ,即 a+ b = 1(a + b ) . n +1n +1nnn +1 n +12 n n又因为a 1+b 1=l ,所以{a + b } 是首项为1,公比为 1的等比数列.nn2由题设得4(a n +1 - b n +1) = 4(a n - b n ) + 8 ,即 a n +1 - b n +1 = a n - b n + 2 .又因为a 1–b 1=l ,所以{a n - b n } 是首项为1,公差为2的等差数列. (2)由(1)知, a + b =1, a - b = 2n -1 .nn2n -1nn所以a = 1 [(a + b ) + (a - b )] =1+ n - 1 , n2n n n n2n 2x - x x 0 0 x b = 1 [(a + b ) - (a - b )] = 1 - n + 1 . n 2 n n n n2n 220. 解:(1)f (x )的定义域为(0,1),(1,+∞)单调递增.e +1 2 e 2 +1 e 2 - 3 因为f (e )=1- < 0 , f (e ) = 2 - = > 0 ,e -1 e 2 -1 e 2 -1所以 f (x )在(1,+∞)有唯一零点 x 1,即 f (x 1)=0. 又0 <1< 1, f ( 1 ) = -ln x + x 1 +1 = - f (x ) = 0 , x x 1 x -1 11111故f (x )在(0,1)有唯一零点 .1综上,f (x )有且仅有两个零点.1(2)因为= e-ln x 01 ,故点 B (–ln x 0,)在曲线 y =e x 上.由题设知 f (x ) = 0 ,即ln x = x 0 +1 ,1- ln x x 0 -11- x 0 +1 x 0 x x -1 1 故直线AB 的斜率k = 0 = 00 = . - ln x 0 - x 0 - x 0 +1 - x x 0x 0 -11 曲线 y =e x在点 B ( ln x 0 , 0 ) 处切线的斜率是 1 ,曲线 y = ln x 在点 A (x , ln x ) 处切 01线的斜率也是,所以曲线 y = ln x 在点 A (x 0 , ln x 0 ) 处的切线也是曲线 y =e x 的切线.21. 解:(1)由题设得y ⋅ y = - 1 x 2 ,化简得 y 2 + = 1(| x |≠ 2) ,所以 C 为中心 x + 2 x - 2 2 4 2在坐标原点,焦点在 x 轴上的椭圆,不含左右顶点.(2)(i )设直线 PQ 的斜率为 k ,则其方程为 y = kx (k > 0) .x x 04 2⎧y = kx ⎪ 2 由⎨ x 2 ⎪⎩ + y 2 = 得 x =±记u = P (u , uk ), Q (-u , -uk ), E (u , 0) .于是直线QG 的斜率为 k 2 ⎧ y = k(x - u ), ,方程为 y = k(x - u ) .2⎪ 2 由⎨ x 2 y 2 得 ⎪ + = 1⎪⎩ 4 2(2 + k 2 )x 2 - 2uk 2 x + k 2u 2 - 8 = 0 .①设G (x G , y G ) ,则-u 和 x G 是方程①的解,故 x G = u (3k 2 + 2) 2 + k 2 uk 3 ,由此得 y G = 2 + k 2.uk 3 2 + k 2- uk 1从而直线 PG 的斜率为 u (3k 2+ 2) 2 + k 2 - u=- . k所以 PQ ⊥ PG ,即△PQG 是直角三角形.(ii )由(i )得| PQ |= 2| PG |=22 + k 2 ,28( 1 + k )所以△PQG 的面积 S = 1| PQ ‖PG |= 8k (1+ k ) = k .1 设 t =k + k2 (1+ 2k 2 )(2 + k 2 ) 1+ 2( 1 + k )2k,则由 k >0 得 t ≥2,当且仅当 k =1 时取等号.因为 S = 8t 1+ 2t 2在[2,+∞)单调递减,所以当 t =2,即 k =1 时,S 取得最大值,最大值16 为.916 因此,△PQG 面积的最大值为.913 π 22. 解:(1)因为 M (ρ0 ,θ0 ) 在C 上,当θ π0 = 3 时, ρ0 = 4sin π = 2 . 3由已知得| OP |=| OA | cos 3= 2 .设Q (ρ,θ ) 为l 上除P 的任意一点.在Rt △OPQ 中 ρ cos ⎛θ - π ⎫ =| OP |= 2 ,3 ⎪ ⎝ ⎭经检验,点 P (2, π) 在曲线 ρ cos⎛θ - π ⎫ = 2 上. 33 ⎪ ⎝ ⎭所以,l 的极坐标方程为 ρ cos ⎛θ - π ⎫ = 2 .3 ⎪ ⎝ ⎭(2)设 P (ρ,θ ) ,在Rt △OAP 中, | OP |=| OA | cos θ = 4 cos θ ,因为P 在线段OM 上,且 AP ⊥ OM ,故θ 的取值范围是⎡π , π⎤. ⎢⎣ 4 2 ⎥⎦即 ρ = 4 cos θ ..所以,P 点轨迹的极坐标方程为 ρ = 4 cos θ ,θ ∈ ⎡π , π⎤ .⎢⎣ 4 2 ⎥⎦23. 解:(1)当 a =1 时, f (x )=|x -1| x +|x - 2|(x -1) .当 x < 1时, f (x ) = -2(x -1)2 < 0 ;当 x ≥ 1时, f (x ) ≥ 0 .所以,不等式 f (x ) < 0 的解集为(-∞,1) .(2)因为 f (a )=0 ,所以a ≥ 1 .当 a ≥ 1 , x ∈(-∞,1) 时, f (x )=(a - x ) x +(2 - x )(x - a )=2(a - x )(x -1)<0所以, a 的取值范围是[1, +∞) .绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)答案解析版一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,A ={x x2, 或x3}, B ={x x <1},则A ⋂B ={x x <1}.故选A.【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z=-3+2i,则在复平面内z 对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由z =-3 + 2i, 得z =-3 - 2i, 则z =-3 - 2i, 对应点(-3,-2)位于第三象限.故选C.【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.M 22M 13M 2 3M 1M 2 33M 13α r 3. 已知 AB =(2,3), AC =(3,t ), BC =1,则 AB ⋅ BC =A. -3B. -2C. 2D. 3【答案】C【解析】【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由 BC = AC - AB = (1, t - 3) , BC =12 + (t - 3)2= 1,得t = 3 ,则 BC = (1, 0) ,AB BC = (2, 3) (1, 0) = 2 ⨯1+ 3⨯ 0 = 2 .故选 C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地 月拉格朗日 L 2 点的轨道运行.L 2 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为 M 2,地月距离为 R , L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1+M 2= (R + r ) M1 . (R + r )2r 2 R 3α =r α3α 3 + 3α 4 + α 5 ≈ 3设,由于 R为 的值很小,因此在近似计算中(1+ α )2B.R ,则 的近似值C.RD.R【答案】DA.MM 12RM 23M 1M 23M 1【解析】【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α 的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由α = rR,得r = α R因为M 1+M 2= (R + r ) M1 ,(R + r )2M 1 所以r2R 3+ M 2 = (1+ α ) M 1, R 2 (1+ α )2M 2 = α 2 α 2 R 2 1 R 2α 5 + 3α 4 + 3α 3 3即[(1+ α ) - M 1(1+ α )2 ] = ≈ 3α , (1+ α )2解得α =3, 所以r = α R =3R .【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5. 演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从 9 个原始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个原始评分相比,不变的数字特征是 A. 中位数B. 平均数C. 方差D. 极差【答案】A【解析】分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9 位评委评分按从小到大排列为 x 1 < x 2 < x 3 < x 4 < x 8 < x 9 .则①原始中位数为x 5 ,去掉最低分 x 1 ,最高分 x 9 ,后剩余 x 2 < x 3 < x 4 < x 8 ,中位数仍为x5,∴A 正确.②原始平均数x =1(x <x <x <x<x <x ) ,后来平均数9123489x'=1x<x <x<x )(23487平均数受极端值影响较大,∴x 与x'不一定相同,B 不正确③S 2=1 ⎡(x-x )2 +(x-x )2 ++(x -x )2 ⎤9 ⎢⎣11q⎥⎦s'2=1 ⎡(x-x')2+(x-x')2++(x-x')2 ⎤由②易知,C 不正确.7 ⎢⎣ 238⎥⎦④原极差=x9- x1,后来极差=x8- x2显然极差变小,D 不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a>b,则A. ln(a−b)>0B. 3a<3bC. a3−b3>0D. │a│>│b│【答案】C【解析】【分析】本题也可用直接法,因为a >b ,所以a -b > 0 ,当a -b = 1时,ln(a -b) = 0 ,知A 错,因为y = 3x是增函数,所以3a> 3b,故B 错;因为幂函数y =x3是增函数,a >b ,所以a3>b3,知C 正确;取a = 1, b =-2 ,满足a >b ,1 =a <b = 2 ,知D 错.【详解】取a = 2, b =1 ,满足a >b ,ln(a -b) = 0 ,知A 错,排除A;因为9 = 3a> 3b= 3,知B 错,排除B;取a =1, b =-2 ,满足a >b ,1 =a <b = 2 ,知D 错,排除D,因为幂函数y =x3是增函数,a >b ,所以a3>b3,故选C.【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B. α 内有两条相交直线与 β 平行C. α,β 平行于同一条直线D. α,β 垂直于同一平面【答案】B【解析】【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α 内两条相交直线都与 β 平行是α / /β 的充分条件,由面面平行性质定理知,若α / /β ,则α 内任意一条直线都与 β 平行,所以α 内两条相交直线都与 β 平行是α / /β 的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若a ⊂ α , b ⊂ β , a / /b ,则α / /β ”此类的错误.8. 若抛物线 y 2=2px (p >0)的焦点是椭圆 xy 2 += 1 的一个焦点,则 p =3 ppA. 2B. 3C. 4D. 8【答案】D【解析】【分析】利用抛物线与椭圆有共同的焦点即可列出关于 p 的方程,即可解出 p ,或者利用检验排除的方法,如 p = 2 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除 A ,同样可排除 B ,C ,故选D .px 2 y 2 【详解】因为抛物线 y 2 = 2 px ( p > 0) 的焦点( , 0) 是椭圆 2 + = 1 的一个焦点,所以3 p p3 p - p = ( p )2,解得 p = 8 ,故选D . 2【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养 .2π 9.下列函数中,以2π 为周期且在区间(4π,)单调递增的是2A. f(x )=│cos 2x│B. f(x)=│sin 2x│C. f(x)=cos│x│D. f(x)= sin│x│【答案】A【解析】【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为y = sin | x | 图象如下图,知其不是周期函数,排除D;因为y = cos x = cos x ,周期为2π,排除C,作出y =cos 2x 图象,由图象知,其周期为π,在区间(π,π) 单调2 4 2递增,A 正确;作出y = sin 2x 的图象,由图象知,其周期为π,在区间(π,π) 单调递减,排除B,故选A.2 4 2【点睛】利用二级结论:①函数y = f (x) 的周期是函数y = f (x) 周期的一半;② y = sin ωx不是周期函数;π10.已知a∈(0,2),2si n2α=co s2α+1,则sinα=A. 15C.3 3B.5 5D.2 5 5【答案】B【解析】【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为 1 关系得出答案.【详解】= cos 2α +1,∴4sin α⋅cos α = 2 cos 2α .α∈⎛ 0, π ⎫,∴cos α > 0 . 2 ⎪sin α > 0, ∴ ⎝ ⎭2 s in α = cos α ,又sin 2 α + cos 2α = 1 ,∴5sin 2 α = 1, sin 2 α = 1 ,又5sin α > 0 ,∴sin α =5 ,故选B .5【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设 F 为双曲线 C : x a 2 y 2- = 1 (a >0,b >0)的右焦点,O 为坐标原点,以 OF 为直径的b2圆与圆 x 2+y 2=a 2 交于 P 、Q 两点.若|PQ |=|OF |,则 C 的离心率为A. 2B. 3C. 2D.5【答案】A【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设 PQ 与 x 轴交于点 A ,由对称性可知 PQ ⊥ x 轴,2 sin 2α22 2 2 ⎪ ⎝⎝ ⎝⎝ 又 PQ =| OF |= c ,∴| PA |= c, 2∴ PA 为以OF 为直径的圆的半径,∴ A 为圆心| OA |= c.2∴ P ⎛ c , c ⎫,又 P 点在圆 x 2 + y 2 = a 2 上,⎝ ⎭c 2 c 2 2 c 2 2 2c 2 ∴ + = a 4 4 ,即 = a , ∴ 2e = = 2 .a 2∴e = ,故选 A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12. 设函数 f (x ) 的定义域为 R ,满足 f (x +1) = 2 f (x ) ,且当 x ∈ (0,1] 时,f (x ) = x (x -1) .若对任意 x ∈(-∞, m ] ,都有 f (x ) ≥- 8,则 m 的取值范围是9A. ⎛ -∞, 9 ⎤B. ⎛-∞, 7 ⎤ 4 ⎥⎦3 ⎥⎦C. ⎛ -∞, 5 ⎤D. ⎛-∞, 8 ⎤ 2 ⎥⎦3⎥⎦【答案】B【解析】【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决.【详解】 x ∈(0,1] 时, f (x )=x (x -1) , f (x +1)=2 f (x ) ,∴ f (x ) = 2 f (x -1) ,即 f (x ) 右移 1 个单位,图像变为原来的 2 倍.如图所示:当2 < x ≤ 3 时, f (x )=4f (x - 2)=4(x - 2)(x - 3) ,令4(x - 2)(x - 3) = - 8,9整理得: 9x 2 - 45x + 56 = 0 ,∴(3x - 7)(3x - 8) = 0,∴ x = 7 , x = 8 (舍), 1 3 2 3∴ x ∈(-∞, m ] 时, f (x ) ≥- 8 成立,即m ≤ 7 ,∴m ∈⎛-∞, 7 ⎤ ,故选B .9 3 ⎝3 ⎦⎥【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到 2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有 10 个车次的正点率为 0.97,有 20 个车次的正点率为 0.98,有 10 个车次的正点率为 0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 . 【答案】0.98.【解析】【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【 详 解 】 由 题 意 得 , 经 停 该 高 铁 站 的 列 车 正 点 数 约 为10 ⨯ 0.97 + 20 ⨯ 0.98 +10 ⨯ 0.99 = 39.2 ,其中高铁个数为 10+20+10=40,所以该站所有高铁平均正点率约为39.2= 0.98 .40【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知f (x) 是奇函数,且当x < 0 时,f (x) =-e ax.若f (ln 2) = 8 ,则a =.【答案】-3【解析】【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案.【详解】因为f (x) 是奇函数,且当x < 0 时,f (x) =-e-ax.又因为ln 2 ∈(0,1) ,f (ln 2) = 8 ,所以-e-a ln2=-8 ,两边取以e 为底的对数得-a ln 2 = 3ln 2 ,所以-a = 3,即3π.【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角A, B, C 的对边分别为a, b, c .若b = 6, a = 2c, B =π,则V ABC 的面3积为.【答案】6【解析】【分析】本题首先应用余弦定理,建立关于c 的方程,应用a, c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得b2=a2+c2- 2ac cos B ,所以(2c)2+c2- 2⨯2c ⨯c ⨯1= 62,2即c2= 12312 + 1 2 解得c = 2 3, c = -23 (舍去)所以a = 2c =4 3 ,S= 1 ac sin B = 1 ⨯ 4 3 ⨯ 2 3 ⨯ 3 = 6 3. ∆ABC2 2 2【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16. 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图 2 是一个棱数为 48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共有 个面,其棱长为 .【答案】(1). 共 26 个面.(2). 棱长为 -1.【解析】【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决.【详解】由图可知第一层与第三层各有 9 个面,计 18 个面,第二层共有 8 个面,所以该半 正多面体共有18 + 8 = 26 个面.如图,设该半正多面体的棱长为 x ,则 AB = BE = x ,延长 BC 与 FE 交于点G ,延长 BC 交正方体棱于 H ,由半正多面体对称性可知, ∆BGE 为等腰直角三角形,∴ BG = GE = CH =2 x , ∴ GH = 2⨯2 x + x = ( +1)x = 1 ,22∴ x == -1,即该半正多面体棱长为x . x -12 2【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70 分。

相关文档
最新文档