晶体三极管输入和输出特性讲解

合集下载

3晶体三极管

3晶体三极管

2.三极管内部载流子的运动规律
集电结反偏, 集电结反偏, 有少子形成的反 向电流ICBO。 基区空穴 向发射区的 扩散形成电流 IEP可忽略。 可忽略。 进入P 进入P 区的电 子少部分与基区 的空穴复合, 的空穴复合,形 成电流IBN ,多 数作为非平衡少 子扩散到集电结 B RB IB IBN E IE IC ICBO C ICN
v
v
i
i
输出特性曲线各区的特点: 输出特性曲线各区的特点:
(1)饱和区 a.发射结正偏,集电结正偏或反 发射结正偏, 发射结正偏 偏电压很小。 偏电压很小。 UCE≤UBE b. iC明显受uCE控制, 明显受 控制 iC<βiB
1
4 3
i
C/
mA
iB =
µ 100 A 80 60
饱和区
随着VCE的变化而迅速变化。 的变化而迅速变化。 随着
∆iC
∆iB
β=
放大区 截止区
∆iC ∆iB
U CE =常量
β是常数吗?什么是理想三极管?什么情况下 β = β ? 是常数吗?什么是理想三极管? 是常数吗
2. 输出特性
iC = f (uCE ) I
数 B =常
对应于一个I 就有一条i 变化的曲线。 对应于一个 B就有一条 C随uCE变化的曲线。 输出特性曲线特点: 输出特性曲线特点: a. 各条特性曲线形状相同 b. 每条输出特性起始部分很陡 V时 uCE=0 V时,因集电极无收 b (集电结反压增加, 当集电结反压增加, 吸引电子能力增强,ic增大 增大) 吸引电子能力增强 增大) 集作用, =0。 集作用,iC=0。 c.每条输出特性当超过某一数 u c .CE ↑ → Ic ↑ 。 值时( ),变得平坦 值时(约1V),变得平坦 ), d. 曲线比较平坦的部分, 曲线比较平坦的部分, 的增加而略向上倾斜。 随vCE的增加而略向上倾斜。 d每条输出特性当超过某一数值时(约1V),变得平坦 每条输出特性当超过某一数值时( 1V),变得平坦 ), 这是基区宽变效应) (这是基区宽变效应) • CB ↑→ 基区宽带变窄 → B 1V后 当uCE >CE后,收集电子的能力足够强。这时,发射到基区的电子 1V ↑→ 收集电子的能力足够强。这时, 变小 • 都被集电极收集, 再增加, 基本保持不变。 都被集电极收集,形成iC。所以uCE再增加,iC基本保持不变。 iC •→ β = iB ↑→ iB 若不变则 C ↑

晶体管输入曲线详解

晶体管输入曲线详解

晶体管输入曲线详解
晶体管的输入特性曲线是描述在一定的管压降下,基极电流与基极-发射极电压之间的函数关系。

对于共射型晶体管,其输入特性曲线如下:
1. 当基极-发射极电压为0时,基极电流也为0。

2. 当基极-发射极电压逐渐增大时,基极电流也逐渐增大。

这是因为随着电压的增大,电子从基极注入到发射极的能量增大,使得更多的电子能够克服势垒,从基极注入到发射极。

3. 随着基极-发射极电压的增大,基极电流的增长速度逐渐减缓,直到达到饱和状态。

这是因为在高电压下,电子的注入速度已经达到极限,无法再增加。

4. 当基极-发射极电压继续增大时,基极电流保持不变,进入饱和区。

此时,即使电压再增大,也不会增加基极电流。

对于共基型晶体管,其输入特性曲线与共射型晶体管类似,但是增长速度更快,很快就会达到饱和状态。

需要注意的是,输入特性曲线只描述了晶体管的静态特性,而在实际应用中,还需要考虑动态特性的影响。

晶体三极管的工作原理详解

晶体三极管的工作原理详解

PN 结的本质:在 P 型半导体和 N 型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为 PN 结。

1、切入点:要想很自然地说明问题,就要选择恰当地切入点。

讲三极管的原理我们从二极管的原理入手讲起。

二极管的结构与原理都很简单,内部一个 PN 结具有单向导电性,如示意图B。

很明显图示二极管处于反偏状态, PN 结截止。

我们要特殊注意这里的截止状态,实际上 PN 结截止时,总是会有很小的漏电流存在,也就是说 PN 结总是存在着现象, PN 结的单向导电性并非百分之百。

为什么会浮现这种现象呢?这主要是因为PN 结反偏时,能够正向导电的多数载流子被拉向电源,使PN 结变厚,多数载流子不能再通过 PN 结承担起载流导电的功能。

所以,此时漏电流的形成主要靠的是少数载流子,是少数载流子在起导电作用。

反偏时,少数载流子在电源的作用下能够很容易地反向穿过 PN 结形成漏电流。

漏电流之所以很小,是因为少数载流子的数量太少。

很明显,此时漏电流的大小主要取决于少数载流子的数量。

如果要想人为地增加漏电流,只要想办法增加反偏时少数载流子的数量即可。

所以,如图B漏电流就会人为地增加。

其实,光敏二极管的原理就是如此。

光敏二极管与普通光敏二极管一样,它的 PN 结具有单向导电性。

因此,光敏二极管工作时应加之反向电压,如图所示。

当无光照时,电路中也有很小的反向饱和漏电流,普通为1×10-8 —1×10-9A(称为暗电流),此时相当于光敏二极管截止;光敏二极管工作在反偏状态,因为光照可以增加少数载流子的数量,于是光照就会导致反向漏电流的改变,人们就是利用这样的道理制作出了光敏二极管。

既然此时漏电流的增加是人为的,那末漏电流的增加部份也就很容易能够实现人为地控制。

2、强调一个结论:讲到这里,一定要重点地说明 PN 结正、反偏时,多数载流子和少数载流子所充当的角色及其性质。

为什么呢?这就导致了以上我们所说的结论:反偏时少数载流子反向通过 PN 结是很容易的,甚至比正偏时多数载流子正向通过 PN 结还要容易。

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。

依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。

利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。

晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。

由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。

晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。

从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。

依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。

利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。

晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。

由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。

晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。

从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

双极型晶体三极管的开关特性

双极型晶体三极管的开关特性

1 0.7 mA 10
0.03mA
iB
3
0.7 10
mA
0.23mA
三极管临界饱和时的基极电流: 而
I BS
VCC uCES
Rc
5 0.3 mA 50 1
0.094 mA
因为0<iB<IBS,三极管工作在放大
状态。iC=βiB=50×0.03=1.5mA,
输出电压:
uo=uCE=UCC-iCRc=5-1.5×1=3.5V
状态称为放大状态。
2.2 双极型晶体三极管的开关特性
(3)三极管的饱和状态和可靠饱和的条件
当输入电压vI增加
:A. iB增加,工作点上移,当工作点上移至Q3点时,三
极管进入临界饱和状态。
B. iB再增加,输出iC将不再明显变化 。
当输入电压vI增加 :C.工作点向上移至Q3点以上,饱和深度增加,进入可
2.2 双极型晶体三极管的开关特性
(4)三极管开关的过渡过程
td:延迟时间,上升到0.1Icmax tr:上升时间, 0.1Icmax到0.9Icmax
ton = td +tr ton开通时间
ts:存储时间,下降到0.9Icmax tf:下降时间,下降到0.1Icmax
toff = ts +tf toff关断时间
iC=βiB
uCE=VCC- iCRc
可变
饱和
iB>IBS 发射结正偏 集电结正偏 uBE>0,uBC>0
iC=ICS uCE=UCES=
0.3V 很小, 相当开关闭合
+VCC Rc iC
Rb b
c
uo
ui
iB
e
iB(μA)

三极管的基本原理和特性

三极管的基本原理和特性

三极管的基本原理和特性三极管,也称为双极型晶体管,是一种电子器件,广泛应用于电子工程中。

它通过控制一个区域内电子数的数量,从而控制器件的输出。

三极管主要由三个不同的层组成:负掺杂的“基底”、负载流体的“发射区”和正掺杂的“收集区”。

这三个区域在构成三极管时起着不同的作用。

下面将详细介绍三极管的基本原理和特性。

1. 基本原理基本上,三极管的原理可以通过晶体管的行为模型进行解释。

传输电子会散布在晶格中,而晶格中的杂质离子会成为电子的“弹簧”,驱使它们远离它们的电子亲缘体,并使它们变得自由流动。

晶体管的行为可以通过控制电子的流动来转换电路。

此外,基地-发射结和基地-集电结之间的压差(电压)是确定三极管操作状态的主要方式。

2. 特性三极管具有许多特性,其中一些如下:放大功能:三极管可以被设置为放大器,能够增加电压和电流,并将信号转换为更大范围的输出信号。

开关功能:三极管的另一个常见应用是作为数字开关。

由于它可以提供二极管所不能提供的低电阻和高的开启电阻,使得当适当的电压应用到基极时,它可以作为一个快速开关器使用。

激励器功能:三极管也可以被设置为激励器,它可以控制其他的电路和设备。

稳压器功能:三极管在一些电源和电压调节器中也被广泛使用,可以用来限制电压,并在一定电压范围内保持稳定。

这在各种电子设备需要稳定电源的时候很有用。

3. 操作问题三极管的操作有许多问题。

其中,温度的影响是最重要的一个,高温会引起三极管器件的老化和分解,并降低整个系统的性能。

此外,电压的波动、静电、噪声电源、以及引起器件损坏的过载可能都会对三极管的操作造成影响。

同时,为了避免这些问题,需要选择合适的三极管类型和参数。

例如,有时在功率放大器及其他要求较高的工作条件中,需要使用具有良好散热和耐压的特殊三极管。

总体来看,三极管是一种重要的电子器件,可以在各种电子设备和系统中广泛使用。

掌握其基本原理和特性及其操作问题对善于电子工程的从业人员来说是至关重要的。

晶体三极管输入和输出特性

晶体三极管输入和输出特性
在放大状态下的三极管输出的集电极电流IC ,主要 受正向发射结电压VBE的控制,而与反向集电结电压VCE 近似无关。
注意:NPN型管与PNP型管工作原理相似,但由于
它们形成电流的载流子性质不同,结果导致各极电流
方向相反,加在各极上的电压极性相反。
IE
+
N
PN
IC
IE
+
P
NP
IC
-+ V1
IB
-+ V2
(2) 截止区:
iE=0, iB=-ICBO, ic=ICBO 晶体管呈现高阻抗状态,失去放大能力
EC ICBO
iC 截止区
击穿区 iB=iB 5 iB=iB4
iB=iB 3iB=iB
2
iB=iB1
IB = 0 的曲线以下的区域称为截 止区。IB = 0 时, IC = ICEO(很小)。对 NPN 型硅管,当UBE < 0.5 V 时,即已 开始截止,但为了使晶体管可靠截止,
4 3 2 1
截止区
1.5
IC(mA ) 饱和区
100A 80A
放大 区
3 69
第8页/共27页
60A
40A
20A IB=0 12 UCE(V)
首 页 上一页 下一页
三、 三极管特性曲线(讲授40分钟)
1、三极管各极的静态关系曲线
输出特性曲线:ic=f (iB,uCE)
输入特性曲线 : iB=f (uBE,uCE)
管子类型判别例 子(黑板)
输出特性三个区域的特点:
1.5
(1) 放大区:发射结正偏,集电结反偏。
即: IC=IB , 且 IC = IB
(2) 饱和区:发射结正偏,集电结正偏。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

输出电阻很大,相当于一 个恒流源,输出特性曲线有倾斜的 原因是基区宽度调制
饱和区 临界饱和线
iC 击穿区 iB=iB
5
iC4 iC3 iC2
iB=iB4 iB=iB 3 iB=iB
2
iC1
截止区
iB=iB1
iB=-ICBO uCE
U(BR)CEO
(2) 截止区: iE=0, iB=-ICBO, ic=ICBO 晶体管呈现高阻抗状态,失去放大能力
5
iB=iB4 iB=iB 3 iB=iB
2
iB=iB1 iB=-ICBO uCE
截止区
U(BR)CEO
输出特性曲线可分为三个工作区: 1. 截止区 条件:发射结反偏或两端电压为零。 特点: I B 0, I C I CEO 。 2 .饱和区 条件:发射结和集电结均为正偏。 特点: VCE VCES 。 VCES 称为饱和管压降,小功率硅管约0.3V,锗管约为0.1V。 3 .放大区 条件:发射结正偏,集电结反偏 特点: IC受IB控制 ,即 I C I B 。 在放大状态,当 IB 一定时, IC 不随 VCE 变化,即放大 状态的三极管具有恒流特性。
U CC IC RC UBC > 0 + + UCE 0 + UBE > 0

+ + UBE > 0

+ UCE UCC + UBE 0

(a)放大
(b)截止
(c)饱和
三极管特性——具有正向受控作用
在放大状态下的三极管输出的集电极电流IC ,主要 受正向发射结电压VBE的控制,而与反向集电结电压VCE 近似无关。
饱和区 iC
临界饱和线
击穿区 iB=iB
5
iB=iB4 iB=iB 3 iB=iB
2
iB=iB1
截止区
U(BR)CEO
iB=-ICBO uCE
(1)放大区:
ii:
输出特性曲线平行等距:iB 对 iC 有控制作用
在放大区,iC随着iB按β 倍成比例变化,晶体管具有电流放大作用。对输入信 号进行放大就要使三极管工作在放大区。 放大区的特点是:发射结正偏,集电结反偏,iC=β iB。
动画
三极管的输入特性
由图可见:
1.当V CE ≥2 V时,特性曲线基本重合。 2.当VBE很小时,IB等于零, 三极管处于截止状态; 3.当VBE大于门槛电压(硅管 约0.5V,锗管约0.2V)时, IB逐渐增大,三极管开始导 通。 4.三极管导通后,VBE基本不 变。硅管约为0.7V,锗管 约为0.3V,称为三极管的导 通电压。
饱和区
U(BR)EBO
截止区
U(BR)CEO uCE
iB=-ICBO
uBE
ICBO+ICEO
2、三极管共射组态的输出特性曲线:
ic=f (iB,uCE)
当 iB 为某一常数时,可相应地测出一条输出特性曲线。 ic=f (uCE)|iB=常数。
故 NPN 三极管的输出特性曲线为一簇曲线。
饱合区:集电结正偏,发射结正偏 截至区:集电结和发射结都反偏。 击穿区: uCE> U( BR) CEO 放大区:集电结反偏,发射结正偏
当晶体管饱和时, UCE 0,发射极与集电极之间如同一 个开关的接通,其间电阻很小;当晶体管截止时,IC 0 ,发 射极与集电极之间如同一个开关的断开,其间电阻很大,可 见,晶体管除了有放大作用外,还有开关作用。 晶体管的三种工作状态如下图所示
IB UBC < 0 IC + UCE IB = 0 UBC < 0 IC 0 + IB
图2.1.9 共发射极输入特性曲线
5.VBE与IB成非线性关系。
1.5.3 特性曲线
IB
IC mA
A
RB V UBE V
EC
UCE
EB三个区:
1.5
IC(mA ) 4 饱和区
100A
3
2
80A
60A
1 3
截止区
放大 区
6 9
40A 20A IB=0 12 UCE(V)
击穿区 iB=iB
5
EC
ICBO
iC
iB=iB4 iB=iB 3 iB=iB
2
iB=iB1 iB=-ICBO uCE
截止区
U(BR)CEO
IB = 0 的曲线以下的区 域称为截止区。IB = 0 时, IC = ICEO(很小)。对 NPN 型硅 管,当UBE < 0.5 V 时,即已 开始截止,但为了使晶体管 可靠截止,常使 UBE 0,截 止时集电结也处于反向偏置 (UBC < 0),此时, IC 0 , UCE UCC 。
首 页
上一页 下一页
工作压降: 硅管 UBE0.6~0.7V,锗 管UBE0.2~0.3V。
60 死区电 压,硅管 0.5V,锗 管0.2V。
40 20
0.4
0.8
UBE(V)
首 页 上一页 下一页
3、三极管共射组态的输入特性曲线
iB=f(uBE ,uCE)
以 VCE 为参变量的输入特性曲线 :
iB=f(uBE)|
PN结的导通压降),集电结反偏(反偏压降 远远大于其导通电压才行)。
对NPN管各极电位间要求: Ve<Vb < Vc
对PNP管各极电位间要求: Ve>Vb>Vc
管子类型判别例 子(黑板)
输出特性三个区域的特点:
1.5
(1) 放大区:发射结正偏,集电结反偏。 即: IC=IB , 且 IC = IB (2) 饱和区:发射结正偏,集电结正偏。 即:UCEUBE , IB>IC,UCE0.3V (3) 截止区: UBE< 死区电压, IB=0 , IC=ICEO 0
uCE=常数
ib (μA)
U =1 UCE=0 CE UCE=10
BJT的输入特性曲线为一组曲线
U(BR)EBO
uBE
ICBO+ICEO
(1)正向特性:
与二极管正向特性相似
iB (μA)
U =1 UCE=0CE UCE=10
uBE
2.1.4 三极管的输入和输出特性
一、共发射极输入特性曲线 集射极之间的电压VCE一定时,发射结电压VBE与基极电流 IB之间的关系曲线。
2.1 晶体三极管输入 和输出特性
2.1.4 三极管的输入和输出特性 2.1.5 三极管主要参数 2.1.6 三极管的简单测试
1.5.3 特性曲线
IB
IC mA
A
RB V UBE V
EC
UCE
EB
实验线路
首 页 上一页 下一页
1.5
一、输入特性
UCE =0.5V
UCE=0V
IB(A)
80
UCE 1V
首 页 上一页 下一页
三、 三极管特性曲线(讲授40分钟)
1、三极管各极的静态关系曲线 输出特性曲线:ic=f (iB,uCE) 输入特性曲线 : iB=f (uBE,uCE)
临界饱和线 ib (μA)
iC
击穿区 iB=iB iB=iB 4 i =i B B 3 iB=iB 2 iB=iB
1
5
U =1 UCE=0 CE UCE=10
注意:NPN型管与PNP型管工作原理相似,但由于
它们形成电流的载流子性质不同,结果导致各极电流 方向相反,加在各极上的电压极性相反。
IE N+ P N IC IE P+ + N P IC
IB
V1 + V2 + V1
IB
- + V2 -
从结构看:
从电路符号看:
除了发射极上的箭头方向不同外,其他都相同, 但箭头方向都是由P指向N,即PN结的正向电流方向。
(3) 饱和区 当 UCE < UBE 时, 集电结处于正向偏置(UBC > 0),晶体 管工作于饱和状态。在饱和区,IC 和 IB 不成正比。此时,发 射结也处于正向偏置,UCE 0 , IC UCC/RC 。
当 uCE 较小时,曲线陡峭,这部 iC 分称为饱和区。在饱和区,iB 增加 时 iC 变化不大,不同 iB 下的几条曲 饱和区 线几乎重合,表明 iB 对 iC 失去控制, 呈现“饱和”现象。 饱和区的特点是:发射结和集电结都正 偏,三极管没有放大作用。 临界饱和线 击穿区 iB=iB
无论是NPN还是PNP管,都有两个PN结,三个区, 三个电极。
三、三极管的工作状态及其外部工作条件
发射结正偏,集电结反偏:放大模式(最常用) 发射结正偏,集电结正偏:饱和模式 发射结反偏,集电结反偏:截止模式
(用于开关电路中)
例子
总结:在放大电路中三极管主要工作于放大状态,
即要求,发射结正偏(正偏压降近似等于其
相关文档
最新文档