热统答案第三版9第九章 系综理论

合集下载

热统答案(全)

热统答案(全)
ln V T T0 T p p0 , V0
(2)

V T , p V T0 , p0 e
T T0 T p p0
.
(3)
考虑到 和 T 的数值很小,将指数函数展开,准确到 和 T 的线性项,有
V T , p V T0 , p0 1 T T0 T p p0 .
lnV dT T dp .
(3)
若 1 , T 1 ,式(3)可表为
T p
1 1 lnV dT dp . p T
(4)
选择图示的积分路线,从 (T0 , p0 ) 积分到 T , p0 ,再积分到(T , p ) ,相应地体
U CV , T n
(4)
(c)根据题给的数据, J , Y , 对
L L0
的曲线分别如图 1-2 (a) , (b) , (c)
所示。
7
1.7 抽成真空的小匣带有活门,打开活门让气体冲入,当压强达到外界 压强 p0 时将活门关上,试证明:小匣内的空气在没有与外界交换热量之前, 它的内能 U 与原来在大气中的内能 U 0 之差为 U U 0 p0V0 ,其中 V0 是它原来在 大气中的体积,若气体是理想气体,求它的温度与体积。 解:将冲入小匣的气体看作系统。系统冲入小匣后的内能U 与其原来在 大气中的内能 U 0 由式(1.5.3)
J YA T2 T1
解:由物态方程
f J , L, T 0
(1)
知偏导数间存在以下关系:
L T J 1. T J J L L T
(2)
所以,有

大学物理第九章热力学基础习题答案精品.doc

大学物理第九章热力学基础习题答案精品.doc

习题九9-1 一系统由图示的状态。

经Q&/到达状态。

,系统吸收了320J热量,系统对外作功126J。

⑴若。

沥过程系统对外作功42J,问有多少热量传入系统?(2)当系统由b沿曲线ba返回状态。

,外界对系统作功84 J,试问系统是吸热还是放热?热量是多少?懈]由热力学第一定律Q = \E + A p得星=。

-4在a<b过程中,E b - E = M = 0 - A = 320 -126 = 194/在讪过程中Q2 =^ + 4 = 194 + 42 = 236/o在ba过程中Q, = E. - E b + & = -AE + & = -194-84 = -278J本过程中系统放热。

9-2 2mol氮气由温度为300K,压强为 1.013x10*)(latm)的初态等温地压缩到 2.026 xl05Pa(2atm)o求气体放出的热量。

[解]在等温过程中气体吸收的热量等于气体对外做的功,所以Q T=A=/?TIn-^- = 2x8.3lx300x In-= -3.46x 103JM ]P,2mol 2即气体放热为3.46x103, o9-3 一定质量的理想气体的内能E随体积的变化关系为E- V图上的一条过原点的直线,如图所示。

试证此直线表示等压过程。

[证明]设此直线斜率为奴则此直线方程为E = ki,又E随温度的关系变化式为E = M—Cv ・T = k'TM mo i所以kV = k'T因此堂= C = C(C为恒量)T k又由理想气体的状态方程知,华=。

'(C'为恒量)所以P为恒量即此过程为等压过程。

9-4 2mol氧气由状态1变化到状态2所经历的过程如图所示:⑴沿I一所一2路径。

(2)1 — 2 直线。

试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。

[解](1)在1-初一2这一过程中,做功的大小为该曲线下所围的面积,氧气对外做负功。

热力学统计第9章_系综理论

热力学统计第9章_系综理论


第九章 系综理论
二 系统的微观状态与Г空间中体元的对应
系统由N 个粒子组成,粒子自由度r ,系统自由度N r , Г空间是2N r 维。

在µ 空间中,粒子的每个状态占据体元 hr . 在Г空间中, 系统的每个微观状态占据体元 hNr .
孤立系统在能量 E—E+∆E 范围内,系统的微观状态数为 1 Nr Ed N! h E H E
第九章 系综理论
5. 刘维定理(代表点密度随时间的变化规律)
d [ qi pi ] 0 dt t qi pi i
如果随着一个代表点沿正则方程所确定的轨道在相空间中运动,其邻 域的代表点密度是不随时间改变的常数-------刘维尔定理 说明:①刘维尔定理完全是力学规律的结果,其中并未引入任何的统 计概念; ②相空间中的代表点在运动中没有集中或分散的倾向,而保持原 的密度。或者说一群代表点经一定时间后由一个区域移动到另一 个区域,在新区域中代表点的密度等于在出发点区域中的密度。
其中(q, p, t )为概率密度分布函数。 满足
(q, p, t )d 1
统计物理学的基本观点认为,力学量的宏观测量值等于相应微观量 对微观状态的统计平均值。
B(t) B(q, p) (q, p, t) d
不同微观状态在统计平均中的贡献由概率分布函数体现。要想计算 统计平均值,必须知道概率分布函数。
第九章 系综理论
§9.2
微正则分布
不同宏观条件下的系统的分布函数不同。本节讨论 孤立系 ( N、E、V 一定 ) 。 由完全相同的极大数目的孤立系统所组成的系综称为微 正则系综。微正则系综的概率分布称为微正则分布。 孤立系系是与外界既无能量交换又无粒子交换的系统。由 于绝对的孤立系是没有的。所以孤立系是指能量在 E—E+∆E 之间,且 ∆E<< E 的系统。尽管∆E 很小,但在此范围内,系统 可能具有的微观状态数仍是大量的,设其为Ω 。由于这些微观 状态满足同样的已经给定的宏观条件,因此它们应当是平权的。 一个合理的假设是,平衡态的孤立系,系统处在每个微观态上 的概率是相等的。 统计意义 即为等概率原理——微正则分布

热力学与统计物理第九章系综理论

热力学与统计物理第九章系综理论
0 (E1, E0 E1) 1(E1)2 (E0 E1) 上式表明对给定的E0,Ω0取决于E1,即取决于 能量E0在A1,A2间的分配。
根据等概率原理,系统在某一能量分配条件下的微 观状态数越大,该能量分配出现的概率就越大。
因为热平衡必对应概率最大的状态 所以A1,A2达到热平衡时应满足条件: 0 0
二、两种统计平均(1)时间平均(2)系综平均 系统的一个宏观量的测量一般会持续一段时间,如
t0 t t
其中 是一个宏观短而微观长的时间间隔。
宏观短是指在这个时间间隔内,系统的宏观量还 没有发生任何可观测的变化;
微观长是指从微观的角度,在该时间间隔内,系统 的微观运动状态已发生很大变化,从系统的相空间 角度看,系统的代表点已经在相空间中移动了相当 一段。
d ln dE dN dV
比较开系的热力学基本方程 dS dU P dV dN
TT T
P
kT
kT
等价于从热力学得到的单元两相平衡条件:
T1 T2 , P1 P2 , 1 2
下面来确定k的数值:
经典理想气体,1个分子处于V内,可能的微观
当系统处于s量子态时,微观量B的数值为Bs,则 B在一切可能微观状态上的平均值为
B(t) s (t)Bs
s
s (t) 称为分布函数,须满足归一化条件
s s (t) 1
经典系统:
可能的微观态在Γ空间中构成一个连续分布
不同的微观态由相空间的位置标记,
系统相空间的相体积元表示为:
d dq1...dq f dp1...dp f
N!h3N

EH EE
dq1 dq3N dp1 dp3N

热统考试大纲09及6-8习题讲解

热统考试大纲09及6-8习题讲解

《热力学与统计物理》考试大纲2015版第一章热力学的基本定律一、考核知识点(一)基本概念:平衡态、状态参量、状态方程、准静态过程、可逆过程、不可逆过程、功、热量、内能、熵。

(二)基本规律:理想气体状态方程、范德瓦耳斯方程。

热力学第零定律、热力学第一定律、热力学第二定律、熵增加原理。

二、考核要求(一)识记:平衡态、状态方程。

定压膨胀系数、等容压缩系数、等温压缩系数。

准静态过程、可逆过程、不可逆过程。

理想气体状态方程、范德瓦耳斯方程、热力学第一定律、热力学第二定律、熵增加原理。

(二)重点掌握:分别能应用功、热量、内能、熵等概念及理想气体状态方程、范德瓦耳斯方程、热力学第一定律、热力学第二定律、熵增加原理等解决有关问题。

第二章均匀系的热力学关系及其应用一、考核知识点(一)基本概念:焓、自由能、吉布斯函数、特性函数。

(二)基本规律:热力学基本方程组、麦克斯韦关系。

二、考核要求(一)识记:焓、自由能、吉布斯函数、特性函数、热力学基本方程组、麦克斯韦关系。

(二)重点应用:能够熟练确定研究体系的基本热力学函数、确定给定系统的特性函数。

能够熟练应用热力学基本方程组、麦克斯韦关系式及雅克比行列式进行热力学函数变换,寻求不同物理效应之间的关系。

第三章单元复相系的平衡和化学平衡一、考核知识点(一)基本概念:热动平衡判据、相、单元系的复相平衡条件、相变、相平衡、巨热力学势。

(二)基本规律:单元开放系的热力学基本方程组、热动平衡条件、平衡的稳定性条件,相变方向的判定、克拉珀龙方程、表面相影响下的平衡条件、爱伦菲斯特方程。

二、考核要求(一)识记:热平衡判据、单元系的复相平衡条件、单元开放系的热力学基本方程组、平衡稳定性条件、克拉珀龙方程。

(二)重点应用:能够应用热动平衡判据导出系统的平衡条件以及平衡的稳定性条件,能够熟练地应用克拉珀龙方程求证单元系的有关平衡性质。

能够利用热动平衡判据判定不同热力学过程的方向。

第四章多元系的复相平衡和化学平衡一、考核知识点(一)基本概念:偏摩尔量、多元复相系的平衡条件。

高教热统答案第九章

高教热统答案第九章

第九章 系综理论习题9.1证明在正则分布中熵可表为∑-=ss s k S ρρln 其中sE s e Zβρ-=1是系统处在s 态的概率。

证: )l n (l n ββ∂∂-=Z Z k S 多粒子配分函数)1(1ss E sE e Z e Z ββρ--=⇒=∑ )2(ln ∑∑---=∂∂kE kE k kke e E Zβββ由(1)知 []s s s s s E Z E Z E Z e s ρβρβρβl n l n 1;l n l n +=-+=-⇒=-代至(2)得[]∑∑+=+=∂∂ss ss s s Z Z Z ρρββρρββl n 1l n 1l n l n 1l n ;于是 ∑-=⎪⎪⎭⎫⎝⎛∂∂-=s s s k Z Z k S ρρββln ln ln 习题9.2试用正则分布求单原子分子理想气体的物态方程,内能和熵 证: ()222121;iziy ix Ni s sE p p p mE eZ s++==∑∑=-β 符号∏=iiz iy ix dp dp dp dp符号∏=ii i i dz dy dx dq()()2/33)(232332!!!!1222122212222N NNNp p p m N N p p p m NNp p p N m h N V Z dp e h N V dpeh N V dpdq e hN Z z y x Ni iziy ix Ni iz iy ix m⎪⎪⎭⎫ ⎝⎛=⇒⎥⎦⎤⎢⎣⎡=∑=∑=⎰⎰⎰∞+∞-++-∞+∞-++-++-==βπβββ利用式(9.5.3)VNTkV Z Z Z P =∂∂=∂∂=⇒βββ1ln 1类似求S U ,。

习题9.3体积内盛有两种组元的单原子混合理想气体,其摩尔数为1n 和2n ,温度为T 。

试由正则分布导出混合理想气体的物态方程,内能和熵。

解:()()[]∏∏⎰∑=+++++-+jj j i i i i iz iy ix p p p p p p m n n dq dp dz dy dx dp dp dp e h n n Z jz jy jx iz iy ix 222222212)(321!!1β()2/3)(321)(2121212!!n n n n n n m h n n V Z +++⎪⎪⎭⎫ ⎝⎛=⇒βπ()kT n n PV VkT n n V Z P )(ln 12121+=⇒+=∂∂=⇒β习题9.5利用范氏气体的配分函数,求内能和熵。

热力学与统计物理 第九章 系综理论

热力学与统计物理 第九章 系综理论
Bt
B p, q 就是与微观量 B 相应的宏观量
上式也可以这么理解:
设想有大量结构完全相同的系统,处在相同的给定宏 观条件下,这样的大量系统的集合称为统计系综。 那么在 t 时刻,运动状态在d 范围内的系统数就 与 p, q, t 成正比。 如果在 t 时刻 ,从统计系综中任 取一个系统,这个系统的状态处在 d 范围内的概率为
H p, q E, H p, q E E
E H p, q E E
等概率原理的量子表述: 如果用 表示在 E E E 能量范 围内系统可能的微观状态数 ,那么有
s
1

s
s
1
s 1,2,,
把理解经典统计理解为量子统计的经典极限,对于含有 N 个自由度为 r 的全 同粒子系统,在 E E E 的能量范围内系统的微观状态数 为
1 2
力平衡条件
p1 p2
ln 1 N 1 E1 ,V1
ln 2 N 2 E 2 ,V2
ln N V , E
1 2
相变平衡条件
1 2
ln E N ,V
dx dy dz dx
N
dyN dzN dpx 1 dpy dpz 1 dpx N dpy dpy
1 N
N
0
2m E


确定 空间中的一个曲面,称为能量曲面。 对于经典理论,在 空间中,一点代表代表着系统的 一个微观运动状态,随着时间的推移,这些微观运动状态
的代表点将在 相空间中构成一个连续的分布。 用 d dq1 dq f dp1 dp f 表示相空间中一个体积元, 则在 t 时刻,系统处在 d 内的概率可以表示为 p, q, t d

热统习题解答(全)

热统习题解答(全)

热统习题解答(全)第⼀章热⼒学的基本规律1.1 试求理想⽓体的体胀系数α,压强系数β和等温压缩系数κ。

解:理想⽓体的物态⽅程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=??-==??==??=βα1.2 证明任何⼀种具有两个独⽴参量T ,P 的物质,其物态⽅程可由实验测得的体胀系数α及等温压缩系数κ,根据下述积分求得: ?-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态⽅程。

证明:dp p VdT T V p T dV T P )()(),(??+??= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=??+??=)(1)(1积分后得 ?-=)(ln kdP adT V 如果,1,1p T ==κα代⼊上式,得C P T PdP T dT V ln ln ln )(ln +-=-=?所以物态⽅程为:CT PV =与1mol 理想⽓体得物态⽅程PV=RT 相⽐较,可知所要求的物态⽅程即为理想⽓体物态⽅程。

1.3在00C 和1atm 下,测得⼀块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。

a 和k 可以近似看作常数。

今使铜加热⾄100C ,问(1)压⼒要增加多少⼤⽓压才能使铜块的体积维持不变?(2)若压⼒增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=??+??=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475==?=?-- (b)475121211211007.4100108.7101085.4)()(---?=??-??=---=-=?p p T T V V V V V κα可见,体积增加万分之4.07。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档