理论力学答案完整版(清华大学出版社)3
3理论力学 课后答案 (范钦珊 刘燕 王琪 著) 清华大学出版社

RC
FR D
FR G
H
FR H
— 6 —
第 3 章 静力学平衡问题
3-1 图示两种正方形结构所受荷载 F 均已知。试求其中 1,2,3 各杆受力。
: 2 F3 cos 45° − F = 0 解:图(a)
F3 =
2 F (拉) 2
F1 = F3(拉)
F2 − 2 F3 cos 45° = 0
F2 = F(受压) 图(b) : F3 = F3′ = 0 F1 = 0 F2 = F(受拉)
由于 FBC = FCB ; FEC = FCE ,联立式(1)、( 2)、( 3)解得: FH =
(3)
F 2 sin 2 α
3–7 三个半拱相互铰接,其尺寸、支承和受力情况如图所示。设各拱自重均不计,试计算支座 B 的 约束力。
FD′ FD FCx FCy FAy
习题 3-7 图 (a) (b)
习题 1-3 图
F
(a-1) (b-1) 或(b-2)
FAx
F
或(a-2) (c-1)
D B
F
C C
A
C
FAy
α
B
D
(d-1)
或(d-2)
FD
FD
(e-2)
FA FB (e-3)
FA
(e-1)
— 2 —
A F Ax
D A
D
(f-1)
(f-2)
(f-3)
1-4 图 a 所示为三角架结构。荷载 F1 作用在铰 B 上。杆 AB 不计自重,杆 BC 自重为 W。试画出 b、 c、d 所示的隔离体的受力图,并加以讨论。
F
(b)
A
FA
(c)
清华大学版理论力学课后习题答案大全-----第5章点的复合运动分析

第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。
若d 为已知,试求曲杆O 1BC 的角速度。
解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1ωω==AO v BC O (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。
曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴30=φ。
求此时滑转动。
当机构在图示位置时,曲柄与水平线交角杆CB 的速度。
解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。
2、速度分析:r e a v v v += πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。
曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。
已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。
试求滑块滑道中的相对运动方程,以及摇杆的转动方程。
解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程 将(1)、(2)式相除,得: 2.摇杆转动方程:5-4 曲柄摇杆机构如图所示。
已知:曲柄O 1A 以匀角速度ω1绕轴O 1转动,O 1A = R ,O 1O 2 =b ,O 2O = L 。
试求当O 1A 水平位置时,杆BC 的速度。
解:1、A 点:动点:A ,动系:杆O 2A ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
理论力学答案完整版(清华大学出版社)1

第一章力和约束 习题解答
1-1 求 图 示 空 间 汇 交 力 系 的 合 力 。 已 知 F1 = 100N , F2 = 200N , F3 = 300N , F4 = 400N ,方向如图示。如果仅改变力 F4 的方向,能否使此力系成为平衡力系?为什么?
解:按合力投影定理计算合力在 x, y, z 轴上的投影: FRx = F1 cosϕ1 + F2 sin γ 2 cosϕ2 − F4 sin2 30o = 111.1 (N); FRy = F2 sin γ 2 sinϕ2 + F3 + F4 sin 30o cos30o
= 601.1 (N); FRz = −F1 sinϕ1 − F2 cosγ 2 sinϕ2 + F4 cos30o
题 1-9(a)图 (b)按三力平衡汇交定理画出整体的受力图,然后依次画出杆 CD、杆 AB、轮 D 的受力图。
题 1-9(b)图
5
(c)折杆 BC 为二力构件,约束力方向一定是沿着 BC 连线。因力偶只能与力偶平衡,所 以,铰链 A 和 B 处的约束力一定互相平行而组成力偶。
题 1-9(c)图 (d)图示结构中,杆 CE 为二力杆,其余杆件的受力按力偶平衡理论确定。
对 x, y, z 轴的力矩和,以及对坐标原点 O 的力矩和。
解:平面 abc 的法向量为 n = 1 i + 1 j + 1 k ,力偶矢为 ab c
M = Mn0 , 其中 i, j,k, n0 依次为 x, y, z, n 方向的单位向
量。力 F 表为 F = Fξ 0
其中ξ 0 为ξ = 1 (a i + b j) − ck 方向的单位向量。
理论力学答案完整版(清华大学出版社)3

之差称为静不定次数。这类问题需要补充与静不定次数相同数量的变形协调方程才能求解。 未知约束力分量的数目小于独立平衡方程的数目,这类平衡问题是不存在的。 解题要领:
为自锁。反之,主动力的合力作用线位于摩擦锥外时,不论这个力多小,物体总不平衡。
1 滚动摩擦
维持滚动体平衡的滚阻力偶 M f 的值只能在零和 M f ,max 之间,即 0 ≤ M f ≤ M f ,max . 最大滚阻力偶 M f ,max 与正压力 FN 成正比,即
M f ,max = δFN 。
(a) 解:以 AB 以梁为研究对象,画受力图,列平衡方程
∑ Fx = 0 , FC cos 60o + F1 cos 60o = 0 ,
FC = −F1 = −30 kN
∑ mB = 0,
−
FA
×8
−
M
−
FC
sin
60o
×3+
F1
sin 60o
×8
,
+ F2 × 4 + q × 3×1.5 = 0
平面力偶系:
∑mz = 0
∑my ≡ 0
平面平行力系:
∑ Fz = 0 ∑mx = 0
解题要领: 1 解平衡问题的三部曲:确定研究对象、画受力图、列平衡方程; 2 通常先以整体为研究对象,再以部分为研究对象; 3 平衡方程的两种形式:投影式和对轴的力矩式,两者都与轴有关,选择合适的坐标轴可
避免解联立方程。 4 做一定数量的习题是掌握平衡问题的关键。
清华大学版理论力学课后习题答案大全第10章动能定理及其应用习题解

CA(a)ωO(a)第10章动能定理及其应用10-1计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。
在图示位置时,若已知圆盘上A、B 两点的速度方向如图示,B 点的速度为v B ,θ =45º(图a )。
2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。
3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。
细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。
解:1.2222221632(2121)2(212121B B B C C C mv r v mr v m J mv T =⋅+=+=ω2.222122222214321(21212121vm v m r v r m v m v m T +=⋅++=3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。
现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。
当杆与铅垂线的夹角为ϕ时,试求系统的动能。
解:图(a )BA T T T +=)2121(21222211ωC C J v g W v g W ++=21221121212211122]cos 22)2[(22ωϕω⋅⋅+⋅++++=l g W l l v l v l g W v g W ]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。
齿轮II 通过匀质的曲柄OC 带动而运动。
曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。
试求行星齿轮机构的动能。
理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
清华大学版理论力学课后习题答案大全

第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。
试求动齿轮以圆心A 为基点的平面运动方程。
解:ϕc o s )(r R x A += (1) ϕsin )(r R y A +=(2)α为常数,当t = 0时,0ω=0ϕ= 0221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R = ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。
试以杆与铅垂线的夹角θ 表示杆的角速度。
解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。
作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。
则角速度杆AB 为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。
试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。
解:RvR v A A ==ωR v R v B B 22==ωB A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。
设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。
试求该瞬时杆BC 的角速度和点C 的速度。
理论力学第三版课后习题答案

目录第一章质点力学 (2)第二章质点组力学 (56)第三章刚体力学 (74)第四章转动参考系 (105)第五章分析力学 (115)第一章 质点力学1.1 由题可知示意图如题1.1.1图:{{SSt t 题1.1.1图设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a . 则有:()()⎪⎪⎩⎪⎪⎨⎧+-+=-=221210211021221t t a t t v s at t v s 由以上两式得11021at t s v +=再由此式得()()2121122t t t t t t s a +-=证明完毕.1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题1.2.1图.题1.2.1图设A 船经过0t 小时向东经过灯塔,则向北行驶的B 船经过⎪⎭⎫ ⎝⎛+2110t 小时经过灯塔任意时刻A 船的坐标()t t x A 15150--=,0=A yB 船坐标0=B x ,⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛+-=t t y B 15211150则AB 船间距离的平方()()222B A B A y y x x d -+-=即()2021515t t d -=201521115⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++t t()20202211225225675900450⎪⎭⎫ ⎝⎛++++-=t t tt t2d 对时间t 求导()()67590090002+-=t t dtd d AB 船相距最近,即()02=dtdd ,所以h t t 430=- 即午后45分钟时两船相距最近最近距离22min231543154315⎪⎭⎫ ⎝⎛⨯-⨯+⎪⎭⎫ ⎝⎛⨯=s km1.3 解 ()1如题1.3.2图第1.3题图y题1.3.2图由题分析可知,点C 的坐标为⎩⎨⎧=+=ψψϕsin cos cos a y a r x 又由于在∆AOB 中,有ϕψsin 2sin ar =(正弦定理)所以ry r a 2sin 2sin ==ψϕ联立以上各式运用1cos sin 22=+ϕϕ由此可得rya x r a x 22cos cos --=-=ψϕ得12422222222=---++r y a x y a x r y 得22222223y a x r a x y -=-++化简整理可得()()2222222234r a y x y a x -++=-此即为C 点的轨道方程.(2)要求C 点的速度,分别求导⎪⎪⎩⎪⎪⎨⎧=--=2cos sin cos 2cos sin ϕωψψϕωϕωr y r r x 其中ϕω = 又因为ψϕsin 2sin a r =对两边分别求导 故有ψϕωψcos 2cos a r =所以22y x V +=4cos sin cos 2cos sin 2222ϕωψψϕωϕωr r r +⎪⎪⎭⎫ ⎝⎛--= ()ψϕψϕϕψω++=sin cos sin 4cos cos 22r1.4 解 如题1.4.1图所示,A BOCLxθd 第1.4题图OL 绕O 点以匀角速度转动,C 在AB 上滑动,因此C 点有一个垂直杆的速度分量22x d OC v +=⨯=⊥ωωC 点速度dx d d v v v 222sec sec cos +====⊥⊥ωθωθθ 又因为ωθ= 所以C点加速度 θθθω ⋅⋅⋅⋅==tan sec sec 2d dt dv a ()2222222tan sec 2d x d x d +==ωθθω1.5 解 由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin 1π 由加速度的微分形式我们可知dtdv a =代入得dtT t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫ ⎝⎛-=002sin 1π可得 :D Ttc Tct v ++=2cos2ππ(D 为常数)代入初始条件:0=t 时,0=v ,故c TD π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos2T t T t c v ππ 又因为dtds v =所以=ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ1.6 解 由题可知质点的位矢速度r λ=//v ①沿垂直于位矢速度μθ=⊥v又因为 r r λ== //v , 即r rλ=μθθ==⊥r v 即rμθθ= ()()j i v a θ r dtd r dt d dt d +==(取位矢方向i ,垂直位矢方向j ) 所以()j i i i θ r rdtd r i dt r d r dt d +=+=()dtd r dt d r dt dr r dt d j j j j θθθθ ++=i j j 2r r r θθθ -+= 故()()j i a θθθ r r r r22++-= 即 沿位矢方向加速度()2θ r ra -= 垂直位矢方向加速度()θθr r a 2+=⊥ 对③求导r rr 2λλ== 对④求导θμμθθr rr +-=2⎪⎭⎫⎝⎛+=λμμθr 把③④⑦⑧代入⑤⑥式中可得rr a 222//θμλ-= ⎪⎭⎫ ⎝⎛+=⊥r a μλμθ1.7 解 由题可知⎩⎨⎧==θθsin cos r y r x ①②对①求导θθθ sin cos r r x-= ③ 对③求导2 ④对②求导θθθcos sin r r y+=⑤ 对⑤求导θθθθθθθsin cos cos 2sin 2 r r r ry -++=⑥ 对于加速度a ,我们有如下关系见题1.7.1图题1.7.1图即⎩⎨⎧+=+=θθθθθθcos sin sin cos a a y a a x r r⑦--⑧ 对⑦⑧俩式分别作如下处理:⑦θcos ⨯,⑧θsin ⨯ 即得⎩⎨⎧+=-=θθθθθθθθθθcos sin sin sin cos sin cos cos a a y a a x r r⑨--⑩ ⑨+⑩得θθsin cos yx a r += ⑾ 把④⑥代入 ⑾得2θr r a r -= 同理可得θθθ r r a 2+= 1.8解 以焦点F 为坐标原点,运动如题1.8.1图所示]题1.8.1图则M 点坐标⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= )又因为()()221cos 111e a e e a r -+-=θ即()rer e a --=21cos θ 所以()()2222222221211cos 1sin e r e ar r e a --+--=-=θθ故有()2222224222sin 1ωθωr e a r e v +-=()2224221ea r e -=ω()()]1211[2222222e r e ar r ea --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω 即()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)1.9证 质点作平面运动,设速度表达式为j i v y x v v +=令为位矢与轴正向的夹角,所以dt d v dt dv dt d v dt dv dt d y y x x j j i i v a +++==j i ⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x y y x v dt dv v dt dv 所以[]j i a ⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x yy x v dt dv v dt dv ()j i y x v v +⋅ θθ y x y y y x x x v v dt dv v v v dt dv v ++-=dtdv v dt dv v y yxx += 又因为速率保持为常数,即C C v v y x ,22=+为常数对等式两边求导022=+dtdv v dt dv v y y xx所以0=⋅v a即速度矢量与加速度矢量正交.1.10解 由题可知运动轨迹如题1.10.1图所示,题1.10.1图则质点切向加速度dtdv a t =法向加速度ρ2n v a =,而且有关系式ρ2v 2k dt dv -= ①又因为()232y 1y 1'+''=ρ②2px y 2=所以yp y =' ③ 32yp y -='' ④ 联立①②③④2322322y p 1y p 2kv dtdv⎪⎪⎭⎫ ⎝⎛+-= ⑤又dydv ydt dy dy dv dt dv =⋅=把2px y 2=两边对时间求导得pyy x= 又因为222y xv += 所以22221py v y+= ⑥ 把⑥代入⑤23223222122121⎪⎪⎭⎫ ⎝⎛+⋅-=⋅⎪⎪⎭⎫ ⎝⎛+y p y p kv dydvp y v既可化为222py dykp v dv +-= 对等式两边积分222py dykp v dv p p vu+-=⎰⎰- 所以πk ue v -=1.11解 由题可知速度和加速度有关系如图1.11.1所示题1.11.1图⎪⎪⎩⎪⎪⎨⎧====ααcos sin 2a dt dv a a r v a t n 两式相比得dtdvr v ⋅=ααcos 1sin 2 即2cot 1vdv dt r =α 对等式两边分别积分200cot 1v dv dt rv v t⎰⎰=α 即αcot 11rtv v -=此即质点的速度随时间而变化的规律.1.12证 由题1.11可知质点运动有关系式⎪⎪⎩⎪⎪⎨⎧==ααcos sin 2a dtdv a r v ①② 所以 ωθθθd dv dt d d dv dt dv =⋅=,联立①②,有ααωθcos sin 2r v d dv = 又因为r v ω=所以 θαd vdv cot =,对等式两边分别积分,利用初始条件0=t 时,0θθ=()αθθcot 00-=e v v1.13 证(a )当00=v ,即空气相对地面上静止的,有牵相绝v v v +=.式中绝v 质点相对静止参考系的绝对速度, 相v 指向点运动参考系的速度, 牵v 指运动参考系相对静止参考系的速度.可知飞机相对地面参考系速度:绝v =v ',即飞机在舰作匀速直线运动.所以飞机来回飞行的总时间v l t '=20. (b )假定空气速度向东,则当飞机向东飞行时速度01v v v +'=飞行时间1v v lt +'=当飞机向西飞行时速度0v v v v v -'=+=牵相飞行时间2v v lt -'=故来回飞行时间021v v l t t t +'=+=0v v l -'+222v v lv -''= 即2200220112v v t v v v lt '-='-'= 同理可证,当空气速度向西时,来回飞行时间2201v v t t '-=(c )假定空气速度向北.由速度矢量关系如题1.13.1图v 题1.13.1图v v v '+=0绝202v v v -'= 所以来回飞行的总时间222vv l t -'=2200220112v vt v v v l '-='-'=同理可证空气速度向南时,来回飞行总时间仍为2201v v t t '-=1.14解 正方形如题1.14.1图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∑ mC = 0 , FD × 4 − q × 2 ×1 − M = 0 ,
FD = 15 kN ; ∑ Fy = 0, − FCy + FD − q × 2 = 0 ,
FCy = −5 kN
∑ Fx = 0 , FCx = 0 kN
(2)再取 AC 梁为对象,画受力图,列平衡方
程:
∑ mB = 0 , − FAy × 2 − q × 2 ×1 + FCy × 2 = 0 ,
为自锁。反之,主动力的合力作用线位于摩擦锥外时,不论这个力多小,物体总不平衡。
1 滚动摩擦
维持滚动体平衡的滚阻力偶 M f 的值只能在零和 M f ,max 之间,即 0 ≤ M f ≤ M f ,max . 最大滚阻力偶 M f ,max 与正压力 FN 成正比,即
M f ,max = δFN 。
∑mx = 0 ∑my = 0 ∑mz = 0
FR′ × k ≡ 0
空间平行力系:
∑ Fz = 0 ∑mx = 0 ∑my = 0
FR′ ⋅ k ≡ 0 MO ×k ≡ 0
平面力系:
∑ Fx = 0 ∑ Fy = 0 ∑mz = 0
∑ Fz ≡ 0
平面汇交力系:
∑ Fx = 0 ∑ Fy = 0
∑mx ≡ 0 ∑my ≡ 0
(a) 解:(1)先取 BC 梁为对象,画受力图,列平衡方程
∑ mB = 0 , FC × 4 − q × 6 × 3 = 0 ,
4
FC = 18 kN ;
∑ Fy = 0, FBy + FC − q × 6 = 0 ,
FBy = 6 kN
∑ Fx = 0 , FBx = 0 kN
(2)再取 AB 梁为对象,画受力图,列平衡方程
除了 3 个约束外力外,3 根杆的轴力也是未知的,共有 6 个未知量。AB 梁可以列出 3 个平衡方程,连接 3 根杆的铰链可以列出 2 个平衡方程,共有 5 个方程,所以,该系统的内 力是 1 次静不定。
3-2 炼钢炉的送料机由跑车 A 与可移动的桥 B 组成,如图示。跑车可沿桥上的轨道运 动,两轮间距离为 2 米,跑车与操作架、手臂 OC 以及料斗相连,料斗每次装载物料重 W=15kN,平臂长 OC=5m。设跑车 A、操作架和所有附件总重量为 P,作用于操作架的轴线。 试问 P 至少应多大才能使料斗在满载时不致翻倒?
2 静定和静不定问题 未知约束力分量的数目等于独立平衡方程的数目,这类平衡问题称为静定问题; 未知约束力分量的数目大于独立平衡方程的数目,这类平衡问题称为静不定问题,两者
之差称为静不定次数。这类问题需要补充与静不定次数相同数量的变形协调方程才能求解。 未知约束力分量的数目小于独立平衡方程的数目,这类平衡问题是不存在的。 解题要领:
FAy = −15 kN .
∑ Fy = 0, FAy + FB − q × 2 + FCy = 0
FB = 40 kN . ∑ Fx = 0 , − FAx + FCx = 0
题 3-4(b)图
FAx = 0 kN .
3-5 梁的支承及载荷如图示。已知: F = qa , M = qa 2 。试求支座的约束力。
FAx = FBx = 0 .
∑ mA = 0 ,
平面力偶系:
∑mz = 0
∑my ≡ 0
平面平行力系:
∑ Fz = 0 ∑mx = 0
解题要领: 1 解平衡问题的三部曲:确定研究对象、画受力图、列平衡方程; 2 通常先以整体为研究对象,再以部分为研究对象; 3 平衡方程的两种形式:投影式和对轴的力矩式,两者都与轴有关,选择合适的坐标轴可
避免解联立方程。 4 做一定数量的习题是掌握平衡问题的关键。
(a)解:(1)先取 CD 梁为对象,画受力图,列平衡方程:
∑ mC
=
0 , FDa
−
1 qa2 2
−M
=
0,
FD
=
3 2
qa
。
∑ Fx = 0 , FCx = 0 。
5
∑ Fy = 0, FCy + FD − F − qa = 0
FCy
=
1 2
qa
。
2)再取 AC 梁为对象,画受力图,列平衡方程:
FA = 63.22 kN . ∑ Fy = 0, FA + FC sin 60o + FB − F1 sin 60o − F2 − q × 3 = 0 ,
FB = 88.74 kN .
题 3-3(a)图
(b)解:以 AB 以梁为研究对象,画受力图,列平衡方程
∑ Fx = 0 , FD cos 45o − FB cos 45o − F2 cos30o = 0 , ∑ mC = 0, FD sin 45o × 4 + FB sin 45o × 8 − M − F1 × 2
− F2 sin 30o × 6 = 0, 解得: FB = 8.42 kN,5o + FB sin 45o + FC − F1 − F2 sin 30o = 0 , 解得: FC = 3.45 kN 。
题 3-3(b)图
3-4 试求图示多跨梁的支座反力。已知(a) M = 8 kN ⋅ m , q = 4 kN/m ;(b) M = 40 kN ⋅ m , q = 10 kN/m 。
解题要领: 1 滑动摩擦问题,要区分三种状态:
ⅰ)平衡范围之内,即 0 ≤ F < Fmax ,此时,静滑动摩擦力相当于普通的约束力,力矢
的箭头指向可以任意假定;
ⅱ)临界平衡状态,即 F = Fmax = f s FN ,此时,静滑动摩擦力矢的箭头指向是确定的,
不能任意假定;
ⅲ)滑动状态,即 F ' = fFN ,此时,动滑动摩擦力矢的箭头指向是已知的。
∑ Fx = 0 , FAx + FBx = 0 ,
FAx = −FBx = 0 kN
∑ Fy = 0, FAy − FBy = 0 , FAy = 6 kN ;
∑ mA = 0 ,
mA − M − FBy × 4 = 0 ,
mA = 32 kN ⋅ m .
题 3-4(a) 图
(b) 解:(1)先取 CD 梁为对象,画受力图,列平衡方程:
∑ mB
=
0,−
FAy a
−
FCy a
−
1 qa2 2
=
0,
FAy = −qa 。
∑ Fx = 0 , FAx − FCx = 0 , FAx = 0 。
∑ Fy = 0,
FAy + FB − FCy − qa = 0 ,
FB
=
5 2
qa
。
题 3-5(a)图
(b)解:(1)取 BC 梁为对象,画受力图。因分布载荷呈三角形分布,B 点处的载荷集度 为 q/2。列平衡方程:
三、平面桁架的静力计算 桁架是由许多直杆彼此在端部用焊接、铆接、榫接而成的几何不变结构。平面桁架可分
为简单桁架和复杂桁架。平面简单桁架是静定结构,复杂桁架可以是静定的,也可能是静不 定的。主要有两种解法:节点法和截面法。
解题要领:
1 将组成桁架的各杆进行编号,内力编号与杆号一致, 内力都假设杆是受拉。计算结果内 力为正,表明原先的假设与实际情况相同,即杆受拉,反之,杆受压。杆实际受拉还是受压 十分重要,不可混淆。 2 确定零杆,即内力为零的杆,以简化计算。 3 计算时,先取整体为对象,求出支座反力。 4 节点法是从只有 2 根杆的节点开始,依次列出各节点的平衡方程,解出各杆内力。节点法 可以解出全部杆的内力。 5 截面法是以一假想的截面截取桁架的一部分为研究对象,只截杆而不可截节点,最好选择 截面的未知杆数不超过 2。 6 灵活应用截面法和节点法,可以提高计算效率。
3
题 3.2 图
解:以送料机为研究对象,受力图如图 示。满载时不致翻倒的临界状态是
FNE = 0 。列平衡方程: ∑ mF = 0 , P ×1−W × 4 = 0 ,
解得 P = 4W = 4×15 = 60(kN)
所以,当 P > 60kN 时,才能使料斗在
满载时不致翻倒。
3-3 梁 AB 用三根杆支承,如图示。已知 F1 = 30kN , F2 = 40kN , M = 30kN ⋅ m , q = 20kN/m 。试求三杆的约束力。
第三章
本章要点:
一、力系的平衡方程及其应用 1 平衡方程
平衡问题:矢量方法
空间力系:
∑ Fx = 0, ∑ Fy = 0, ∑ Fz = 0, ∑ mx = 0, ∑ my = 0, ∑ mz = 0
MO ≡ 0
空间汇交力系:
∑ Fx = 0 ∑ Fy = 0 ∑ Fz = 0
FR′ ≡ 0
空间力偶系:
2 摩擦角与自锁现象
在临界平衡状态下,全反力与正压力的夹角ϕmax 称为摩擦角,与摩擦因数 f s 的关系为
tan ϕ max
=
Fmax FN
=
fs ,
即摩擦角的正切等于静滑动摩擦因数。
当主动力的合力作用线位于摩擦锥内时,不论这个力多大,接触面一定能产生与之大小
相等、方向相反的全反力与之平衡,这种依靠摩擦力维持平衡而与主动力大小无关的现象称
(4)刚架在 A、B 和 C 处都是固定端约束,各有 3 个共 9 个约束力组成平面一般力系, 而独立的平衡方程只有 3 个。所以是 6 次静不定。
(5)平面桁架在 A 处为固定铰链,B 处为辊轴铰链,共有 3 约束力组成平面一般力系, 而独立的平衡方程也有 3 个,因此,该平面桁架的外力是静定的。
2
第三章 平衡问题:矢量方法 习题解答
3-1 讨论图示各平衡问题是静定的还是静不定的,若是静不定的试确定其静不定的次 数。