Linux编译选项详解

Linux编译选项详解
Linux编译选项详解

linux内核编译选项详解(一):General setup 空间中有一些有关编译出错的信息

[*]Prompt for development and/or incomplete code/drivers

显示尚在开发中或尚未完成的代码与驱动.你应该选择它,因为有许多设备可能必需选择这个选项才能进行配置,实际上它是安全的。这个选项同样会让一些老的驱动的可用。如果你选了Y,你将会得到更多的阿尔法版本的驱动和代码的配置菜单。

()Local version – append to kernel release

在内核版本后面加上自定义的版本字符串(小于64字符),可以用‖uname -a‖命令看到

[ ]Automatically append version information to the version string

自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –

append-to-version 选项来生成自定义版本,所以这里选N。

Kernel compression mode (Gzip)

内核压缩模式选baip2

?gzip用于UNIX系统的文件压缩。后缀为.gz的文件。现今已经成为Internet 上使用非常普遍的一种数据压缩格式,或者说一种文件格式。HTTP协议上的GZIP

编码是一种用来改进WEB应用程序性能的技术。大流量的WEB站点常常使用

GZIP压缩技术来让用户感受更快的速度。

?bzip2是一个基于Burrows- Wheeler 变换的无损压缩软件,压缩效果比传统的LZ77/LZ78压缩算法来得好。它是一款免费软件。bzip2能够进行高质量的数据

压缩。它利用先进的压缩技术,能够把普通的数据文件压缩10%至15%,压缩

的速度和解压的效率都非常高!支持现在大多数压缩格式,包括tar、gzip 等等。

?lzma是一个Deflate和LZ77算法改良和优化后的压缩算法,开发者是Igor Pavlov,2001年被首次应用于7-Zip压缩工具中,是2001年以来得到发展的

一个数据压缩算法。它使用类似于LZ77 的字典编码机制,在一般的情况

[*] Support for paging of anonymous memory (swap)

将使你的内核支持虚拟内存。这个虚拟内存在LINUX中就是SWAP分区。除非你不想要SWAP分区,否则这里必选Y。

[*] System V IPC

System V进程间通信(IPC)支持,于处理器在程序之间同步和交换信息,如果不选这项,很多程序运行不起来,特别地,你想在LINUX下运行DOS仿真程序,你必须要选Y。

[*] POSIX Message Queues

POSIX消息队列,这是POSIX IPC中的一部分。建议你最好将它选上POSIX 表示可移植操作系统接口

[*] BSD Process Accounting

这是允许用户进程访问内核,将账户信息写入文件中。这通常被认为是个好主意,建议你最好将它选上。将进程的统计信息写入文件的用户级系统调用,主要包括进程的创建时间/创建者/内存占用等信息。

?[ ]BSD Process Accounting version 3 file format

选Y,统计信息将会以新的格式(V3)写入,这格式包含进程ID和父进程。注

意这个格式和以前的v0/v1/v2 格式不兼容,所以你需要升级相关工具来使用

它。

[*] Export task/process statistics through netlink (EXPERIMENTAL)

处于实验阶段的功能。通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N。

?[*] Enable per-task delay accounting (EXPERIMENTAL)

在统计信息中包含进程等候系统资源(cpu,IO同步,内存交换等)所花费的时间?[*] Enable extended accounting over taskstats (EXPERIMENTAL) 在统计信息中包含扩展进程所花费的时间

?

o[*] Enable per-task storage I/O accounting (EXPERIMENTAL)

在统计信息中包含I/O存储进程所花费的时间

[*] Auditing support

审计支持,用于和内核的某些子模块同时工作,(例如SELinux)需要它,只有同时选择其子项才能对系统调用进行审计。

允许审计的下层能够被其他内核子系统使用,比如SE-Linux,它需要这个来进行登录时的声音和视频输出。没有CONFIG_AUDITSYSCALL 时(即下一个选项)无法进行系统调用。

?[*] Enable system-call auditing support

支持对系统调用的审计。允许系统独立地或者通过其他内核的子系统,调用审计

支持,比如SE-Linux。要使用这种审计的文件系统来查看特性,请确保

INOTIFY 已经被设置。

RCU Subsystem —> 一个高性能的锁机制RCU 子系统

RCU(Read-Copy Update),顾名思义为读取-复制更新。对于被RCU保护的共享数据结构,读者不需要获得任何锁就可以访问它,但写者在访问它时首先拷贝一个副本,然后对副本进行修改,最后使用一个回调(callback)机制在适当的时机把指向原来数据的指针重新指向新的被修改的数据。这个时机就是所有引用该数据的CPU都退出对共享数据的操作。

?RCU Implementation (Tree-based hierarchical RCU) —>

RCU 实现机制

o(X) Tree-based hierarchical RCU

基本数按等级划分

?[ ] Enable tracing for RCU

激活跟踪

?(32) Tree-based hierarchical RCU fanout value

基本数按等级划分分列值

?[ ] Disable tree-based hierarchical RCU auto-balancing

< > Kernel .config support

这个选项允许.config文件(即编译LINUX时的配置文件)保存在内核当中。它提供正在运行中的或者还在硬盘中的内核的相关配置选项。可以通过内核镜像文件kernel image file 用命令script scripts/extract-ikconfig 来提取出来,作为当前内核重编译或者另一个内核编译的参考。如果你的内核在运行中,可以通过/proc/config.gz文件来读取。下一个选项提供这项支持。

看起来好像是一个不错的功能,可以把编译时的 .config文件保存在内核中,以供今后参考调用。用来重编译和编译其他的内核的时候可以用上。你是一个编译内核的狂人的话,这项要选上

?[ ] Enable access to .config through /proc/config.gz (NEW)

上一项的子项,可以通过/proc/config.gz 访问当前内核的.config 。新功能,上

一项选的话这个就选上吧。

(18) Kernel log buffer size (16 => 64KB, 17 => 128KB)

内核日志缓存的大小,12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB for x86 NUMAQ or IA-64,17 => 128 KB for S/390

[*] Control Group support —>

cgroup支持,如cpusets那样来使用cgroup子系统进程(不确定可以不选)

?[ ] Example debug cgroup subsystemcgroup

子系统调试例子

?[*] Namespace cgroup subsystem cgroup

子系统命名空间

?[*] Freezer cgroup subsystem

?[*] Cpuset support

只有含有大量CPU(大于16个)的SMP系统或NUMA(非一致内存访问)系统才需

要它

o[*] Include legacy /proc//cpuset file

?[*] Simple CPU accounting cgroup subsystem

简单cgroup子系统cpu所花费的时间

o[ ] Memory Resource Controller for Control Groups

cgroup内存资源控制器

[ ] enable deprecated sysfs features which may confuse old userspce tools

在某些文件系统上(比如debugfs)提供从内核空间向用户空间传递大量数据的接口

-*- Kernel->user space relay support (formerly relayfs)

内核系统区和用户区进行传递通讯的支持。这个选项在特定的文件系统中提供数据传递接

口支持,它可以提供从内核空间到用户空间的大批量的数据传递工具和设施。如果不清楚,选N。

-*- Namespaces support

命名空间支持,允许服务器为不同的用户信息提供不同的用户名空间服务

[*] UTS namespace

通用终端系统的命名空间。它允许容器,比如Vservers利用UTS命名空间来为不同的服务器提供不同的UTS。如果不清楚,选N。

[*] IPC namespace

IPC命名空间,不确定可以不选

[*] Initial RAM filesystem and RAM disk (initramfs/initrd) suppor

初始RAM的文件和RAM磁盘(initramfs /initrd)支持(如果要采用initrd启动则要选择,否则可以不选)

?() Initramfs source file(s)

initrd已经被initramfs取代,如果你不明白这是什么意思,请保持空白

[*] Optimize for size

这个选项将在GCC命令后用―-Os‖ 代替―-O2″参数,这样可以得到更小的内核。没必要选。一个编译好的内核才7-10多M,大家不会少这么点空间吧。选上了可能会出一些问题。最好不选。有时会产生错误的二进制代码。

[ ] Configure standard kernel features (for small systems) —>

配置标准的内核特性(为小型系统)。这个选项可以让内核的基本选项和设置无效或者扭曲。这是用于特定环境中的,它允许―非标准‖内核。你要是选它,你一定要明白自己在干什么。这是为了编译某些特殊用途的内核使用的,例如引导盘系统。

?-*- Load all symbols for debugging/ksymoops

装载所有的调试符号表信息,仅供调试时选择

o[*] Include all symbols in kallsyms

在kallsyms中包含内核知道的所有符号,内核将会增大300K

o[*] Do an extra kallsyms pass

除非你在kallsyms中发现了bug并需要报告这个bug才打开该选项

Kernel Performance Events And Counters —>

?-*- Kernel performance events and counters

?[*] Tracepoint profiling sources

?[ ] Kernel performance counters (old config option)

[ ] Disable heap randomization

禁用随机heap(heap堆是一个应用层的概念,即堆对CPU是不可见的,它的实现方式有多种,可以由OS 实现,也可以由运行库实现,如果你愿意,你也可以在一个栈中来实现一个堆)

Choose SLAB allocator (SLUB (Unqueued Allocator)) —>

选择内存分配管理器(强烈推荐使用SLUB)

?( ) SLAB

各种环境通用的内存分配管理器

?(X) SLUB (Unqueued Allocator)

更加优秀的内存分配管理器

[*] Profiling support (EXPERIMENTAL)

剖面支持,用一个工具来扫描和提供计算机的剖面图。支持系统评测(对于大多数用户来说并不是必须的)

?< > OProfile system profiling (EXPERIMENTAL)

OProfile评测和性能监控工具

[*] Kprobes

调试内核除非开发人员,否则不选

GCOV-based kernel profiling —>

?[ ] Enable gcov-based kernel profiling

[ ] Slow work debugging through debugfs

linux内核编译选项详解(二):Loadable Module and Block Layer Support

[*] Enable loadable module support —>

打开可加载模块支持,如果打开它则必须通过‖make modules_install‖把内核模块安装在

/lib/modules/中这个选项可以让你的内核支持模块,模块是什么呢?模块是一小段代码,编译后可在系统内核运行时动态的加入内核,从而为内核增加一些特性或是对某种硬件进行支持。一般一些不常用到的驱动或特性可以编译为模块以减少内核的体积。在运行时可以使用modprobe命令来加载它到内核中去(在不需要时还可以移除它)。一些特性是否编译为模块的原则是,不常使用的,特别是在系统启动时不需要的驱动可以将其编译为模块,如果是一些在系统启动时就要用到的驱动比如说文件系统,系统总线的支持就不要编为模块,否则无法启动系统。在启动时不用到的功能,编成模块是最有效的方式。你可以查看MAN 手册来了解:modprobe, lsmod, modinfo, insmod 和rmmod.

如果不清楚,选Y。

?[ ] Forced module loading

允许强制加载模块

?[*] Module unloading

允许卸载已经加载的模块

?[*] Forced module unloading

允许强制卸载正在使用中的模块(比较危险)这个选项允许你强行卸除模块,即使

内核认为这不安全。内核将会立即移除模块,而不管是否有人在使用它(用

rmmod -f 命令)。这主要是针对开发者和冲动的用户提供的功能。如果不清楚,

选N。

?[ ] Module versioning support

有时候,你需要编译模块。选这项会添加一些版本信息,来给编译的模块提供独

立的特性,以使不同的内核在使用同一模块时区别于它原有的模块。这有时可能

会有点用。如果不清楚,选N。允许使用其他内核版本的模块(可能会出问题)

?[ ] Source checksum for all modules

为所有的模块校验源码,如果你不是自己编写内核模块就不需要它这个功能是为

了防止你在编译模块时不小心更改了内核模块的源代码但忘记更改版本号而造

成版本冲突。如果不清楚,选N。

-*- Enable the block layer —>

块设备支持,使用硬盘/USB/SCSI设备者必选这选项使得块设备可以从内核移除。如果不选,那么blockdev 文件将不可用,一些文件系统比如ext3 将不可用。这个选项会禁止SCSI 字符设备和USB 储存设备,如果它们使用不同的块设备。选Y,除非你知道你不需要挂载硬盘和其他类似的设备。不过此项无可选项

?[*] Support for large (2TB+) block devices and files

仅在使用大于2TB的块设备时需要

?[*] Block layer SG support v4

通用scsi块设备第4版支持

?[ ] Block layer data integrity support

块设备数据完整性支持

?IO Schedulers —>

IO调度器I/O是输入输出带宽控制,主要针对硬盘,是核心的必須的东西。这

里提供了三个IO调度器。

o<*> Anticipatory I/O scheduler

使用于大多数环境假设一个块设备只有一个物理查找磁头(例如一个单

独的SATA硬盘),将多个随机的小写入流合并成一个大写入流,用写入延

时换取最大的写入吞吐量.适用于大多数环境,特别是写入较多的环境

(比如文件服务器)抢先式I/O 调度方式是默认的磁盘调度方式。它对于

大多数环境通常是比较好的选择。但是它和Deadline I/O 调度器相比有

点大和复杂,它有时在数据调入时会比较慢。

o<*> Deadline I/O scheduler

使用轮询的调度器,简洁小巧,提供了最小的读取延迟和尚佳的吞吐量,特

别适合于读取较多的环境(比如数据库)Deadline I/O调度器简单而又紧

密,在性能上和抢先式调度器不相上下,在一些数据调入时工作得更好。

至于在单进程I/O磁盘调度上,它的工作方式几乎和抢先式调度器相

同,因此也是一个好的选择。

o<*> CFQ I/O scheduler

使用QoS策略为所有任务分配等量的带宽,避免进程被饿死并实现了较

低的延迟,可以认为是上述两种调度器的折中.适用于有大量进程的多用

户系统CFQ调度器尝试为所有进程提供相同的带宽。它将提供平等的工

作环境,对于桌面系统很合适。

o Default I/O scheduler (CFQ) —>

默认IO调度器我这样理解上面三个IO调度器:抢先式是传统的,它的

原理是一有响应,就优先考虑调度。如果你的硬盘此时在运行一项工作,

它也会暂停下来先响应用户。期限式则是:所有的工作都有最终期限,

在这之前必须完成。当用户有响应时,它会根据自己的工作能否完成,

来决定是否响应用户。CFQ则是平均分配资源,不管你的响应多急,

也不管它的工作量是多少,它都是平均分配,一视同仁的。

?( ) Anticipatory

?( ) Deadline

?(X) CFQ

?( ) No-op

linux内核编译选项详解(三):Processor type and features

[*] Tickless System (Dynamic Ticks) —>

非固定频率系统,这项技术能让新内核运行的更有效率,并且更省电。

[*] High Resolution Timer Support不选

支持高频率时间发生器,如果硬件不兼容,则这个选项只会增大内核(大多数个人PC并没有这个)

[*] Symmetric multi-processing support不选

对称多处理器支持,如果你有多个CPU或者使用的是多核CPU就选上,此时‖Enhanced RealTime Clock Support‖选项必须开启,‖Advanced Power Management‖选项必须关闭。如果你选N,内核将会在单个或者多个CPU的机器上运行,但是只会使用一个CPU。如果你

选Y,内核可以在很多(但不是所有)单CPU的机器上运行,在这样的机器,你选N会使内核运行得更快。注意如果你选Y,然后在Processor family选项中选择―586″ or

―Pentium‖ ,内核将不能运行在486构架的机器上。同样的,多CPU的运行于PPro构架上的内核也无法在Pentium 系列的板上运行。

[*] Support sparse irq numbering不选

支持稀有的中断编号

[*] Enable MPS table不选

mps多处理器规范

[ ] Support for big SMP systems with more than 8 CPUs

[*] Support for extended (non-PC) x86 platforms 不选

支持非pc

[*] Single-depth WCHAN output 编译选项

[ ] Paravirtualized guest support —>

虚拟化客户端支持

?[ ] VMI Guest support (DEPRECATED) (NEW)

VMware ESX server客户端

?[ ] KVM paravirtualized clock (NEW)

KVM时允许虚拟一个时钟

?[ ] KVM Guest support (NEW)

KVM客户端

?[ ] Lguest guest support (NEW)

Lguest(linux内核虚拟化的x86程序)客户端

?[ ] Enable paravirtualization code (NEW)

增加虚拟机的运行效率

[ ] Disable Bootmem code

[ ] Memtest

内存测试

Processor family (Pentium-Pro) —>

处理器系列,请按照你实际使用的CPU选择这里是处理器的类型。这里的信息主要目的是用来优化。为了让内核能够在所有X86构架的CPU上运行(虽然不是最佳速度),在这你可以选386。内核不会运行在比你选的构架还要老的机器上。比如,你选了Pentium构架来优化内核,它将不能在486构架上运行。如果你不清楚,选386。

?( ) 386

?( ) 486

?( ) 586/K5/5×86/6×86/6x86MX

?( ) Pentium-Classic

?( ) Pentium-MMX

?(X) Pentium-Pro

?( ) Pentium-II/Celeron(pre-Coppermine)

?( ) Pentium-III/Celeron(Coppermine)/Pentium-III Xeon

?( ) Pentium M

?( ) Pentium-4/Celeron(P4-based)/Pentium-4 M/older Xeon

?( ) K6/K6-II/K6-III

?( ) Athlon/Duron/K7

?( ) Opteron/Athlon64/Hammer/K8

?( ) Crusoe

?( ) Efficeon

?( ) Winchip-C6

?( ) Winchip-2/Winchip-2A/Winchip-3

?( ) GeodeGX1

?( ) Geode GX/LX

?( ) CyrixIII/VIA-C3

?( ) VIA C3-2 (Nehemiah)

?( ) VIA C7

?( ) Core 2/newer Xeon

?( ) Intel Atom

[*] Generic x86 support不选

这一选项针对x86系列的CPU使用更多的常规优化。如果你在上面一项选的是i386、i586之类的才选这个通用x86支持,如果你的CPU能够在上述‖Processor family‖中找到就别选。除了对上面你选择的X86 CPU进行优化,它还对更多类型X86 CPU的进行优化。这将会使内核在其他的X86 CPU上运行得更好。这个选项提供了对X86系列CPU最大的兼容性,

用来支持一些少见的x86构架的CPU。如果你的CPU能够在上面的列表中找到,就里就不用选了。

[ ] PentiumPro memory ordering errata workaround

[*] HPET Timer Support

HPET时钟支持。允许内核使用HPET 。HPET是替代8254芯片的新一代定时器,i686及以上级别的主板都支持,可以安全的选上。但是,HEPT只会在支持它的平台和BIOS上运行。如果不支持,8254将会激活。选N,将继续使用8254时钟。

(8) Maximum number of CPUs

支持的最大CPU数,每增加一个内核将增加8K体积

[*] SMT (Hyperthreading) scheduler support

支持Intel的超线程(HT)技术超线程调度器在某些情况下将会对Intel Pentium 4 HT系列有较好的支持。如果你不清楚,选N

[*] Multi-core scheduler support

针对多核CPU进行调度策略优化多核调度机制支持,双核的CPU要选。多核心调度在某些情况下将会对多核的CPU系列有较好的支持。如果你不清楚,选N

Preemption Model (Voluntary Kernel Preemption (Desktop)) —│>

内核抢占模式一些优先级很高的程序可以先让一些低优先级的程序执行,即使这些程序是在核心态下执行。从而减少内核潜伏期,提高系统的响应。当然在一些特殊的点的内核是不可抢先的,比如内核中的调度程序自身在执行时就是不可被抢先的。这个特性可以提高桌面系统、实时系统的性能。

?( ) No Forced Preemption (Server)

适合服务器环境的禁止内核抢占这是传统的LINUX抢先式模型,针对于高吞吐

量设计。它同样在很多时候会提供很好的响应,但是也可能会有较长的延迟。如

果你是建立服务器或者用于科学运算,选这项,或者你想要最大化内核的原始运

算能力,而不理会调度上的延迟。

?(X) Voluntary Kernel Preemption (Desktop)

适合普通桌面环境的自愿内核抢占这个选项通过向内核添加更多的―清晰抢先点‖

来减少内核延迟。这些新的抢先点以降低吞吐量的代价,来降低内核的最大延迟,

提供更快的应用程序响应。这通过允许低优先级的进程自动抢先来响应事件,即

使进程在内核中进行系统调用。这使得应用程序运行得更―流畅‖,即使系统已经

是高负荷运转。如果你是为桌面系统编译内核,选这项。

?( ) Preemptible Kernel (Low-Latency Desktop)

适合运行实时程序的主动内核抢占这个选项通过使所有内核代码(非致命部分)

编译为―可抢先‖来降低内核延迟。这通过允许低优先级进程进行强制抢先来响应

事件,即使这些进程正在进行系统调用或者未达到正常的―抢先点‖。这使得应用

程序运行得更加―流畅‖即使系统已经是高负荷运转。代价是吞吐量降低,内核运

行开销增大。选这项如果你是为桌面或者嵌入式系统编译内核,需要非常低的延

迟。如果你要最快的响应,选第三项。我认为万物是平衡的,低延迟意味着系

统运行不稳定,因为过多来响应用户的要求,所以我选第二个。

[*] Reroute for broken boot IRQs

[*] Machine Check / overheating reporting

让CPU检测到系统故障时通知内核,以便内核采取相应的措施(如过热关机等)

?[*] Intel MCE features

?[*] AMD MCE features

?[ ] Support for old Pentium 5 / WinChip machine checks

< > Machine check injector support

让CPU检测到系统故障时通知内核,以便内核采取相应的措施(如过热关机等)

< > Toshiba Laptop support

东芝笔记本模块支持

< > Dell laptop support

Dell笔记本模块支持

[*] Enable X86 board specific fixups for reboot不选

修正某些旧x86主板的重起bug,这种主板基本绝种了

<*> /dev/cpu/microcode – microcode support

是否支持Intel IA32架构的CPU。这个选项将让你可以更新Intel IA32系列处理器的微代码,显然你需要到网上去下载最新的代码,LINUX不提供这些代码。当然你还必须在文件系统选项中选择/dev file system support才能正常的使用它。如果你把它译为模块,它将是microcode。IA32主要用于高于4GB的内存。详见下面的―高内存选项‖。使用不随Linux

内核发行的IA32微代码,你必需有IA32微代码二进制文件,仅对Intel的CPU有效

?[*] Intel microcode patch loading support

?[*] AMD microcode patch loading support

<*> /dev/cpu/*/msr – Model-specific register support

是否打开CPU特殊功能寄存器的功能。这个选项桌面用户一般用不到,它主要用在Intel

的嵌入式CPU中的,这个寄存器的作用也依赖与不同的CPU类型而有所不同,一般可以用来改变一些CPU原有物理结构的用途,但不同的CPU用途差别也很大。在多cpu系统中让特权CPU访问x86的MSR寄存器

<*> /dev/cpu/*/cpuid – CPU information support

是否打开记录CPU相关信息功能。这会在/dev/cpu中建立一系列的设备文件,用以让过程去访问指定的CPU。能从/dev/cpu/x/cpuid 获得CPU的唯一标识符(CPUID)< >

/sys/kernel/debug/x86/cpu/* – CPU Debug support

High Memory Support (4GB) —>

LINUX能够在X86系统中使用64GB的物理内存。但是,32位地址的X86处理器只能支持到4GB大小的内存。这意味着,如果你有大于4GB的物理内存,并非都能被内核―永久映射‖。这些非永久映射内存就称为―高阶内存‖。如果你编译的内核永远都不会运行在高于

1G内存的机器上,选OFF(默认选项,适合大多数人)。这将会产生一个―3GB/1GB‖的内存空间划分,3GB 虚拟内存被内核映射以便每个处理器能够―看到‖3GB的虚拟内存空间,这样仍然能够保持4GB的虚拟内存空间被内核使用,更多的物理内存能够被永久映射。

如果你有1GB-4GB之间的物理内存,选4GB选项。如果超过4GB,那么选择64GB。这将打开Intel 的物理地址延伸模式(PAE)。PAE将在IA32处理器上执行3个层次的内存页面。PAE是被LINUX完全支持的,现在的Intel处理器(Pentium Pro 和更高级的)都能运行PAE模式。注意:如果你选64GB,那么在不支持PAE的CPU上内核将无法启动。你机器上的内存能够被自动探测到,或者你可以用类似于―mem=256M‖的参数强制给内核指定内存大小。4GB 选这项如果你用的是32位的处理器,内存在1-4GB之间。64GB 选这项如果你用的是32位的处理器,内存大于4GB。

?( ) off

?(X) 4GB

?( ) 64GB

[ ] PAE (Physical Address Extension) Support (NEW)

物理地址扩展(PAE) 允许将最多64 GB 的物理内存用作常规的4 KB 页面,并扩展内核能使用的位数以将物理内存地址从32 扩展到36。

[ ] Enable KSM for page merging

(4096) Low address space to protect from user allocation

[ ] Enable recovery from hardware memory errors

[*] Check for low memory corruption

?[*] Set the default setting of memory_corruption_check

[*] Reserve low 64K of RAM on AMI/Phoenix BIOSen

[ ] Math emulation 不选

数学协处理器仿真,486DX以上的cpu就不要选它了

[*] MTRR (Memory Type Range Register) support

内存类型区域寄存器。在Intel P6 系列处理器(Pentium Pro, Pentium II 和更新的)上,MTRR将会用来规定和控制处理器访问某段内存区域的策略。如果你在PCI或者AGP总线上有VGA卡,这将非常有用。可以提升图像的传送速度2.5倍以上。选Y,会生成文件/proc/mtrr,它可以用来操纵你的处理器的MTRR。典型地,X server 会用到。这段代码有着通用的接口,其他CPU的寄存器同样能够使用该功能。Cyrix 6×86, 6×86MX和M II 处理器有ARR ,它和MTRR有着类似的功能。AMD K6-2/ K6-3有两个MTRR,Centaur C6有8个MCR允许复合写入。所有这些处理器都支持这段代码,你可以选Y如果你有以上处理器。选Y同样可以修正SMP BIOS的问题,它仅为第一个CPU提供MTRR,而不为其他的提供。这会导致各种各样的问题,所以选Y是明智的。你可以安全地选Y,即使你的机器没有MTRR。这会给内核增加9KB。打开它可以提升PCI/AGP总线上的显卡2倍以上的速度,并且可以修正某些BIOS错误

?[ ] MTRR cleanup support

MTRR清理(2.6.27内核新增功能,不确定可以不选)

[*] EFI runtime service support不选

EFI启动支持这里允许内核在EFI平台上使用储存于EFI固件中的系统设置启动。这也允许内核在运行时使用EFI的相关服务。这个选项只在有EFI固件的系统上有用,它会使内核增加8KB。另外,你必须使用最新的ELILO 登录器才能使内核采用EFI的固件设置来启动(GRUB和LILO完全不知道EFI是什么东西)。即使你没有EFI,却选了这个选项,内核同样可以启动。大家应该用的是GRUB,所以选上这个也没什么用。除非你的系统支持EFI(一种可代替传统BIOS的技术)否则不选

[*] Enable seccomp to safely compute untrusted bytecode 选

只有嵌入式系统可以不选

[ ] Enable -fstack-protector buffer overflow detection (EXPERIMEN│

Timer frequency (1000 HZ) —>内核时钟频率桌面1000 服务器100或250

允许设置时钟频率。这是用户定义的时钟中断频率100HZ-1000 HZ ,不过100 HZ 对服务器和NUMA系统更合适,它们不需要很快速的响应用户的要求,因为时钟中断会导致总线争用和缓冲打回。注意在SMP环境中,时钟中断由变量NR_CPUS * Hz定义在每个CPU 产生。其实和前面的抢先式进程差不多,就是多少频率来响应用户要求。我选了250HZ的。要快点的可以选1000HZ的。但是还是那句话,一切是平衡的。机器过快响应你,它自己的活就不知道做得好不好了。

?( ) 100 HZ

100 HZ是传统的对服务器、SMP 和NUMA的系统选项。这些系统有比较多的

处理器,可以在中断较集中的时候分担中断

?( ) 250 HZ

250 HZ对服务器是一个好的折衷的选项,它同样在SMP 和NUMA 系统上体

现出良好的反应速度。

?( ) 300 HZ

?(X) 1000 HZ

1000 HZ对于桌面和其他需要快速事件反应的系统是非常棒的。

[*] kexec system call不选

kexec 系统调用。kexec是一个用来关闭你当前内核,然后开启另一个内核的系统调用。它和重启很像,但是它不访问系统固件。由于和重启很像,你可以启动任何内核,不仅仅是LINUX。kexec这个名字是从exec 系统调用来的。它只是一个进程,可以确定硬件是否正确关闭,Linus本人都没话说,估计是受害不浅。我们当然不能上当,选N!提供kexec系统调用, 可以不必重启而切换到另一个内核,如果需要就选择,对大多数用户来说并不需要

[ ] kexec jump (EXPERIMENTAL)不选

kexec跳转,如果你需要用kexec来启动内核就选择吧

[*] Build a relocatable kernel不选

建立一个移动的内核,除非特殊要求否则只是增大内核大小而已

(0×1000000) Alignment value to which kernel should be aligned

内核编译、运行时的物理地址匹配,不要更改该值除非你知道你在干嘛

-*- Support for hot-pluggable CPUs

对SMP休眠和热插拔CPU提供支持

[ ] Compat VDSO support不选

如果Glibc版本大于等于2.3.3就不选,否则就选上,目前的版本基本上都大于2.3.3

如果你运行的是最新的glibc(GNU C函数库)版本(2.3.3 或更新),选N,这样可以移除高阶的VDSO 映射,使用随机的VDSO。

[ ] Built-in kernel command line

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.360docs.net/doc/3415467658.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

实验四 linux-2.6.35内核的编译和配置

实验四 linux-2.6.35内核的编译和配置 【实验目的】 了解内核的编译过程及配置选项的内容 【实验环境】 1、 Ubuntu 10.10发行版 2、 u-boot-2010.03 3、 FS2410平台 4、 交叉编译器 arm-none-linux-gnueabi-gcc-4.3.2 【实验步骤】 实验步骤中的1-4,已经做过就不要重复了 1、 将实验代码中的rootfs.tar.bz2解压到/source 下,已经做过就不要重复了 $ tar xvf rootfs.tar.bz2 –C /source 2、 解压内核并进入内核目录 $ tar xvf linux-2.6.35.tar.bz2 $ cd linux-2.6.35 3、 修改Makefile 修改linux-2.6.35 目录下的Makefile ,找到 ARCH ?= $(SUBARCH) CROSS_COMPILE ?= 改为 ARCH ?= arm CROSS_COMPILE ?= arm-none-linux-gnueabi- 4、 配置内核 设置平台 设置编译工具

make menuconfig Kernel Features ---> [*] Use the ARM EABI to compile the kernel [*] Allow old ABI binaries to run with this kernel (EXPERIMENTAL) 5、添加驱动文件 将实验代码2410GPIO_TEST_26/2410GPIO_TEST_drv.c拷贝到drivers/char下 6、修改对应Kconfig 修改drivers/char/Kconfig,在menu "Character devices"下面 加入如下内容: config 2410GPIO_TEST_DRV tristate "S3C2410 test drv Device Support" depends on ARCH_S3C2410 ---help--- support led test device driver on FS2410 develop board 7、修改对应Makefile 在drivers/char/Makefile 中 找到在obj-$(CONFIG_HANGCHECK_TIMER) += hangcheck-timer.o , 在其下一行添加: obj-$(CONFIG_2410GPIO_TEST_DRV) += 2410GPIO_TEST_drv.o 8、静态编译内核 ?配置内核时按“空格”选择,配置完成后保存退出 $ make menuconfig Device Drivers ---> Character devices ---> <*> S3C2410 test drv Device Support ?重新编译内核并把内核拷贝到tftpboot下 $ make zImage

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

如何自行编译一个Linux内核的详细资料概述

如何自行编译一个Linux内核的详细资料概述 曾经有一段时间,升级Linux 内核让很多用户打心里有所畏惧。在那个时候,升级内核包含了很多步骤,也需要很多时间。现在,内核的安装可以轻易地通过像 apt 这样的包管理器来处理。通过添加特定的仓库,你能很轻易地安装实验版本的或者指定版本的内核(比如针对音频产品的实时内核)。 考虑一下,既然升级内核如此容易,为什么你不愿意自行编译一个呢?这里列举一些可能的原因: 你想要简单了解编译内核的过程 你需要启用或者禁用内核中特定的选项,因为它们没有出现在标准选项里 你想要启用标准内核中可能没有添加的硬件支持 你使用的发行版需要你编译内核 你是一个学生,而编译内核是你的任务 不管出于什么原因,懂得如何编译内核是非常有用的,而且可以被视作一个通行权。当我第一次编译一个新的Linux 内核(那是很久以前了),然后尝试从它启动,我从中(系统马上就崩溃了,然后不断地尝试和失败)感受到一种特定的兴奋。 既然这样,让我们来实验一下编译内核的过程。我将使用Ubuntu 16.04 Server 来进行演示。在运行了一次常规的 sudo apt upgrade 之后,当前安装的内核版本是 4.4.0-121。我想要升级内核版本到 4.17,让我们小心地开始吧。 有一个警告:强烈建议你在虚拟机里实验这个过程。基于虚拟机,你总能创建一个快照,然后轻松地从任何问题中回退出来。不要在产品机器上使用这种方式升级内核,除非你知道你在做什么。 下载内核 我们要做的第一件事是下载内核源码。在 Kernel 找到你要下载的所需内核的URL。找到URL 之后,使用如下命令(我以 4.17 RC2 内核为例)来下载源码文件: wget https://git.kernel/torvalds/t/linux-4.17-rc2.tar.gz

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.360docs.net/doc/3415467658.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

操作系统实验1(编译内核)实验指导书

实验一虚拟机平台下的Linux内核编译 步骤一、实验准备:将windows下的Linux-2.4.32内核复制到虚拟机中。 一般有三种方法可以实现:虚拟磁盘、文件共享、网络设置。 下面介绍的是虚拟磁盘的方法: 我们已经将Linux-2.4.32内核源代码的压缩文件放入虚拟磁盘,并在FTP上共享。 1.请从FTP服务器上将实验指导书以及虚拟磁盘拷贝到E盘根目录下。 2. windows平台下启动虚拟机VMware, VMWare中安装虚拟硬盘: 1)安装前建议先把内存调大一些,这样后面编译的速度会快一些。(Memory,调到512M) 2)点击Add 3)点击Next

上述步骤完成后点击Finish 。 观察发现:虚拟机中将出现两个磁盘,一个是原有的磁盘,另一个是虚拟磁盘,相当于对本机外接了一个磁盘。(请将设置完成后的虚拟机中出现两个磁盘的界面截图,一个是6G ,另一个106M )。

4.启动Linux操作系统 在启动过程中可以见到当前只有一个可选择内核,内核版本是Linux2.4.20。我们本次实验的目的是在虚拟机下重新编译一个新的内核,内核版本是Linux2.4.32.完成本实验后,重启虚拟机将出现两个可选择内核。 5.将虚拟磁盘安装到/mnt/mydisk目录下.(mount命令),如图: 1)先用fdisk –l命令查看虚拟磁盘是否“连接”成功。记下虚拟磁盘名称(/dev/sdb)。 2)进入到mnt目录下创建mydisk目录,该目录作为访问虚拟磁盘的入口,此时该目录为空。 3)返回根目录root,并安装虚拟磁盘:mount /dev/sdb /mnt/mydisk

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.360docs.net/doc/3415467658.html, 来源: https://www.360docs.net/doc/3415467658.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

嵌入式Linux系统内核的配置、编译和烧写

实验二 嵌入式Linux系统内核的配置、编译和烧写 1.实验目的 1)掌握交叉编译的基本概念; 2)掌握配置和编译嵌入式Linux操作系统内核的方法; 3)掌握嵌入式系统的基本架构。 2.实验环境 1)装有Windows系统的计算机; 2)计算机上装有Linux虚拟机软件; 3)嵌入式系统实验箱及相关软硬件(各种线缆、交叉编译工具链等等)。 3.预备知识 1)嵌入式Linux内核的配置和裁剪方法; 2)交叉编译的基本概念及编译嵌入式Linux内核的方法; 3)嵌入式系统的基本架构。 4.实验内容和步骤 4.1 内核的配置和编译——配置内核的MMC支持 1)由于建立交叉编译器的过程很复杂,且涉及汇编等复杂的指令,在这里 我们提供一个制作好的编译器。建立好交叉编译器之后,我们需要完成 内核的编译,首先我们要有一个完整的Linux内核源文件包,目前流行 的源代码版本有Linux 2.4和Linux 2.6内核,我们使用的是Linux 2.6内核; 2)实验步骤: [1]以root用户登录Linux虚拟机,建立一个自己的工作路径(如用命令 “mkdir ‐p /home/user/build”建立工作路径,以下均采用工作路径 /home/user/build),然后将“cross‐3.3.2.tar.bz2、dma‐linux‐2.6.9.tar.gz、 dma‐rootfs.tar.gz”拷贝到工作路径中(利用Windows与虚拟机Linux 之间的共享目录作为中转),并进入工作目录; [2]解压cross‐3.3.2.tar.bz2到当前路径:“tar ‐jxvf cross‐3.3.2.tar.bz2”; [3]解压完成后,把刚刚解压后在当前路径下生成的“3.3.2”文件夹移 动到“/usr/local/arm/”路径下,如果在“/usr/local/”目录下没有“arm” 文件夹,用户创建即可; [4]解压“dma‐linux‐2.6.9.tar.gz”到当前路径下:

编译内核实验报告

实验一编译Linux内核 实验时间 6小时 实验目的 认识Linux内核的组成,掌握配置、编译、安装Linux内核的步骤。 实验目标 下载2.6.19或更新的Linux内核,配置该内核使其支持NTFS,并在新的内核中修改其版本为Linux NameTestKernel x.x.x,其中,Name是你的名字(汉语拼音);x.x.x是新内核的版本号,最后在你的机器上编译安装这个新内核。 背景知识 参见《Red Hat Enterprise Linux 4入门与提高》第20章。 实验步骤 1.验证gcc的可用:在你自己的工作目录下,编译链接运行Hello World程序。 2.在https://www.360docs.net/doc/3415467658.html,上下载指定的内核,或者查找更新的稳定版内核并 下载之。 3.准备相关工具。 提示:如当前运行的Linux内核是基于2.4版本的,则需要更新以下软件: module-init-tools和mkinitrd。具体更新信息可参见下载内核源代码中的 Documentation/Changes这个文件。 4.把源代码解压缩至/usr/src中,最终形成/usr/src/linux x.x.x/目录(x.x.x是新 内核的版本号)。 提示:这里的注意点是路径的选择,一般要放在/usr/src/linux x.x.x/目录下面,以满足Makefile对路径设置的初始要求。 5.进入源代码的根目录,找到合适自己的内核配置方法,并按照实验目标对其 进行配置。

6.修改/usr/src/linux x.x.x/linux/include/linux/verson.h文件中的版本信息。 7.编译内核。 8.安装模块文件。 9.安装内核文件。 10.重新启动新内核。 实验结果 1.实验步骤1中,编译链接运行程序你下达了哪些命令? 2.实验步骤2中,你下载了哪个版本的内核文件? 3.实验步骤3中,你是否安装了相关工具?如安装,则写出安装过程。 4.实验步骤4中,你是用哪些命令解压缩内核文件的? 5.实验步骤5中,你用了哪种内核配置的方法? 6.你对实验步骤6中涉及的文件做了怎样的修改? 7.实验步骤7-9的过程,是否出现错误?如有,你是如何解决的? 8.观察你机器中GRUB的配置文件,它在安装完新内核后发生了哪些变化? 9.新内核启动过程是否成功?如有错误,是哪些错误?你是如何消错的?

Linux内核结构详解教程

Linux内核结构详解教程 ─────Linux内核教程 linux内核就像人的心脏,灵魂,指挥中心。 内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等. 严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux. 一个Linux内核很少1.2M左右,一张软盘就能放下. 内容基础,语言简短简洁 红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。 红联Linux门户: https://www.360docs.net/doc/3415467658.html, 红联Linux论坛: https://www.360docs.net/doc/3415467658.html,/bbs 红联Linux 论坛大全,所有致力点都体现在这 https://www.360docs.net/doc/3415467658.html,/bbs/rf/linux/07.htm

目录 Linux内核结构详解 Linux内核主要五个子系统详解 各个子系统之间的依赖关系 系统数据结构 Linux的具体结构 Linux内核源代码 Linux 内核源代码的结构 从何处开始阅读源代码 海量Linux技术文章

Linux内核结构详解 发布时间:2006-11-16 19:05:29 Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解 发布时间:2006-11-16 19:05:54 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转) linux是如何组成的? 答:linux是由用户空间和内核空间组成的 为什么要划分用户空间和内核空间? 答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的 安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间 linux内核是如何组成的? 答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、 VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动 linux 内核源代码 linux内核源代码是如何组成或目录结构? 答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录 block目录部分块设备驱动代码 crypto目录加密、压缩、CRC校验算法 documentation 内核文档 drivers 设备驱动 fs 存放各种文件系统的实现代码 include 内核所需要的头文件。与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中 init 内核初始化代码 ipc 进程间通信的实现代码 kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化) lib 库文件代码 mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动 samples 内核编程的范例 scripts 配置内核的脚本 security SElinux的模块 sound 音频设备的驱动程序 usr cpip命令实现程序 virt 内核虚拟机 内核配置与编译 一、清除 make clean 删除编译文件但保留配置文件

linux 内核编译编译选项

1.Code maturity level options 代码成熟等级。此处只有一项:prompt for development and/or incomplete code/drivers,如果你要试验现在仍处于实验阶段的功能,就必须把该项选择为Y了;否则可以把它选择为N。 2. Loadable module support 对模块的支持。这里面有三项: Enable loadable module support:除非你准备把所有需要的内容都编译到内核里面,否则该项应该是必选的。 Set version inFORMation on all module symbols:可以不选它。 Kernel module loader:让内核在启动时有自己装入必需模块的能力,建议选上。 3. Processor type and features CPU类型。有关的几个如下: Processor family:根据你自己的情况选择CPU类型。 High Memory Support:大容量内存的支持。可以支持到4G、64G,一般可以不选。 Math emulation:协处理器仿真。协处理器是在386时代的宠儿,现在早已不用了。 MTTR support:MTTR支持。可不选。 Symmetric multi-processing support:对称多处理支持。除非你富到有多个CPU,否则就不用选了。 4. General setup 这里是对最普通的一些属性进行设置。这部分内容非常多,一般使用缺省设置就可以了。下面介绍一下经常使用的一些选项: Networking support:网络支持。必须,没有网卡也建议你选上。 PCI support:PCI支持。如果使用了PCI的卡,当然必选。 PCI access mode:PCI存取模式。可供选择的有BIOS、Direct和Any,选Any 吧。 Support for hot-pluggabel devices:热插拔设备支持。支持的不是太好,可不选。 PCMCIA/CardBus support:PCMCIA/CardBus支持。有PCMCIA就必选了。System V IPC BSD Process Accounting Sysctl support:以上三项是有关进程处理/IPC调用的,主要就是System V 和BSD两种风格。如果你不是使用BSD,就按照缺省吧。 Power Management support:电源管理支持。 Advanced Power Management BIOS support:高级电源管理BIOS支持。

Linux 2.6.19.x内核编译配置选项简介(2)

Linux 2.6.19.x内核编译配置选项简介(2) Security Marking 对网络包进行安全标记,类似于nfmark,但主要是为安全目的而设计,如果你不明白的话就别选 Network packet filtering (replaces ipchains) Netfilter可以对数据包进行过滤和修改,可以作为防火墙("packet filter"或"proxy-based")或网关(NAT)或代理(proxy)或网桥使用.选中此选项后必须将"Fast switching"关闭,否则将前功尽弃 Network packet filtering debugging 仅供开发者调试Netfilter使用 Bridged IP/ARP packets filtering 如果你希望使用一个针对桥接的防火墙就打开它 Core Netfilter Configuration 核心Netfilter配置(当包流过Chain时如果match某个规则那么将由该规则的target来处理,否则将由同一个Chain中的下一个规则进行匹配,若不match所有规则那么最终将由该Chain的policy进行处理) Netfilter netlink interface 允许Netfilter在与用户空间通信时使用新的netlink接口.netlink Socket是Linux用户态与内核态交流的主要方法之一,且越来越被重视 Netfilter NFQUEUE over NFNETLINK interface 通过NFNETLINK接口对包进行排队 Netfilter LOG over NFNETLINK interface 通过NFNETLINK接口对包记录.该选项废弃了ipt_ULOG和ebg_ulog机制,并打算在将来废弃基于syslog 的ipt_LOG和ip6t_LOG模块 Layer 3 Independent Connection tracking 独立于第三层的链接跟踪,通过广义化的ip_conntrack支持其它非IP协议的第三层协议 Netfilter Xtables support 如果你打算使用ip_tables,ip6_tables,arp_tables之一就必须选上 "CLASSIFY" target support 允许为包设置优先级,一些排队规则(atm,cbq,dsmark,pfifo_fast,htb,prio)需要使用它 "CONNMARK" target support 类似于"MARK",但影响的是连接标记的值 "DSCP" target support 允许对ip包头部的DSCP(Differentiated Services Codepoint)字段进行修改,该字段常用于Qos "MARK" target support 允许对包进行标记(通常配合ip命令使用),这样就可以改变路由策略或者被其它子系统用来改变其行为"NFQUEUE" target Support 用于替代老旧的QUEUE(iptables内建的target之一),因为NFQUEUE能支持最多65535个队列,而QUEUE 只能支持一个 "NOTRACK" target support 允许规则指定哪些包不进入链接跟踪/NA T子系统 "SECMARK" target support

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

配置和编译Linux内核

配置和编译Linux内核 对内核进行正确配置后,才能进行编译。配置不当的内核,很有可能编译出错,或者不能正确运行。 1.1.1 快速配置内核 进入Linux内核源码数顶层目录,输入make menuconfig命令,可进入如图0.1所示的基于Ncurses的Linux内核配置主界面(注意:主机须安装ncurses相关库才能正确运行该命令并出现配置界面)。如果没有在Makefile中指定ARCH,则须在命令行中指定: $ make ARCH=arm menuconfig 图0.1基于Ncurses的Linux内核配置主界面 基于Ncurses的Linux内核配置界面不支持鼠标操作,必须用键盘操作。基本操作方法: ?通过键盘的方向键移动光标,选中的子菜单或者菜单项高亮; ?按TAB键实现光标在菜单区和功能区切换; ?子菜单或者选项高亮,将光标移功能区选中