金属腐蚀机理

金属腐蚀机理
金属腐蚀机理

Cu +→Cu 2++e O

E =0.17V

2H 2O →4H ++O 2+4e O E =1.229V

此外,阳极中含有比铜电势更负的杂质离子也可能从阳极溶解。一般由于Cu 2+离子的电极电势较Cu +离子的更负,主要发生的二价铜离子的阳极溶解;而一价铜离子的反应为次要的,

但因溶液中存在以下化学平衡:2Cu + = Cu 2++Cu ,Cu +的浓度虽很低,却可能引起副反应,使

电流效率下降。

阴极过程是阳极过程的逆反应,即Cu 2+离子的还原 :Cu 2++2e - →Cu ,尽管电解液是酸性,一般情况氢析出的电势较铜更负,所以在阴极很少有氢气析出。

在铜电解精炼时,比铜电极电势更负的杂质如:Fe 、Ni 、Zn 等,可在阳极共溶,进入电解液,但不能在阴极与铜析出;而电极电势较铜正的杂质虽可能在阴极共析,却不能在阳极共溶而进入电解液,只能进入阳极泥,这类金属包括Ag 、Au 、铂族等。这样就达到分离杂质精炼金属铜以及资源充分利用的目的。最危险的杂质是电极电势与铜接近的杂质,它们在阳极可能共溶,又可能在阴析共析,这要定期地对电解液进行净化,尽量降低这些离子在溶液中的积累。

三* 无机电合成

1氯碱工业的电化学基础

2氯碱工业的发展

3 膜电解技术

四* 有机电合成

1 直接有机电合成

2 间接有机电合成

§10.3 电化学腐蚀与防护

金属腐蚀会导致国民经济的巨大损失,美国在20世纪80年代初期的统计年损失达1千多亿美元;估计我国的年损失在300亿元以上。电化学腐蚀与防护问题既有我们日常生活常见到的钢铁生锈、电池的点蚀等问题,也与当前新能源、新材料等领域密切相关。可以说,腐蚀与防护问题存在于国民经济和科学技术的各个领域,不断地提出的新问题促使腐蚀与防护成为一门迅速发展的综合性边缘学科。

引起金属腐蚀的主要原因是:金属表面与周围介质的生物、化学或电化学作用而导致金属被破坏。这一节仅讨论金属表面与潮湿空气、电解质溶液等介质发生电化学作用而引起的腐蚀——电化学腐蚀。

一 电化学腐蚀原理

1.腐蚀电池 金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。在这个过程中金属被氧化,所释放的电子完全为氧化剂消耗,构成一个自发的短路电池,这类电池被称之为腐蚀电池。

图10—7 微电池示意图

(1)不同金属与同一种电解质溶液接触就会形成腐蚀电池。例如:在铜板上有一铁铆钉,其形成的腐蚀电池如图10—7所示。铁作阳极发生金属的氧化反应Fe → Fe 2+ + 2e -;同时在阴极铜上可能有如下两种还原反应: 一般来说,在空气中氧分压)O (2p =21 kPa 时,O E (O 2+2H 2O+4e - →4OH - )=1.23 V , 远远高于O E (2H + + 2e - → H 2),所以吸氧腐蚀更容易

发生,因而当有氧气存在时铁的锈蚀特别严重。铜板与铁钉两种金属(电极)连结一起,相当于电池的外电路短接,于是两极上不断发生上述氧化—还原反应,在水膜中生成的Fe2+离子与其中的OH—离子作用生成Fe(OH)2,接着又被空气中氧继续氧化,即

Fe2+ + 2OH-→Fe(OH)2

4Fe(OH)2 + 2H2O + O2→4Fe(OH)3

Fe(OH)3乃是铁锈的主要成分。这样不断地进行下去,机械部件就受到腐蚀而遭损坏。

(2)与电解质溶液接触的一种金属也会因表面不均匀或含杂质而在金属表面形成无数微电池,这些微型腐蚀电池导致金属被腐蚀。例如工业用钢材其中含杂质(如碳等),当其表面覆盖一层电解质薄膜时,铁、碳及电解质溶液就构成微型腐蚀电池。

该微型电池中铁是阳极:Fe →Fe2+ + 2e-

碳作为阴极:如果电解质溶液是酸性,则阴极上有氢气放出(2H+ + 2e-→H2 );如果电解质溶液是碱性,则阴极上发生反应O2+2H2O+4e- →4OH- 。杂质与金属形成的微电池使铁不断被溶解而导致钢材变质。

(3)金属表面不同部位电解质溶液浓度不均匀形成的浓差电池也能产生电化学腐蚀。如将两块金属铁电极放在稀NaCl溶液中,在一个电极表面通氮气另一电极通空气,这时两电极间产生电势差并引起了电流的流动。该电池的电极反应为:

缺氧电极:阳极Fe - 2e - →Fe2+

氧足电极:阴级O2 + 2H2O + 4e- →4OH -

在金属表面各处由于空气的充足程度不同而造成氧气浓度不同,这样形成的浓差电池致使金属腐蚀,这就解释了为什么裂缝处及水线下金属常易有明显腐蚀的原因。例如在两个联结管的接触面处或螺纹联结处,由于氧浓度低于其它处,就成为腐蚀电池的阳极。当把铁板部分浸在稀的氯化钠溶液中,将会发现在铁板下部很快就受到腐蚀,但是紧靠在水线下面的那个区域通常却保持不受腐蚀。因为紧靠在水线下面的溶液中含有较多的氧,它在阴极反应中用去了电子。而水线较下部溶液中含有较少的氧,金属会失去电子进行阳极反应。

从上面的分析可以看出:所形成的腐蚀电池阳极反应一般都是金属的溶解过程

M →M z+ + z e-

阴极反应在不同条件下可以是不同的反应,最常见的有下列两种反应:

①H+离子还原成氢气的反应(释氢腐蚀)

2H+ + 2e-→H2。

该反应通常容易发生在酸性溶液中和在氢超电势较小的金属材料上。

②氧气还原成OH-离子的反应(耗氧腐蚀)

O2 + 2H2O + 4e —→4OH-。

在中性或碱性溶液中,以及溶液里溶解有足够量的氧气时,常发生此反应。若在酸性环境中,发生反应

O2 + 4H+ + 4e-→2H2

2 腐蚀电流一旦组成腐蚀电池之后,有电流通过电极,电极就要发生极化,因而研究极化对腐蚀的影响是十分必要。在金属腐蚀文献中,将极化曲线(电势~电流关系)绘成直线(横坐标采用对数标度),称为Evans(埃文斯)极化图(图10—8)。在Evans极化图中的电流密度j

腐蚀表示了金属腐蚀电流,实际上代表了金属的腐蚀速率。

图10—8 腐蚀电池极化图

影响金属表面腐蚀快慢的主要因素:①腐蚀电池的电动势——两电极的平衡电极电势差越

大,最大腐蚀电流也越大。②金属的极化性能——在其它条件相同的情况下,金属的极化性逾大(即极化曲线的斜率),腐蚀电流逾小。 ③氢超电势——释氢腐蚀时,氢在金属表面析出的超电势逾大,极化曲线的斜率就逾大,腐蚀电流反而减小。

二 金属的稳定性

“在所处环境下金属材料的稳定性如何?”是研究金属腐蚀与防腐首先必须考虑的问题。因此,金属-水系统的电势—pH 图无疑是很有用的工具。

1 电势—pH 关系的一般表达式 若有如下电极反应:

x O(氧化态)+m H ++z e - → y R(还原态)+n H 2O

式中O 代表氧化态、 R 代表还原态;x ,m ,z ,y ,n 为各反应物、产物的计量系数。 当T =298.15K 时

E =O E - )

(H (O)O)(H R)(lg 0592.02+m x n y a a a a z (10—14) 因pH = -lg[a (H +)], a (H 2O)=1上式可写成

E =O E - (O)

R)(lg 0592.0x y a a z - pH 0592.0z m (10—15) 在a (R), a (O)被指定时,电势E 与pH 值成直线关系。

图10—9 Zn —H 2O 系统电势—pH 图

2 E —pH 直线类型 (以Zn —H 2O 系统的E —pH 图为例)

①.电势与pH 无关的反应:这些反应只有电子得失,没有H +或OH - 离子参加。这一类反应可归纳为下列普遍式(m =0)

x O(氧化态) + z e - → y R(还原态) + n H 2O

对上述类型的反应来说,电势E 是与pH 值无关的常数,在E —pH 图上是一条平行于pH 轴的

线段。例如反应 Zn 2+(aq)+2e - = Zn(s);E (Zn 2++2e - →Zn)=-0.762+0.0295lg[a (Zn 2+)/a (Zn)] 。

当a (Zn 2+)=10-6 、a (Zn)=1.0时,E (Zn 2++2e - →Zn)=-0.939 V (图10—9中线a)。

② 无电子得失的反应:这些反应是非氧化还原反应(无电子得失),但有H +或OH - 离子参加反应,这一类反应可归纳为下列普遍式(z =0)

x O(氧化态)+m H + → y R(还原态)+n H 2O

反应达到平衡时(m r G ?=0 ) )

H ()O ()O H ()R (ln 2O m r +-=?m x n y a a a a RT G 可见对这类反应来说,pH 值是与电势无关的常数。在E —pH 图中是一条垂直于pH 轴的线段例如反应 Zn(OH)2(s)+2H +(aq) =Zn 2+(aq)+2H 2O(l) ;已知K sp [Zn(OH)2]=1.80×10-14,K w =10-14, 当a (Zn 2+)=10-6 , a (H 2O)=1.0 、 a [Zn(OH)2]=1.0时,pH=9.13 (图10—9中线c)。

③ 电势与pH 有关的反应:这些反应既有电子得失,也有H +或OH - 离子参加反应,这一类型反应的E —pH 的关系就是(10—15)式,所以它在E —pH 图中是一条具有一定斜率的直线。例如反应 Zn(OH)2(s)+2H +(aq)+2e - =Zn(s) + 2H 2O(l);当,a (Zn)=1.0、a (H 2O)=1.0 、a

[Zn(OH)2]=1.0 及a (Zn 2+)=10-6 时,E [Zn(OH)2+2H ++2e - →Zn + 2H 2O]=-0.410 -0.0592pH (图10—9中线b)。

3 水溶液中的氢、氧电极反应 因为反应在水溶液中进行,反应与H 2,O 2,H +,OH -有关。所以凡是以水作为溶剂的反应系统都一定要考虑氢、氧电极反应。

氢电极反应(①线): 电极反应式 2H + (a ) +2e - → H 2(p );当p (H 2) =O p 时, 有

E (2H + +2e - → H 2) = - 0.0592 pH (10—13) 在 E —pH 图上是一条截距为零的直线,斜率为 -0.0592。

氧电极反应 (②线): 电极反应式 2

1O 2(p )+2H +(a )+2e - →H 2O(l) 在298.15K , a (H 2O)=1、p (O 2) =O p 时 , E (2

1O 2+2H ++2e - →H 2O) =1.229 - 0.0592pH 该式表示氧电极反应的E —pH 直线与氢电极的E —pH 直线斜率相同,仅截距不同。 4 电势-pH 图的应用

(1)图10—9 中每条线上的点都表示Zn —H 2O 系统的一个平衡状态。凡不在直线上的任何一点均为非平衡状态,且每条线上方为该线所代表电极反应中氧化态稳定区,下方为还原态稳定区。因此,在图上分别得到Zn 2+,Zn ,Zn(OH)2 的稳定存在区。同理,线②以上是O 2(氧化态)的稳定区,下方是H 2O (还原态)的稳定存在区;在线①以上是H +(氧化态)的稳定区、线①以下是H 2(还原态)的稳定存在区。

(2)在 E —pH 图中任意两条线所代表的电极反应都能构成一个化学反应。例如线、②所代表的电极反应构成的化学反应为:O 2(g)+2H 2(g) =2H 2O(l)。该反应可视为氧电极和氢电极组成的燃料电池。

一般而言,高电势区直线所代表电极反应中的氧化态能氧化低电势区直线所代表反应中的还原态即: [氧化态]上+[还原态]下→[还原态]上+[氧化态]下

且二直线相距愈远,以此二直线所代表电极反应组成电池时,电池的电动势就愈大,因此该氧化还原反应的趋势就愈大。

如Zn 2++2e - = Zn 是线段a 代表的平衡系统,该平衡位于①线下方,说明Zn 在水溶液中是不稳定的。溶液中H +被还原成H 2(g ),Zn 被氧化成Zn 2+的反应2H ++Zn =Zn 2++H 2是自发进行的。又因Zn 的稳定区也在O 2还原反应的②线以下,比①线距离线a 更远,说明在含有O 2的水溶液中Zn 的热力学稳定性更差。

(3)E —pH 图可用来指导防腐、金属保护等方面的研究。从图10—9可知,当E < -0.9 V 时,Zn 在酸性溶液中,既使在有氧存在的情况下都可以稳定存在,这就是金属电化学防腐的阴极保护原理;总之,E —pH 图在解决水溶液中发生的一系列反应及平衡问题,如元素分离,湿法冶炼,金属防腐,金属电沉积,地质问题等方面均得到广泛的应用。

三 材料的表面处理

1 非金属涂层 在材料表面涂覆耐腐蚀的非金属保护层,诸如油漆、喷漆、搪瓷、陶瓷、玻璃、沥青、高分子材料(如塑料。橡胶、聚酯等),使金属与腐蚀介质隔开,当这些保护层完整时能起保护的作用。美国在廿世纪50年代首先将合成树脂涂到钢管上,目前美国铺设的管线中有机涂层管道用量已增至50%,年增长10%。在大型设备和工程实施中,往往是保护层既起到防护作用又起到隔热、保温等多种作用。

2 电镀 采用电镀的方法,将耐腐蚀较强的金属或合金覆盖在被保护的金属表面可分别形成阳极保护层和阴极保护层,例如用锌的标准电极电势较负(—0.763V)来保护金属(例如Fe)是一种阳极镀层,而把锡镀到Fe 上则形成阴极镀层(锡为阴极,铁为阳极)。后者的缺点在于,当保护层受到破坏,锡与铁就会形成局部电池,而铁阳极腐蚀更会加速。

在金属需要贵金属保护时,采用激光电镀是当前新兴的一种电镀方法。首先是效率比无激光照射的高1000倍。80年代研究激光喷射强化电镀的新技术,使激光与镀液同步射向阴极表面上,其优点是:①沉积速度快、镀金可达12μm/s ,②金属沉积仅发生在激光照射区域无需采用屏蔽措施可得到局部沉积镀层,简化了生产工艺,并使镀层结合力大大提高,③节省投资,节省贵金属,节省时间,并容易实现自动控制。金属镀层不仅可以防腐蚀,而且对器件的稳定

性也是至关重要的。例如在航天器(卫星、飞船)广泛采用镁合金材料。在这种材料表面镀上5μm无孔、结合牢固的纯金属镀层能符合在卫星发射前和发射后的环境中表面高度稳定性的要求。

3 钝化金属表面的钝化状态也是阳极保护的一种电化学方法。铁在稀硝酸中溶解得很快,但在浓硝酸中却溶解得非常缓慢,即铁在硝酸浓度提高时反而变得更稳定了。铁在浓硝酸中的这种状态称为钝化状态(或钝态)。铁、镍、铬及其它一些金属经过各种氧化剂处理后,都能转变为钝态。所以可以说:由于金属表面状态的变化,使阳极溶解(氧化)过程的超电势升高,金属的溶解速率急剧下降的作用称为钝化。可以在氧化剂的作用下使金属钝化,也可以在外电

流的作用下使金属钝化。

图10—10 一些金属的阳极极化(钝化)曲线

下面我们用阳极极化曲线来说明金属钝化的情况。有一些金属的阳极极化曲线具有如图10—10的形式。曲线的AB段是金属的正常溶解,这时金属处于活化态;BC段是由活化态转变为钝化的过程,金属处于钝化过渡区;到达C点后,金属已完全钝化,在CD段金属处于比较稳定的钝态,电流不随电势的增加而变化;过D点以后称为过钝化区,电流又随电位的增加而上升。在过钝化区,电流的增大是因为溶液中析出了氧气:

4OH-→O2 + 2H2O + 4e-

或是由于金属以高价形式溶解,例如不锈钢中,铬以六价的形式溶解:

Cr2O3 + 5H2O →2CrO42— + 10H+ + 6e-

对应于B点的电流称为致钝电流( j致钝),对应于CD段的电流称为维钝电流(J维钝)。如果把能够钝化的金属放在某些电解质溶液中,再放入一辅助阴极,构成一电解池。通过直流电源,并将电源的正极与能钝化的金属连接,此时该金属为电解池的阳极,电源的负极与辅助阴极连接。如果通以致钝电流,使该金属的电势进入钝化区(CD段),再用维钝电流保持其钝态,则该金属的腐蚀速率就会大大降低,这就是阳极保护能防止腐蚀的基本原理。

在这里,应该指出的是:图10—10绘出的阳极极化曲线是用恒电势测定法测得的。一般地说,阴极极化曲线和阳极极化曲线都可以用恒电流法测量,也可以用恒电势法测量。所谓恒电流法控制的是电流,测出相应的电势值;而恒电势法则控制的是电势,测出相应的电流值;在测定有钝化现象的阳极极化曲线(即钝化曲线)时,就必须用恒电势法;如果在这种情况下采用恒电流法进行测量时,就测不出完整的极化曲线,只能测出其中的一部分,即曲线ABD′N(虚线)。

有关钝化机理的问题,虽然已研究多年,但并未得到很好解决,目前主要有两种理论——即所谓成相膜理论和吸附理论。

成相膜理论认为:在金属溶解时可以在表面上生成紧密的、覆盖性能良好的固态产物。若是这些产物形成独立相(成相膜),并把金属表面和溶液机械地隔离开来,就会使金属的溶解速率大大降低,此时即是金属转为钝态。根据分析,大多数的钝化膜系由金属氧化物组成。

吸附理论则认为:金属的钝化是由于表面上生成氧或含氧粒子的吸附层所引起的,并且认为出现金属钝化现象是由于金属表面本身的反应能力降低了,而不是由于膜的机械隔离作用。所谓生成氧或含氧粒子的吸附层,多数人认为就是氧原子的吸附层。

失重法测金属腐蚀速度

失重法测金属腐蚀速度 1. 实验目的 (1)掌握失重法测量金属腐蚀速度的原理和操作过程 (2)加强对金属腐蚀与环境条件密切相关的认识 (3)初步了解缓蚀剂对金属腐蚀的抑制作用 2. 基本原理 重量法是其中一种较为经典的方法,它适用于实验室和现场试验,是测定金属腐蚀速率最可靠的方法之一,是其它金属腐蚀速率测定方法的基础。 重量法是根据腐蚀前、后金属试件重量的变化来测定金属腐蚀速率的。重量法又可分为失重法和增重法两种。当金属表面上的腐蚀产物较容易除净,且不会因为清除腐蚀产物而损坏金属本体时常用失重法;当腐蚀产物牢固地附着在试件表面时则采用增重法。 把金属做成一定形状和大小的试件,放在腐蚀环境中(如大气、海水、土壤、各种实验介质等),经过一定的时间后,取出并测量其重量和尺寸的变化,即可计算其腐蚀速率。 对于失重法,可通过下式计算金属的腐蚀速率: 式中,v-为金属的腐蚀速率,g/(m2?h);m 0为腐蚀前试件的质量,g;m 1 为经过一 定时间的腐蚀、并除去表面腐蚀产物后试件的质量,g;S 为试件暴露在腐蚀环境中的表面积,m2;t为试件腐蚀的时间,h 。 对于增重法,即当金属表面的腐蚀产物全部附着在上面,或者腐蚀产物脱落下来可以全部被收集起来时,可由下式计算腐蚀速率: 式中,v+ 为金属的腐蚀速率,g/(m2?h);m 2 为腐蚀后带有腐蚀产物的试件的重量,g;其余符号同 (1-1) 式。 对于密度相同或相近的金属,可以用上述方法比较其耐蚀性能。但是,对于密度不同的金属,尽管单位表面的重量变化相同,其腐蚀深度却不一样。此时,用单位时间内的腐蚀深度表示金属的腐蚀速率更为合适。其换算公式如下: 式中,v t 为年腐蚀深度,mm/a;ρ为实验金属材料的密度,g/cm3;v-为失重腐

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性 《职业性接触毒物危险程度分级》GB5044分级原则是什么? 答:(1)职业性接触毒物危险程度分级,是以急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高容许浓度等六项指标为基础的定级标准。 (2)分级原则是依据六项分级指标综合分析,全面权衡,以多数指标的归属定出危害程度的级别,但对某些特殊毒物,可按其急性、慢性或致癌性等突出危害程度定出级别。 《职业性接触毒物危险程度分级》GB5044分级依据是什么? 答:(1)急性毒性 以动物试验得出的呼吸道吸入半数致死浓度(LC )或经口、经皮半数致死量(LD50) 50 或LD50最低值作为急性毒性指标。 的资料为准,选择其中LC 50 (2)急性中毒发病状况 是一项以急性中毒发病率与中毒后果为依据的定性指标:可分为易发生、可发生、偶而发生中毒及不发生急性中毒四级。将易发生致死性中毒或致残定为中毒后果严重;易恢复的定为预后良好。 (3)慢性中毒患病状况 一般以接触毒物的主要行业中,工人的中毒患病率为依据,但在缺乏患病率资料时,可取中毒症状或中毒指标的发生率。 (4)慢性中毒后果 依据慢性中毒的结局,分为脱离接触后,继续进展或不能治愈、基本治愈、自行恢复四级。并可依据动物试验结果的受损病变性质(进行性、不可逆性、可逆性)、靶器官病理生理特性(修复、再生、功能储备能力),确定其慢性中毒后果。 (5)致癌性 主要依据国际肿瘤研究中心公布的或其他公认的有关该毒物的致癌性资料,确定为人体致癌物、可疑人体致癌物、动物致癌物及无致癌性。 (6)最高容许浓度 主要以《工业企业设计卫生标准》TJ36-70中表4车间空气中有害物质最高容许浓度值为准。

第一章 金属材料的高温化学腐蚀

绪论 金属腐蚀的定义: 金属材料和环境介质发生化学或电化学作用,引起材料的退化与破坏称为金属的腐蚀. 本课程研究的内容 ? 1. 研究金属和周围介质作用时所发生的化学或电化学的现象、机理及其一般规律。 ? 2. 研究各种条件下金属材料的防止腐蚀的方法和措施。 三、金属腐蚀与防护的重要性 经济损失: ?直接损失:指采用防护技术的费用和发生腐蚀破坏以后的维修、更换费用和劳务费用。 ?间接损失:指设备发生腐蚀破坏造成停工、停产;引起的物资跑、冒、滴、漏损失; 对环境污染以至爆炸、火灾等事故的间接损失更是无法估量。 第一章金属材料的高温化学腐蚀 第一节概述 一、高温化学腐蚀定义: 高温化学腐蚀是研究金属材料和与它接触的环境介质在高温条件下所发生的界面反应过程的科学。 金属高温腐蚀与常温腐蚀的区别: 高温腐蚀:主要是以界面的化学反应为特征。常温腐蚀:主要是电化学过程。 金属材料的高温腐蚀反应式: Me(金属)+X(介质)--MeX(腐蚀产物) 二、高温腐蚀分类 按环境介质状态分 1)高温气态介质腐蚀(2)高温液态介质腐蚀(3)高温固态介质腐蚀 (1)高温气态介质腐蚀: 气态介质中包括有单质气体分子。非金属化合物气体分子。金属氧化物气态分子,和金属盐气态分子。由于这种高温腐蚀是在高温,干燥的气体分子环境中进行的,所以常被称为“高温气体腐蚀”“干腐蚀”“化学腐蚀”。 (2)高温液态介质腐蚀: 液态介质(包括液态金属,液态融盐及低熔点氧化物)对固态金属材料的高温腐蚀。这种腐蚀包括界面化学反应,也包括液态物质对固态物质的溶解。 (3)高温固态介质腐蚀: 金属材料在带有腐蚀性的固态颗粒状物质的冲刷下发生的高温腐蚀。这类腐蚀包括固态燃灰与盐颗粒对金属材料的腐蚀。又包括这些固态颗粒状物质对金属材料表面的机械磨损,所以人们又称为“磨蚀”或“冲蚀”。 高温腐蚀现象 (1)在金属热处理过程中,碳氮共渗和盐浴处理易于产生增碳、氮化损失和熔融盐的腐蚀。(2)含有燃烧的各个过程,比如柴油发动机、燃气轮机、焚烧炉等所产生的复杂气氛的高温氧化等腐蚀。 (3)核反应堆运行过程中,煤的气化和液化所产生的高温硫化腐蚀。 (4)在航空领域,宇宙飞船返回大气层过程中的高温氧化和高温硫化腐蚀,以及航空发动

腐蚀速率如何计算

腐蚀速率如何计算 金属材料的腐蚀速度常用金属腐蚀速度的重要指标、深度指标和电流指标表示。金属腐蚀速度表示法是在要评价的土壤中埋设金属材料试样,经过一定时间后,测试出试样的重量变化或深度变化或电流变化,以此来评价土壤腐蚀性。 重量指标就是把金属因腐蚀而发生的重量变化,换算成相当于单位金属面积与单位时间内的重量变化的数值。它又分为失重法和增重法两种。用公式表示为: 式中v-—失重时的腐蚀速度,克/米2.小时; v+—增重时的腐蚀速度,克/米2.小时; Wo-—金属的初始重量,克; W1—消除了腐蚀产物后金属的重量,克; W2—带有腐蚀产物的金属的重量,克; S—金属的面积,米2; T—腐蚀进行的时间,小时。 金属腐蚀速度的深度指标是把金属的厚度因腐蚀而减少的量,以线量单位表示,并换算成相当于单位时间的数值。用公式表示为: 式中vL—腐蚀的深度指标,毫米/年; p—金属的密度,克/厘米3。 金属腐蚀速度的电流指标是以金属电化学腐蚀过程的阳极电流密度的大小来衡量金属的电化学腐蚀速度的程度。可由法拉第(Faraday)定律把电流指标和重量指标联系起来。可用公式表示为: 式中ia—腐蚀的电流指标,即阳极电流密度,安培/厘米2; A——原子量; N——化合价; 列举几个常用的腐蚀速率计算方法: 1、失重法 失重法直接表示由于腐蚀而损失的材料重量,其过程为:对预先制备的试样测量尺寸,净准确称重后置于腐蚀介质中,实验结束后取出,清除产物后清洗、干燥、再称重。试样的失重直接表征材料的腐蚀程度。 其腐蚀速率的计算方法:通常采用单位时间内单位面积上的重量变化表征平均腐蚀速率g*(m^-2)*(h^-1)。v=(w0-w1)/(At); 其中,W0:试样原始重量(g);w1:试样清除产物后的重量(g); A:试样面积(m^2);t:试验周期(h) 但是这种表征方式仍然不能表示出浮士德损耗深度,为此可将腐蚀速度换算成单位时间内的平均腐蚀深度(如:mm/a),其换算关系为: B=(1/ρ)*v*[(365*24*10)/(100*100)]=8.76*v/ρ=8.76*(w0-w1)/(ρ*A*t) B:腐蚀速率(mm/a)

金属腐蚀理论及腐蚀控制答案汇总

《金属腐蚀理论及腐蚀控制》 (跟着剑哥走,有肉吃。) 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/ m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st

=(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6 =0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。 (2)对不锈钢在20%HNO 3( 25℃)有: 表面积S=2π×2 .0+2π×0.015×0.004=0.00179 m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715 g/ m2?h 试样体积为:V=π×1.52×0.4=2.827 cm3 d=W/V=22.3367/2.827=7.901 g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314 m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882 g/ m2?h 试样体积为:V=π×2 2×0.5=6.28 cm3 d=W/V=16.9646/6.28=2.701 g/cm3 Vp=8.76Vˉ/d=8.76×0.7882/2.701=2.56mm/y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st =(22.3367-22.2906)/0.00179×2=12.8771 g/ m2?h Vp=8.76Vˉ/d=8.76×12.8771/7.901=14.28mm/y 对铝:Vˉ=△Wˉ/st=(16.9646-16.9250)/0.00314×40=0.3153g/ m2?h Vp=8.76Vˉ/d=8.76×0.3153/2.701=1.02mm/y

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

金属材料的点腐蚀和缝隙腐蚀

金属材料的点腐蚀和缝 隙腐蚀 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料的点腐蚀和缝隙腐蚀 点腐蚀和缝隙腐蚀(pitting and crevice corrosion)金属材料接触某些溶液,表面上产生点状局部腐蚀,蚀孔随时间的延续不断地加深,甚至穿孔,称为点腐蚀(点蚀),也称孔蚀。通常点蚀的蚀孔很小,直径比深度小得多。蚀孔的最大深度与平均腐蚀深度的比值称为点蚀系数。此值越大,点蚀越严重。一般蚀孔常被腐蚀产物覆盖,不易发现,因此往往由于腐蚀穿孔,造成突然性事故(见金属腐蚀)。 缝隙腐蚀是两个连接物之间的缝隙处发生的腐蚀,金属和金属间的连接(如铆接、螺栓连接)缝隙、金属和非金属间的连接缝隙,以及金属表面上的沉积物和金属表面之间构成的缝隙,都会出现这种局部腐蚀。 许多金属材料都能产生点蚀和缝隙腐蚀。不锈钢、铝合金等靠钝化来增强耐蚀性的金属材料,也易产生点蚀和缝隙腐蚀。许多环境介质都能引起金属材料的点蚀和缝隙腐蚀,尤其是含氯离子的溶液。 点腐蚀 金属表面的电化学不均匀性是导致点蚀的重要原因。金属材料的表面或钝化膜等保护层中常显露出某些缺陷或薄弱点(如夹杂物、晶界、位错等处),这些地方容易形成点蚀核心。金属浸入含有某些活化阴离子(特别是氯离子)的溶液中,只要腐蚀电位达到或超过点蚀电位(或称击穿电位),就能产生点蚀。这是由于钝化膜在溶液中处于溶解以及可再度形成的动平衡状态,而溶液中的活化阴离子(氯离子)会破坏这种平衡,导致金属的局部表面形成微小蚀点,并发展为点蚀源。例如不锈钢表面的硫化物夹杂的溶解,暴露出钢的新鲜表面,就会形成点蚀源。 点蚀的发展是一个在闭塞区内的自催化过程。在有一定闭塞性的蚀孔内,溶解的金属离子浓度大大增加,为保持电荷平衡,氯离子不断迁入蚀孔,导致氯离子富集。高浓

实验报告-极化曲线测量金属的腐蚀速度

课程 实 验 者 名 称 页数( ) 专业 年级、班 同组者姓名 级别 姓 名 实验 日 期 年 月 日 一、目的和要求 1、 掌握恒电位法测定电极极化曲线的原理和实验技术。通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流 2、论极化曲线在金属腐蚀与防护中的应用 二、基本原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。在本实验中,镁合金和钢分别与0.5mol/L 的NaCl 溶液构成腐蚀体系。 镁合金与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Mg= Mg 2++2e 阴极: 2H 2O+2e=H 2+2OH - 钢与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Fe= Fe 2++2e 阴极: 2H 2O+2e=H 2+2OH - 腐蚀体系进行电化学反应时的阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别 为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。 令?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。?E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进行阴极极化。因此外测电流密度也称为极化电流密度 测定腐蚀速度的塔菲尔直线外推法:当对电极进行阳极极化,在强极化区,阴极分支电流i k =0, )]ex p()[ex p(k c a c corr k a i i i I β??β??---=-=c E ??-=?)]ex p()[ex p(k a corr E E i I ββ?--?=)ex p(a corr a E i i I β?==

论文-金属材料的腐蚀与防护

金属材料的腐蚀和防护 罗--(学号:1230060054) (-----大学物理与材料科学学院物理学1202班) 专题授课老师:---- 摘要:自从人类发现并使用金属到如今已有5000年的历史,然而人类在享受金属材料的使用带来便利的同时,也在苦恼着金属腐蚀带来的烦恼。人类在使用金属的同时,也在尽最大的努力对金属进行防护。金属的有效防护,一方面可以降低成本,提高劳动生产率,赢得最大的经济效应;另一方面对加强国防建设也有重要的意义。 关键词:金属材料腐蚀防护 引言:当金属和周围气态或液态介质接触时常常由于发生化学作用或电化学作用而逐渐损坏的过程成为金属腐蚀,每年金属腐蚀给国家带来巨大的经济损失,所以金属的有效防护对于一个企业和国家是至关重要的。 1.金属材料的腐蚀机理 1.1金属腐蚀的分类 按照金属的腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。化学腐蚀就是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程;电化学腐蚀就是铁和氧形成两个电极,组成腐蚀原电池。金属腐蚀的实质都是金属原子被氧化转化成金属阳离子的过程。 1.2金属腐蚀的发生

自然界中只有极少数金属(例如金、铂等)能以游离状态存在,而大多数金属都需要从它们的矿石中用不同的能量冶炼出来。因此,金属受周围介质的化学及电化学作用而被破坏,这种现象叫做金属的腐蚀。 1.3金属腐蚀的危害 金属腐蚀的危害首先在于腐蚀造成了巨大的经济损失。这种损失可分为直接损失和间接损失。直接损失包括材料的损耗、设备的失效、能源的消耗。由于腐蚀,使大量有用材料变为废料,估计全世界每年因腐蚀报废的钢铁设备约为其年产量的10% 。间接损失包括因腐蚀引起的停工停产,产品质量下降,大量有用有毒物质的泄漏、爆炸,以及大规模的环境污染等。一些腐蚀破坏事故还造成了人员伤亡,直接威胁着人民群众的生命安全。 2.金属腐蚀防护的方法 2.1 改变金属的组成 这种方法最常见的是不锈钢材料。通过在钢铁中加入12-30%的金属铬而改变钢铁原有的组成,从而改善性能,不易腐蚀。如目前迅速发展起来的不锈钢炊具,餐具等就是以此为材料的。2.2 形成保护层 在金属表面覆盖各种保护层,把被保护金属与腐蚀性介质隔开,是防止金属腐蚀的有效方法。可以形成以下几种保护层来对金属腐蚀进行防护: (1)磷化处理: 钢铁制品去油、除锈后,放入特定组成的磷酸

金属腐蚀学习题

腐蚀学第一章习题 1、导出腐蚀速度mm/a与mg/dm2·d间的一般关系式。 思考题 2、什么是腐蚀?为何提出几种不同的腐蚀定义? 3、举例说明研究腐蚀的意义. 4、化学腐蚀和电化学腐蚀的区别是什么? 5、金属的主要腐蚀形态有哪些? 10、表示均匀腐蚀速度的方法有哪些?它们之间有什么联系?这些腐蚀速度表达式中,哪些是量方程式?哪些是数值方程式?它们之间的主要区别是什么? 腐蚀学第二章习题 1、计算在25℃和50℃下的F值。 2、计算Zn在L ZnSO4溶液中的电极电位(相对于SHE),换算成SCE电位值是多少? 3、计算离子活度为10-6mol/L时,Ag/Ag+、Cu/Cu2+和Fe/Fe2O3/H+的平衡电极电位以及第三个电极的pH 值。(已知:uoAg=0 , uoCu=0 , uoFe=0, uoFe2O3=mol , uoAg+= mol , uoCu2+= KJ/mol, uoH+=0) 4、计算25℃时,下列电极的标准电极电位 a)、Cu在氰化物溶液中(注意铜为1价) b)、Ni在氨溶液中 c)、Zn在碱溶液中 5、计算Ag/AgCl电极在1mol/L NaCl溶液中的电位。 6、计算40℃氢分压P H2=时氢电极在PH=7的溶液中电极电位。 7、计算25℃时,铁在pH=的L NaCl溶液中的电极电位。 10、Zn(阳极)与氢电极(阴极)在L ZnCl2溶液中组成电池的电动势为+,求溶液的pH值。 11、把Zn浸入pH=2的 mol/LZnCl2溶液中,计算该金属发生析氢腐蚀的理论倾向。(以电位表示) 12、计算镍在pH =7的充空气的水中的理论腐蚀倾向。假定腐蚀产物为H2和Ni(OH)2, Ni(OH)2的溶度积为×10-16。 13、铜电极和氢电极(P H2=浸在Cu2+活度为1且pH=1的硫酸铜溶液中组成电池,求该电池的电动势,并判断电池的极性。 14、计算在pH=0的充空气的CuSO4溶液中铜是否因腐蚀而生成Cu2+(活度为1)和H2(),并以电位差表示腐蚀倾向的大小。 类似的,计算在pH=10的充空气的KCN溶液中(CN- 活度为是否腐蚀,假定生成Cu(CN)2–离子,其活度为10-4;且下列反应的E0 =–。 Cu(CN)2–+ e =2 CN–+ Cu 15、计算下列电池的电动势:Pt∣Fe3+ (αFe3+ = ,Fe2+(αFe2+ = ‖Ag+(αAg+ = ∣Ag,并写出该电池的自发反应,判定哪个电极为阳极? 16、计算铜电极在LCuSO4和中构成的浓差电池的电动势,忽略液界电位,写出该电池的自发反应并指出哪个电极为阳极? 17、计算40℃时下列电池的电动势:Pt∣O2(),H2O,O2()∣Pt,并指出该电池的极性,哪个电极

极化曲线测量金属的腐蚀速度

极化曲线测量金属的腐蚀速度 一、 目的和要求 1. 掌握恒电位法测定电极极化曲线的原理和实验技术。通过测定Fe 在NaCl 溶液中的 极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流。 2. 讨论极化曲线在金属腐蚀与防护中的应用。 二、 基本原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。以金属锌在盐酸体系中为例: 阳极反应: Zn-2e=Zn 2+ 阴极反应: H ++2e=H 2 阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。 金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。极化曲线在金属腐蚀研究中有重要的意义。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。 在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。若以十为底的对数,则表示为b a 、b k 。 这就是腐蚀金属电极的极化曲线方程式,令 ?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。?E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进行阴极极化。因此外测电流密度也称为极化电流密度 测定腐蚀速度的塔菲尔直线外推法 当对电极进行阳极极化,在强极化区, 阴极分支电流i k =0, )]ex p()[ex p(k c a c corr k a i i i I β??β??---=-=c E ??-=?)]ex p()[ex p(k a corr E E i I ββ?--?=)ex p(a corr a E i i I β?==

塔菲尔曲线金属腐蚀速率的测定

塔菲尔曲线金属腐蚀速率的测定 1.溶液和电极: 倒入电解池待测溶液,放入1cm圆盘碳钢工作电极,饱和甘汞参比电极和铂金对电极,甘汞参比电极距离工作电极1-3mm。 2.选塔菲尔方法: 塔菲尔图参数设置如下图 碳钢采用默认电解池参数,如果使用其他工作电极,应改变电解池参数后点击确定。选定60s电位变化量时点击稳定后开始,自动电位示波,60s内电位变化量不大于2mV,自动开始扫描。亦可选择开路状态等待。 不锈钢丝扫描出的塔菲尔图如下:

扫描完成后,点击测量按钮,自动测量出腐蚀电流和腐蚀速率,亦可套入公式,计算出腐蚀速率。RST5000系列电化学工作站自动测量可以得到腐蚀速率。 如果设置参数不好做出来的图从直观上明显不对,可以手动校正,方法:点击拟合阴、阳极段,就可以对阴极曲线或阴极曲线进行手动拟合,其值也自动在设置栏下面显示。双击y 轴数值,作图的电流密度对数和电流密度可以互相转换, 腐蚀速度换算公式: 金属腐蚀速度可用腐蚀失重或腐蚀深度表示,也可用腐蚀电流密度表示。它们之间可通过法拉第定律进行换算,即 corr corr i n M i nF M 41073.3-?== υ (g/m 2h ) corr i n M d ρρυ31028.3-?== (mm/年) 式中:υ为腐蚀速度(g/m 2h );d 为腐蚀深度(mm/年);corr i 是腐蚀电流密度(μA/cm 2); M 为金属的克原子量(g);n 为金属的原子价;F 为法拉第常数; ρ为金属的密度(g/cm 3 )。 注:1.以上内容摘自《电化学测试技术》刘永辉 编著 P360~361; 以钢铁为例:M=56g ,n=2,ρ=7.83cm g , 则腐蚀速度为: corr coor i i n M 24 1004.11073.3--?=?=υ (g/m 2h ) 腐蚀深度为:

实验一失重法测定金属腐蚀速度

实验一 失重法测定金属腐蚀速度 一、实验目的: 1、通过实验进一步了解金属腐蚀现象和原理,了解某些因素(如不同介质,介质的浓度以及是否加有缓蚀剂等)对金属腐蚀速度的影响。 2、掌握失重法测定金属腐蚀速度的方法。 二、实验原理: 目前测定腐蚀速度的方法很多,如重量法、电流密度法、极化曲线法、线性极化法等。所谓重量法,就是试验金属材料在一定的条件下(一定的温度、压力、介质浓度等)经腐蚀介质一定时间的作用后,比较腐蚀前后该材料的重量变化从而确定腐蚀速度的一种方法。 对于均匀腐蚀,根据腐蚀产物容易除去或完全牢固地附着在试样表面的情况,可分别采用单位时间、单位面积上金属腐蚀后的重量损失或重量增加来表示腐蚀速度: t S W W K ?-= 0 式中: K ――腐蚀速度,克/米2.小时(K 为负值时为增重腐蚀产物未清除) s ――试样面积,米 2 t ――试验时间,小时 W 0――试验前试片的重量,克 W ――试验后试片的重量,克(清除腐蚀产物后) 对于均匀腐蚀的情况,以上腐蚀速度很容易按下式换算成以深度表示的腐蚀速度: ρ ρK K K d 76.8100036524=??= 式中: K d ——年腐蚀深度,毫米/年 ρ——试验金属的密度,克/厘米3。 重量法是一种经典的试验方法,然而至今仍然被广泛应用,这主要是因为试验结果比较真实可靠,所以一些快速测定腐蚀速度的实验结果还常常需要与其对照。

重量法又是一种应用范围广泛的实验方法,它适用于室内外多种腐蚀实验,可用于评定材料的耐蚀性能。评选缓蚀剂,改变工艺条件时检查防腐效果等。重量法是测定金属腐蚀速度的基础方法,学习掌握这一方法是十分必要的。 但是,应当指出,重量法也有其局限性和不足。首先,它只考虑均匀腐蚀的情况,而不考虑腐蚀的不均匀性;其次,对于失重法很难将腐蚀产物完全除去而不基体金属,往往由此造成误差,对于晶间腐蚀的情况,由于腐蚀产物残留在样品中不能除去,如果用重量法测定基腐蚀速度,肯定不能说明实际情况,另外对于重量法要想做出K-t曲线往往需要大量的样品和冗长的试验周期。 本实验是碳钢在敞开的酸溶液中的全浸试验,用重量法测定其腐蚀速度。 金属在酸中的腐蚀一般是电化学腐蚀,由于条件的不同而呈现出复杂的规律。酸类对于金属的腐蚀规律很大程度上取决于酸的氧化性。非氧化性的酸,如盐酸,其阴极过程纯粹是氢去极化过程;氧化性的酸,其阴极过程则主要是氧化剂的还原过程。 然而,我们不可能把酸类截然分为氧化性酸与非氧化性酸。如当硝酸比较稀时,碳钢的腐蚀速度随酸浓度的增加而增加,是氢去极化腐蚀,当硝酸浓度超过30%时,腐蚀速度迅速下降,浓度达到40%时,腐蚀速度降到最小成为氧化性的酸,此时碳钢在硝酸中的腐蚀的阴极过程是: NO 3-+2H++2e――→NO 2 -+H 2 O 低碳钢在25℃时腐蚀速度与硝酸浓度的关系如图1-1所示。 图1-1低碳钢在25℃时腐蚀速度与硝酸浓度的关系 酸中加入适量缓蚀剂能阻止金属腐蚀或降低金属腐蚀速度。 三、实验内容与步骤: (一)试样的准备工作: 1、每组自实验室领取八块长方形碳钢(A 2 )试样,其尺寸为50x25x(2-3)mm。

材料腐蚀的种类、危害和解决办法

材料腐蚀的种类、危害及解决办法 腐蚀是指材料受周围环境的 作用,发生有害的化学变化、电化学变化或物理变化而失去其 固有性能的过程。通常环境介质对材料有各种不同的作用,其 中有多种作用可导致材料遭受破坏,但只有满足以下两个条件,才称为腐蚀作用:①材料受介质作用的部分发生状态变化,转变成新相。②在材料遭受破坏过程中,整个腐蚀体系的自由能降低。 材料腐蚀发生在材料表面。按腐蚀反应进行的方式分为化学腐蚀和电化学腐蚀。前者发生在非离子导体介质中;后者发生在具有离子导电性的介质中,故可通过改变材料的电极电位来改变腐蚀速度。按材料破坏特点分为均匀腐蚀、局部腐蚀和选择性腐蚀。均匀腐蚀指材料表面各处腐蚀破坏深度差别很小,没有特别严重的部位,也没有特别轻微的部分。局部腐蚀是材料表面的腐蚀破坏集中发生在某一区域,主要有孔蚀、缝隙腐蚀、晶间腐蚀等。选择性腐蚀是金属材料在腐蚀介质中,其活性组元产生选择性溶解,由金属材料合金组分的电化学差异所致。按腐蚀环境又分为微生物腐蚀、大气腐蚀、土壤腐蚀、海洋腐蚀和高温腐蚀等。 金属材料以及由它们制成的结构物,在自然环境中或者在工况条件下,由于和其所处环境介质发生化学或者电化学作用而引起的变质和破坏,这种现象称为腐蚀,其中也包括上述因素和力学因素或者生物因素的共同作用。某些物理作用例如金属材料在某些液态金属中的物理溶解现象也可以归入金属腐蚀范畴。一般而言,生锈专指钢铁和铁基合金而言,它们在氧和水的作用下形成了主要由含水氧化铁组成的腐蚀产物铁锈。有色金属及其合金可以发生腐蚀但并不生锈,而是形成和铁锈相似的腐蚀产物,如铜和铜合金表面的铜绿,偶尔也被人称作铜锈。由于金属和合金遭受腐蚀后又回复到了矿石的化合物状态,所以金属腐蚀也可以说是冶炼过程的逆过程。上述定义不仅适用于金属材料,也可以广义地适用于塑料、陶瓷、混凝土和木材等非金属材料。例如,涂料和橡胶由于阳光或者化学物质的作用引起变质,炼钢炉衬的熔化以及一种金属被另一种金属熔融液态金属腐蚀,这些过程的结果都属于材料腐蚀,这是一种广义的定义。金属及其合金至今康 昆 勇

金属材料耐腐蚀的选材顺序

金属材料耐腐蚀的选材顺序(由低到高) 一、不锈钢材料耐点腐蚀、晶间腐蚀和应力腐蚀能力的顺序 二、1、奥氏体不锈钢: 三、1Cr18Ni9Ti→0Cr18Ni9(304)→0Cr18Ni11Ti(321)→00Cr19Ni10 (304L)0Cr17Ni12Mo2Ti(316)→00Cr17Ni14Mo2(316L)→00Cr19Ni13Mo3(317L)→(904L)→00Cr27Ni31Mo4Cu 四、2、铁素体不锈钢: 五、0Cr13(410S)→0Cr13Al(405)→00Cr12Ti(409L)→00Cr17(430LX) →00Cr18Mo2→00Cr26Mo1→00Cr30Mo2 六、3、双相不锈钢: 七、00Cr18Ni5Mo3Si2(3RE60)→00Cr22Ni5Mo3N(SAF2205) →00Cr25Ni7Mo4N(SAF2507) 八、 九、 十、 十一、二、耐高温腐蚀用材的顺序 十二、20#→12Cr1MoV→12Cr2Mo1(2Cr-1Mo)→1Cr5Mo→1Cr9Mo→P91(10Cr9Mo1VNb)→0Cr25Ni20(310S) 十三、 十四、 十五、 十六、三、耐应力腐蚀用材

十七、16MnR→20R→12Cr1MoV 十八、00Cr17Ni14Mo2(316L)→00Cr19Ni13Mo3(317L)→(904L) 十九、00Cr18Ni5Mo3Si2(3RE60)→00Cr22Ni5Mo3N(SAF2205)→00Cr25Ni7Mo4N(SAF2507) 二十、0Cr13(410S)→00Cr12Ti(409L)→00Cr17(430LX)→00Cr18Mo2→00Cr26Mo1 二十一、 二十二、注:铁素体不锈钢和双相不锈钢不得在大于350℃的环境中使用。材料的耐腐蚀性能 钽:钽金属材料的耐腐蚀性能可同玻璃相比美,在环境温度下,除了氢氟酸外,对所有的酸都具有良好的耐腐蚀性,钽金属在高温下易被强碱腐蚀。钽金属对除了SO3-2及氟的酸性盐溶液以外的所有氢化性及非氢化性盐溶液具有较强的耐腐蚀性。在高温下在硫酸及碳酸溶液中易受腐蚀,非凡是氟离子存在时腐蚀会严重。 l蒙耐尔合金:蒙耐尔合金在有色金属与合金中,最耐氢氟酸(或氟化氢)腐蚀,在介质相当宽的浓度和强度范围内有很好的稳定性,也可用于氯化物,海水,碱等介质中作防腐材料。蒙耐尔合金不适用于强氧酸,如硝酸及亚硝酸,也不适用酸性铁盐,锡盐等溶液中。 哈氏合金C:是最通用的耐腐蚀合金之一。哈氏合金是少数几种可以耐湿氯气,氯化氢及二氧化氨水溶液的合金之一,对强氧化性的盐溶液如氯化铁、氯化铜耐腐蚀性很好,适用于多种腐蚀性物质混合的介质。

材料腐蚀与防护 绪论、 第1章 金属与合金的高温氧化

绪论+ 第一章金属与合金的高温氧化 名词解释 1、耐蚀性:指材料抵抗环境介质腐蚀的能力。 2、腐蚀性:指环境介质腐蚀材料的强弱程度。 3、高温氧化(或高温腐蚀):在高温下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程。 4、P-B比:氧化物与金属的体积差对氧化物的保护性的影响,即氧化生成的金属氧化膜的体积与生成这些氧化膜所消耗的金属的体积的比值叫PB比。 5、腐蚀过程的本质:金属→金属化合物 6、(高温)热腐蚀:指金属材料在高温工作时,基体金属与沉积在其工作表面上的沉积盐及周围工作气体发生总和作用而产生的腐蚀现象称为热腐蚀. 7、p型半导体:通过电子的迁移而导电的半导体; n型半导体:通过空穴的迁移而导电的半导体。 n型:加Li(低价),导电率减小,氧化速度增加;加Al(高价),导电率增加,氧化速度降低。 p型:加Li(低价),导电率增加,氧化速度降低;加Cr(高价),导电率减小,氧化度增加。 1、腐蚀的危害:1)造成巨大的经济损失;2)造成金属资源和能源的浪费 造成设备破坏事故,危及人身安全;3)引起环境污染。 2、金属一旦形成氧化膜,氧化过程的继续进行将取决于两个因素:1)界面反应速度,包括金属/氧化物界面以及氧化物/气体两个界面上的反应速度;2)参加反应物质通过氧化膜的扩散速度。(这两个因素实际上控制了继续氧化的整个过程,也就是控制了进一步氧化速度。在氧化初期,氧化控制因素是界面反应速度,随着氧化膜的增厚,扩散过程起着愈来愈重要的作用,成为继续氧化的速度控制因素) 3、反映物质通过氧化膜的扩散,一般可有三种传输形式:1)金属离子单向向外扩散;2)氧单向向内扩散;3)两个方向的扩散。 4、反应物质在氧化膜内的传输途径:1)通过晶格扩散:温度较高,氧化膜致密,而且氧化膜内部存在高浓度的空位缺陷的情况下,如钴的氧化;2)通过晶界扩散。在较低的温度下,由于晶界扩散的激活能小于晶格扩散,而且低温下氧化物的晶粒尺寸较小,晶界面积大,因此晶界扩散显得更加重要,如镍、铬、铝的氧化; 3)同时通过晶格和晶界扩散。如钛、锆、铅在中温区域(400一600℃)长时间氧化条件。 5、氧化膜具有保护作用必要条件:P-B比大于1。 氧化膜具有保护作用充分条件:1)膜要致密、连续、无空洞,晶体缺陷少;2)稳定性好,蒸气压低,熔点高;3)膜与基体的附着力强,不易脱落;4)生长内应力小;5)与金属基体具有相近的热膨胀系数;6)膜的自愈能力强。 6、当PB>l时,金属氧化膜受压应力,金属氧化膜不易破裂,具有保护性;当PB 〉〉1时,膜脆容易破裂,完全丧失了保护性;当PB <1时,金属氧化膜受张应力,所生成的氧化膜不能完全覆盖整个金属表面,会形成疏松多孔的氧化膜,不能有效地把金属与环境隔离开来,这类氧化膜不具有保护性。 7、提高金属抗氧化性途径:1)减小氧化膜中晶格缺陷的浓度;2)生成复合氧化

实验 金属腐蚀速度的测量分析

金属腐蚀速度的测量分析 一、金属腐蚀速度的测量方法 1、重量法 重量法是根据腐蚀前后试件质量的变化来测定金属腐蚀速度的,分为失重法和增重法两种。当金属表面上的腐蚀产物容易除净且不至于损坏金属本体时常用失重法;当腐蚀产物完全牢靠地附着在试件表面时,则采用增重法。 对于失重法可由下式计算腐蚀速度: 式中 V 失——金属的腐蚀速度,g·m-2·h-1; m 0——试件腐蚀前的质量,g ; m 1——试件腐蚀后的质量,g ; S ——试件的面积,m 2; t ——试件腐蚀时间,h 。 对于增重法,即当金属表面的腐蚀产物全部附着在上面,或者腐蚀产物脱落下来可以全部收集起来时,可用下式计算腐蚀速度: 式中 V 增——金属的腐蚀速度,g·m-2·h-1; m 2——带有腐蚀产物的试件质量,g ; 对于密度相同的金属,可以用上述方法比较其耐腐蚀性能,对于密度不同的金属,尽管单位表面上的质量变化相同,其腐蚀深度却不一样,对此,应用腐蚀深度来表示更为合适。应当指出,重量法也有其局限和不足。首先,它只考虑均匀腐蚀的情况,而没有考虑局部腐蚀的情况。其次,对于失重法很难将腐蚀产物完全除去,如果用重量法测定其腐蚀速度,肯定不能说明实际情况。另外,失重法的实验周期较长,短则几小时,多则数年乃至数十年,对于重量法要想做出腐蚀速度(V 增)-时间(t )曲线需要大量的样品和冗长的时间。 2、容量法 对于伴随析氢或吸氧的腐蚀过程,通过测定一定时间内的析氢量或吸氧量来 St m m V 1 0-= 失St m m V 0 2-= 增

计算金属的腐蚀速度的方法即为容量法。 许多金属在酸性溶液中,某些电负性较强的金属在中性甚至于碱性溶液中都会发生氢去极化作用而遭到腐蚀,其中: 阳极过程M→Mn++ne 阴极过程nH+ +ne→(n/2)H2↑在阳极上金属不断失去电子而溶解的同时,溶液中的氢离子与阴极上过剩的电子结合而析出氢气。金属溶解的量和析氢出的量相当。即有一克当量的金属溶解,就有一克当量的氢析出。由实验测出一定时间内的析氢体积VH(毫升),由气压计读出大气压力P(毫米汞柱)和用温度计读出室温,并查出该室温下的饱和水蒸气的压力PH2O(毫米汞柱)。根据理想气体状态方程式:PV=NRT,可以计算出所析出氢气的摩尔数: 为了得到更准确的结果,还应考虑到氢在该实验介质中的溶解量VH′,即由表查出室温下氢在该介质中的溶解度(cm3 /cm3 ),(可用氢在水中的溶解量近似计算,并略去氢在量气管的水中的溶解量)乘以该介质的体积(cm3 )。则金属的腐蚀速度: 式中N—金属的氧化还原当量,g; S—金属的暴露面积,m 2; t—金属腐蚀的时间,h; R—气体状态常数62.36ml·毫米汞柱×103/摩尔·度。 3、极化曲线法 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H+或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。以金属锌在盐酸体系中为例:阳极反应: Zn-2e=Zn2+阴极反应: H++2e=H 2 阳极反应的电流密度以 i a 表示,阴极反应的速度以 ik表示,当体系达 到稳定时,即金属处于自腐蚀状态时,i a =i k =icorr(icorr为腐蚀电流),体系 不会有净的电流积累,体系处于一稳定电位c 。根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的

金属材料的腐蚀与防护

金属材料的腐蚀与防护 摘要:扼要介绍了金属的腐蚀机理,腐蚀发生的原因。金属的腐蚀现象和机理比较复杂,但可以通过合理地选用材料、有效地采取防腐蚀措施来减缓金属材料的腐蚀速度,这对于延长设备寿命、降低成本、提高劳动生产率都具有十分重要的意义。 关键词:金属材料;腐蚀;防护 钢铁生锈、铜器泛绿、银具变黑等都是材料(通常是指金属)及其结构物,制件与其所处环境介质之间的化学反应或电化学反应所引起的破坏或变质。这类破坏或变质被称之为材料的腐蚀。腐蚀科学则是一门涉及化学、物理、冶金学、表面科学、力学、机械学和生物学等多学科的应用科学。金属的腐蚀严重破坏了国民经济和国防建设,研究金属的腐蚀这门科学对于提高国民经济和加强国防建设都有重要的意义。 1 金属材料的腐蚀机理 1.1金属腐蚀的分类 按照金属的腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。化学腐蚀就是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程;电化学腐蚀就是铁和氧形成两个电极,组成腐蚀原电池,因为铁的电极电位总比氧的电极电位低,所以铁是阳极。遭到的腐蚀不管是化学腐蚀还是电化学腐蚀,金属腐蚀的实质都是金属原子被氧化转化成金属阳离子的过程[1] 1.2金属腐蚀的发生 自然界中只有极少数金属(例如金、铂等)能以游离状态存在,而大多数金属都需要从它们的矿石中用不同的能量冶炼出来。因此,从热力学观点来看,金属的腐蚀是很自然的事。金属受周围介质的化学及电化学作用而被破坏,这种现象叫做金属的腐蚀。由于腐蚀导致的金属破坏都从表面开始,而破坏的程度,一般来说也是表面最大。在液态和固态电解质中腐蚀过程是电化学过程。因此,腐蚀能否进行取决于金属能否离子化,而金属离子化的趋势可以用电极电位(E)表示。 金属在电解质中的腐蚀是一种电化学变化[2],它的进行依照法拉第定律及欧姆定律,△W=(Ec-Ea)te/(96500AR) 式中,e为常数,如粗略地认为R不变时,则腐蚀速率(△W/t)与(Ec-Ea)成正比,而与A成反比。(Ec-Ea)因极化关系有所变化,因此腐蚀率也会随时间变化;阳极面积(A)较小时,腐蚀率将会随着提高。金属腐蚀时,阳极释放电子的阳极过程和阴极获得电子的阴极过程是在同一金属表面进行的。 2 金属防护的方法

相关文档
最新文档