最新常微分方程(第三版)答案

合集下载

常微分方程-王高雄-第三版参考答案

常微分方程-王高雄-第三版参考答案

习题1.2 1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2ydy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++ 解:原方程为:dx dy =y y 21+31x x +y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:yy −1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x)dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +−令x y =u 则dx dy =u+x dxdu代入有: -112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y. 6. xdxdy-y+22y x −=0 解:原方程为:dx dy =x y +x x ||-2)(1xy − 则令x y =u dx dy =u+ x dxdu 211u − du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8dxdy +y e xy 32+=0解:原方程为:dx dy =ye y 2e x32 ex3-3e 2y −=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =xy ln x y令x y =u ,则dxdy =u+ x dxduu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx − 解:原方程为:dxdy =e x e y− e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u+du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+−+−y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25−−+−y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c.15: dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y)2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y (1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x 1dx所以原方程可化为变量分离方程。

常微分方程第三版习题答案

常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。

在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。

本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。

1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。

将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

常微分方程第三版答案.doc

常微分方程第三版答案.doc

常微分方程第三版答案.d o c本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March习题1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsinxy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duduu+ x=ulnudxln(lnu-1)=-ln|cx| 1+ln xy =cy. 10. dxdy =e y x - 解:原方程为:dxdy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15:dxdy =(x+1) 2+(4y+1) 2+8xy 1 解:原方程为:dx dy =(x+4y )2+3令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则xdx dy +y=dx du 则dx dy =x 1dx du -2x u ,有: u x dxdu =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。

常微分方程第三版答案

常微分方程第三版答案

百度文库•让每个人平等地捉升口我习题1.21・—=2xy,并满足初始条件:x=0, y=l 的特解。

dx解:—=2xdx 两边积分有:ln|y|=x'+cy=e ' +e =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2, x=0 y=l 时c=l特解为尸e r \2. y' dx+(x+l)dy=O 并求满足初始条件:x=0, y=l 的特解。

dy 1 + y 2* — 了dx xy + x^ydy _ 1 + y 2 1 dx y x + A 3 dy= ------ r dx X + X'两边积分:x(l+x 2) (1+y 2 )=cx"4. (1+x)ydx+(l-y)xdy=O解:原方程为:—dy=-—dx y x两边积分:In | xy +x-y=c另外x=0, y=0也是原方程的解。

5・(y+x) dy+(x-y)dx=O解:原方程为:解:y - dx=-(x+l)dy卑 dy=J x + 1 dx 两边积分:-丄=-ln|x+l|+ln|c| y I尸 In 1 c(x + 1)1另外y=0> X-1也是原方程的解x=0, y=l 时 c=e 特解:y=In I c(x + \) I解:原方程为:dy x- ydx x + y八V … t dv du 小、亠令i =u 则——=u+x 代入有: x dx dx---- d u= — dx iC +1 xln(u~ +l)x~ =c-2arctgu即 ln(y ~+x~ )=c-2arctg 厶.6. x — -y+ -Jx 2 — y 1 =0解:原方程为:y^=- + —-Jl-(-)2 dx xxv xA y dv dii 贝U 令—=u — =u+ x — x dx dx,du=sgnx — dx VI-w 2 Xarcsin —=sgnx In I x I +c x7. tgydx-ctgxdy=0解:原方程为:—=—fgy ctgx两边积分:In |siny =-ln |cosx I-In I c I1 c siny= ---------- = ------ 另外y=0也是原方程的解,而c=0时,y=0. ccosx cosx所以原方程的通解为sinycosx=c.dx y解:原方程为:学二 dx y2 e ' -3e~ =c.9・ x (lnx-lny)dy-ydx=0解:原方程为:——=—In — dx x xA v rjl dy du 令—=u ,贝11 — =u+ x —— x dx dxduu+ x — =ulnudxln(lnu-l)=-ln|cx|1+1 n = =cy・xdx解:原方程为:g二11 — =(x+y) 2dx“A十du解:令x+y=u,则〒=〒T dx dxdx------du=dx\ + ir arctgu=x+c arctg (x+y)=x+cdx (x+y)-“ 八dy du解:令x+y=u,则一=——1 dx dxu-arctgu=x+c y-arctg(x+y)=c.cly 2x - y +113.—= ---------- :——dx x-2y+ 1解:原方程为:(x-2y+l) dy=(2x-y+l)dx xdy+ydx-(2y-l)dy-(2x+l)dx=O dxy-d (y' -y) -dx +x=c乍•>xy-y - +y_x - _x二c—dy x-y+ 5dx x _ y _ 2解:原方程为:(x-y-2) dy= (x-y+5) dxxdy+ydx-(y+2)dy-(x+5)dx=O1 . 1 .dxy-d (— y' +2y) -d( —x" +5x) =02 2y - +4y+x - +10x-2xy 二c・15:— =(x+l) 2+(4y+l),+8xy + l dx解:原方程为:—=(x+4y) 2+3 dx八 e ■ 1 d" 1令x+4y=u 贝(J ——= -------dx 4 dx 41du 1 =------ =iT +34 dx 4—=4 U2+13dx3z、u= —t g(6x+c)T22t g(6x+c) = -(x+4y+l).16:证明方程丄学=f(xy),经变换xy=u可化为变量分离方程,并由此求下列方程: y dx1) y(l+x2 y2)dx=xdyX 心二2 + x:y: y dx2)2-x2y2证明:令xy=u,则x— +y= —dx dx…, dy 1 du u亠贝9于=—: ---- •有:dx x dx Q——=f (u) +1 u dx------ ! ------- d u= — dx«(/(«)+ 1) X所以原方程可化为变量分离方程。

常微分方程第三版答案doc

常微分方程第三版答案doc

常微分方程第三版答案doc习题1.21.dyd某=2某y,并满足初始条件:某=0,y=1的特解。

解:dyy=2某d某两边积分有:ln|y|=某2+cy=e某2+ec=ce某2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y=ce某2,某=0y=1时c=1特解为y=e某2.2.y2d某+(某+1)dy=0并求满足初始条件:某=0,y=1的特解。

解:y2d某=-(某+1)dydy1y2dy=-某1d某两边积分:-1y=-ln|某+1|+ln|c|y=1ln|c(某1)|另外y=0,某=-1也是原方程的解某=0,y=1时c=e特解:y= ln|c(某1)|dy1y23.d某=某y某3y解:原方程为:dyd某=1y21y某某31y21ydy=某某3d某两边积分:某(1+某2)(1+y2)=c某24.(1+某)yd某+(1-y)某dy=0解:原方程为:1y某1ydy=-某d某两边积分:ln|某y|+某-y=c另外某=0,y=0也是原方程的解。

5.(y+某)dy+(某-y)d某=0解:原方程为:dyd某=-某y某y令ydy某=u则d某=u+某dud某代入有:-u11u21du=某d某ln(u2+1)某2=c-2arctgu即ln(y2+某2)=c-2arctgy某2.6.某dy22d某-y+某y=0解:原方程为:dyd某=y某+|某|某-(y2)则令y某=udydud某=u+某d某1du=gn某u2某d某arciny某=gn某ln|某|+c7.tgyd某-ctg某dy=0解:原方程为:dyd某tgy=ctg某两边积分:ln|iny|=-ln|co某|-ln|c|iny=1ccco某=co某另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为inyco某=c.y23某8dyed某+ydyey2解:原方程为:d某=3某ye2e3某-3ey2=c.9.某(ln某-lny)dy-yd某=0解:原方程为:dyyyd某=某ln某令y某=u,则dydud某=u+某d某u+某dud某=ulnuln(lnu-1)=-ln|c某|1+lny某=cy.10.dyd某=e某y解:原方程为:dy某d某=eeyey=ce某11dy2d某=(某+y)解:令某+y=u,则dydud某=d某-1du2d某-1=u11u2du=d某arctgu=某+carctg(某+y)=某+c12.dyd某=1(某y)2解:令某+y=u,则dyd某=dud某-1du1d某-1=u2u-arctgu=某+cy-arctg(某+y)=c.13.dy2某y1d某=某2y1解:原方程为:(某-2y+1)dy=(2某-y+1)d某某dy+yd某-(2y-1)dy-(2某+1)d某=0d某y-d(y2-y)-d某2+某=c某y-y2+y-某2-某=c14:dy某d某=y5某y2解:原方程为:(某-y-2)dy=(某-y+5)d某某dy+yd某-(y+2)dy-(某+5)d某=0d某y-d(12y2+2y)-d(122某+5某)=0y2+4y+某2+10某-2某y=c.15:dyd某=(某+1)2+(4y+1)2+8某y1解:原方程为:dyd某=(某+4y)2+3令某+4y=u则dy1dud某=4d某-141du14d某-4=u2+3dud某=4u2+13u=32tg(6某+c)-1tg(6某+c)=23(某+4y+1).16:证明方程某dyyd某=f(某y),经变换某y=u可化为变量分离方程,并由此求下列方程:1)y(1+某2y2)d某=某dy2)某dy2某2y2yd某=2-某2y2证明:令某y=u,则某dydud某+y=d某则dy1duud某=某d某-某2,有:某duud某=f(u)+1u(f(u)1)du=1某d某所以原方程可化为变量分离方程。

常微分方程(王高雄)第三版课后答案

常微分方程(王高雄)第三版课后答案

dx u + 1
u2 +1
x
两边积分得:arctgu
+
1 2
ln(1 + u2)
=
− ln
x
+
c。
6:x dy = y + dx
x2 − y2
解:令 y = u, y = ux, dy = u + x du ,则原方程化为:
x
dx
dx
du = x2 (1 − u2) , 分离变量得: 1 du = sgn x • 1 dx
常微分方程习题 2.1
1. dy = 2xy ,并求满足初始条件:x=0,y=1 的特解. dx
解:对原式进行变量分离得
1 dy = 2 xdx , 两边同时积分得: y
e c = 1, 故它的特解为 y = x 2。
x e ln y = 2 + c ,即 y = c x 2 把 x = 0, y = 1代入得
dx dx
dx t 2
变量分离
t
t2 2 +1
dt
=
dx,两边积分t

arctgt
=
x
+
c,代回变量
x + y − arctg(x + y) = x + c
13. dy = 2x − y − 1 dx x − 2 y + 1
解:方程组2x − y −1 = 0, x − 2 y + 1 = 0;的解为x = − 1 , y = 1 33
y= 1 。 1 + ln1 + x
3
dy = 1 + y2 dx xy + x3 y

常微分方程王高雄第三版答案课本电子版

常微分方程王高雄第三版答案课本电子版

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2ydy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dx dy =y y 21+31xx + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y −1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx yx +− 令x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y. 6. xdxdy -y+22y x −=0 解:原方程为:dx dy =x y +x x ||-2)(1xy − 则令x y =u dx dy =u+ x dxdu 211u − du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye xy 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y −=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y =u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy =cy. 10.dxdy =e yx − 解:原方程为:dxdy =e x e y− e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u+du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du-1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+−+−y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25−−+−y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2y x 2y + 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x +y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0 解:原方程为:dxdy=-y x y x +- 令xy=u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy . 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令x y =udx dy =u+ x dxdu 211u - du=sgnx x1dxarcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8dx dy +ye xy 32+=0解:原方程为:dx dy =ye y 2e x32 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln x y 令xy=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+ln xy =cy. 10.dxdy=e y x - 解:原方程为:dxdy=e x e y - e y =ce x 11dxdy=(x+y)2 解:令x+y=u,则dx dy =dxdu-1 dx du-1=u 2 211u+du=dx arctgu=x+c arctg(x+y)=x+c 12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu-1dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c 14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15:dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程(第三版)答案常微分方程习题答案2.11.«Skip Record If...»,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得«Skip Record If...»«Skip Record If...»并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得:«Skip Record If...»3 «Skip Record If...»解:原式可化为:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»12.«Skip Record If...»解«Skip Record If...»«Skip Record If...»«Skip Record If...»15.«Skip Record If...»«Skip Record If...»16.«Skip Record If...»解:«Skip Record If...»«Skip Record If...»,这是齐次方程,令«Skip Record If...»17. «Skip Record If...»解:原方程化为«Skip Record If...»令«Skip Record If...»方程组«Skip Record If...»«Skip Record If...»则有«Skip Record If...»令«Skip Record If...»当«Skip Record If...»当«Skip Record If...»另外«Skip Record If...»«Skip Record If...»19. 已知f(x)«Skip Record If...».解:设f(x)=y, 则原方程化为«Skip Record If...»两边求导得«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»20.求具有性质 x(t+s)=«Skip Record If...»的函数x(t),已知x’(0)存在。

解:令t=s=0 x(0)=«Skip Record If...»=«Skip Record If...»若x(0)«Skip Record If...»0 得x«Skip Record If...»=-1矛盾。

所以x(0)=0. x’(t)=«Skip Record If...»)«Skip Record If...»«Skip Record If...»两边积分得arctg x(t)=x’(0)t+c 所以x(t)=tg[x’(0)t+c] 当t=0时 x(0)=0 故c=0 所以x(t)=tg[x’(0)t]习题2.2求下列方程的解1.«Skip Record If...»=«Skip Record If...»解: y=e «Skip Record If...»(«Skip Record If...»e«Skip Record If...»«Skip Record If...») =e«Skip Record If...»[-«Skip Record If...»e«Skip Record If...»(«Skip Record If...»)+c]=c e«Skip Record If...»-«Skip Record If...» («Skip Record If...»)是原方程的解。

2.«Skip Record If...»+3x=e«Skip Record If...»解:原方程可化为:«Skip Record If...»=-3x+e«Skip Record If...»所以:x=e«Skip Record If...» («Skip Record If...»e«Skip Record If...» e«Skip RecordIf...»«Skip Record If...»«Skip Record If...»)=e«Skip Record If...» («Skip Record If...»e«Skip Record If...»+c)=c e«Skip Record If...»+«Skip Record If...»e«Skip Record If...»是原方程的解。

3.«Skip Record If...»=-s«Skip Record If...»+«Skip Record If...»«Skip Record If...»解:s=e«Skip Record If...»(«Skip Record If...»e«Skip Record If...»«Skip Record If...» )=e«Skip Record If...»(«Skip Record If...»)= e«Skip Record If...»(«Skip Record If...»)=«Skip Record If...»是原方程的解。

4.«Skip Record If...»«Skip Record If...», n为常数.解:原方程可化为:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»是原方程的解.5.«Skip Record If...»+«Skip Record If...»=«Skip Record If...»解:原方程可化为:«Skip Record If...»=-«Skip Record If...»«Skip Record If...»(«Skip Record If...»)«Skip Record If...»«Skip Record If...»=«Skip Record If...»是原方程的解.6.«Skip Record If...»«Skip Record If...»解:«Skip Record If...»«Skip Record If...»=«Skip Record If...»+«Skip Record If...»令«Skip Record If...»«Skip Record If...»则«Skip Record If...»«Skip RecordIf...»=u«Skip Record If...»因此:«Skip Record If...»=«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»(*)将«Skip Record If...»«Skip Record If...»带入(*)中得:«Skip Record If...»是原方程的解.«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»13«Skip Record If...»这是n=-1时的伯努利方程。

相关文档
最新文档