生物大分子分离纯化
生物大分子的分离纯化(透析、超滤、冷冻干燥)

生物大分子的分离纯化(透析、超滤、冷冻干燥)生物大分子的分离纯化(透析、超滤、冷冻干燥)2. 透析自Thomas Graham 1861年发明透析方法至今已有一百多年。
透析已成为生物化学实验室最简便最常用的分离纯化技术之一。
在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。
透析只需要使用专用的半透膜即可完成。
通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。
保留在透析袋内未透析出的样品溶液称为"保留液",袋(膜)外的溶液称为"渗出液"或"透析液"。
透析的动力是扩散压,扩散压是由横跨膜两边的浓度梯度形成的。
透析的速度反比于膜的厚度,正比于欲透析的小分子溶质在膜内外两边的浓度梯度,还正比于膜的面积和温度,通常是4℃透析,升高温度可加快透析速度。
透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜,目前常用的是美国Union Carbide (联合碳化物公司)和美国光谱医学公司生产的各种尺寸的透析管,截留分子量MwCO(即留在透析袋内的生物大分子的最小分子量,缩写为MwCO)通常为1万左右。
商品透析袋制成管状,其扁平宽度为23 mm~50 mm不等。
为防干裂,出厂时都用10%的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白质和其它生物活性物质有害,用前必须除去。
可先用50%乙醇煮沸1小时,再依次用50%乙醇、0.01 mol/L碳酸氢钠和0.001 mol/L EDTA溶液洗涤,最后用蒸馏水冲洗即可使用。
实验证明,50%乙醇处理对除去具有紫外吸收的杂质特别有效。
使用后的透析袋洗净后可存于4℃蒸馏水中,若长时间不用,可加少量NaN2,以防长菌。
生物样品中生物大分子的分离纯化

19
(六) 生物大分子的抽提
✓ “抽提”是将经过预处理或破碎了的细胞或组织置于一 定条件下和溶剂中,使被提取的生物大分子以溶解状态 充分地释放到溶剂中,并尽可能保持原来的天然状态不 丢失生物活性的过程。
14
组织与细胞破碎
1、机械破碎法
✓ 研磨:这种方法比较柔和,适宜实验室使用; ✓ 组织捣碎器:这是一种较剧烈的破碎细胞的方法。利用高速
旋转的叶片产生的剪切力将组织细胞破碎。处理材料量较大 时,经常使用。 ✓ 匀浆器:匀浆器用来破碎那些比较柔软,易于分散的组织细 胞。科研上若材料处理量少,可使用匀浆器。
生物大分子的 分离纯化和鉴定
生物分子(Biomolecule)泛指生物体特有的各类分子, 是自然存在于生物体中的分子的总称,是组成生命 的基本单位。
包括
小分子(如脂类、激素、维生素等) 生物大分子(蛋白质、核酸、糖复合物等)
什么是生物大分子?
生物大分子指的是作为生物体内主要活性成分 的各种分子量达到上万或更多的有机分子,结构具 有一定的规律性,大多是由基本结构单位按一定顺 序和方式连接而形成的多聚体。
常见的生物大分子包括蛋白质(包括酶)、核酸、 多聚糖等。
3
生物大分子分离纯化的特殊性
1. 生物材料的组成复杂,种类极多;分离纯化方法千 差万别,没有一种标准方法可通用于各种生物大 分子的分离制备。
2. 许多生物大分子在生物材料中的含量极微,分离 纯化的步骤多,流程长。
生物大分子分离与纯化技术

生物大分子分离与纯化技术是生物学、生物医学和生物工程领域中非常重要的技术之一。
它可以用于提取和分离生物大分子,从而达到纯化的目的。
本文将着重探讨的原理、方法和应用。
一、原理在生物细胞中,不同的生物大分子有着不同的形态、结构和性质。
为了分离和纯化这些生物大分子,需要利用它们的理化性质差异。
例如,蛋白质可以通过电泳分离,根据电荷、分子量等差异分离出不同的成分;核酸则可以通过浓度梯度离心分离,根据密度差异分离出单独的成分。
还有一些生物大分子,如多肽、糖类、脂质等,可以通过其他特殊方法分离。
二、方法1. 柱层析法柱层析法是中常用的重要方法之一。
它利用固定相(柱子中的树脂)和流动相(洗脱缓冲液)之间的相互作用来分离和纯化生物大分子。
根据固定相和洗脱缓冲液的不同性质,可以选择不同的柱层析方法,例如离子交换层析、凝胶过滤层析和亲和层析等。
2. 电泳法电泳法是基于生物大分子的电荷差异和分子量差异的原理,将不同的生物大分子分离并捕获的技术。
根据电泳介质、运行方式以及电场的不同条件,可以选择不同的电泳方法,如蛋白质电泳、DNA电泳、脂质电泳等。
3. 超滤法超滤法是利用微孔过滤膜的不同截留分子量,将生物大分子按照大小分离纯化的技术。
超滤法分为正压式和负压式,正压式是通过液体压力将生物大分子向膜孔内压缩,从而分离得到小分子;负压式是通过负压将大分子向膜孔内吸附,难以通过的是大分子。
4. 溶剂萃取法溶剂萃取法是将生物大分子从混合物中溶解到特定的有机溶剂中,然后通过反萃取、扩散等工艺,使它在不同相中转移、分离和纯化的方法。
5. 其他方法生物大分子的分离和纯化方法还有一些其他方法,例如磁性珠法、浓缩法、冷冻干燥法等。
三、应用在生物医学、生物工程、食品工业、环境保护和新能源开发等领域中有广泛的应用。
具体来说,1. 生物医学领域生物医学领域的应用主要是分离和纯化蛋白质和多肽类物质,如酶、抗体、激素、血浆蛋白等。
这些物质可以作为药物、诊断试剂、生物治疗的原材料等。
生物大分子的纯化与结晶

生物大分子的纯化与结晶生物大分子是一些大分子组合,包括蛋白质、核酸、多糖等,它们在生物体中起着复杂的功能。
在分子生物学领域中,我们经常需要从原始的混合物中分离出目标生物大分子,进行纯化和结晶,以便进行后续的研究。
一、生物大分子的纯化生物大分子的纯化是将混合物中的目标物质(通常是蛋白质)从其他混合物中分离出来的过程。
这一过程可以分为以下几个步骤。
1. 研究目标大分子在进行纯化之前,需要对目标大分子进行研究,了解其特性和性质。
例如,了解其分子量、同工酶、pI 值、疏水性质等,有助于选择合适的纯化方法。
2. 选择适当的纯化方法生物大分子可以通过多种不同的方法进行纯化,包括离子交换层析、凝胶过滤层析、亲和层析、氢氧化铝吸附层析、逆流层析等。
选择合适的纯化方法需要考虑目标大分子的性质、产量和纯化程度等因素。
3. 提取和分离目标大分子在纯化过程中,我们需要使用溶液提取目标大分子,通常使用“冰冻‐离心‐洗涤”技术。
在这个过程中,我们通常使用不同的缓冲液、离子浓度和 pH 值等参数来优化纯化效果。
4. 检测和确定纯度在纯化过程中,需要检测分离出的目标大分子的纯度,并选择适当的检测方法。
常用的方法包括凝胶电泳、酶活性测定、光谱法和染料结合法等。
二、生物大分子的结晶结晶是将生物大分子从纯化溶液中分离出来的过程。
这一过程可以分为以下几个步骤。
1. 产生合适的结晶条件通过调整生物大分子的溶液条件(如 pH、盐浓度、温度、配体、添加剂等),可以使生物大分子形成晶体。
在这个过程中,我们需要不断地调整条件,探索最合适的结晶条件。
2. 建立结晶种子种子是晶体生长的先导因素,是生物大分子结晶的一个关键因素。
种子的形成可以通过添加一些外源因素,如微晶、配位邻基和长链脂肪酸等。
3. 监控结晶的质量和速率在晶体生长期间,需要不断监测晶体的质量和生长速率。
为了使晶体不断生长,在晶体生长的过程中,我们需要不断添加新的母液,并适时调整母液的条件。
生物大分子分离纯化技术(159页)

亲和色谱法由于具有极高的生物特异性,分离目的物受到理 化性质相似的杂质干扰极少,能从比较复杂的组织抽提液或细菌 发酵液中一步提取分离出所需的物质,提纯倍数可达一百倍以上 。
早期分离提纯的方法,选择的原则一般是从低分辨能力到高分 辨能力,而且负荷量较大为合适。但随着许多新技术的建立,一 个特异性方法其分辨能力越高,便意味着提纯步骤的简化,提纯 步骤的减少,回收率越高,具有生理活性物质变性的危险性就越 少。
制备物均一性的鉴定
对一个新分离的物质是否纯,常用“均一性 ”表示,均一性即指所获得的制备物只具有一 种完全相同的成分。蛋白质均一性常用的几种 鉴定方法:
1.溶解度法: 2.电泳均一性的测定法: 3.高速离心沉淀法:
生物大分子的纯化和分析方法

生物大分子的纯化和分析方法生物大分子是生命体系中最基本的组成部分,其中包括蛋白质、核酸、多糖等。
纯化和分析这些生物大分子是生物学研究的重要内容之一。
本文将介绍常用的生物大分子纯化和分析方法。
一、蛋白质的纯化方法1.盐析法盐析法是最常用的蛋白质分离方法之一。
通过加入盐类来改变水的离子强度以影响蛋白质的溶解度,从而将蛋白质与其他分子分离出来。
这种方法适用于分子量较大的蛋白质,对于小分子蛋白质效果不佳。
2.层析法层析法依据化学性质和大小形状的差异来分离蛋白质。
常用的层析法包括凝胶过滤层析、离子交换层析、亲和层析和逆相层析等。
3.电泳法电泳法是将蛋白质在电场中移动分离的方法,常用的电泳方式有SDS-PAGE和2D-PAGE。
二、核酸的纯化方法1.硅胶凝胶柱层析法硅胶凝胶柱层析法通过核酸与硅胶上化学键接触而吸附在柱胶上,不同大小的核酸在这些化学键上停留的时间不同,从而实现核酸的分离。
2.等电点电泳法等电点电泳法根据核酸的等电点,将核酸在特定电位下移动,分离出不同等电点的核酸,适用于分离等电点差异较大的核酸。
3.差示电泳法差示电泳法利用核酸在电场下移动速度的不同,将不同大小、结构和电性的核酸分离。
三、多糖的纯化方法1.醇沉法醇沉法是将多糖溶液中的酒精浓度逐渐提高,使得多糖从水溶解态转为沉淀态的方法。
2.凝胶过滤层析法凝胶过滤层析法利用多糖分子的差异性,在凝胶中筛选分子大小相似的多糖物质。
3.亲和层析法亲和层析法是一种采用选择性结合的谷蛋白或其他多糖结合剂来分离多糖的方法。
结论生物大分子的纯化和分析方法多种多样,常用的方法有盐析法、层析法、电泳法、醇沉法、差示电泳法等。
选择合适的方法能够有效地纯化和分离目标大分子,为生物学研究提供了重要的帮助。
生物大分子药物分离纯化效率

生物大分子药物分离纯化效率生物大分子药物作为现代医药领域的重要组成部分,在治疗多种复杂疾病中发挥着关键作用,如单克隆抗体、胰岛素、疫苗及酶类等。
这些药物的生产过程中,分离纯化步骤尤为关键,直接关系到药品的安全性、有效性及生产成本。
以下从六个方面探讨生物大分子药物分离纯化的效率提升策略。
一、早期工艺设计的优化生物大分子药物的分离纯化效率首先在工艺设计阶段就需精心布局。
通过计算机辅助设计(CAD)和模拟技术,预先评估不同分离策略对产物收率和纯度的影响,选择最合适的初始原料、细胞培养条件和收获方法。
例如,通过优化细胞裂解条件减少杂质蛋白的释放,或是利用特定的细胞破碎技术如高压均质、酶解法,减少对目标产物的损伤,为后续纯化步骤奠定良好基础。
二、亲和色谱的高效应用亲和色谱是生物大分子药物分离中最常用的高效方法之一,它依赖于目标分子与固定相上的特异性配体之间的高度选择性相互作用。
针对不同类型的生物大分子,开发具有高亲和力和特异性的配基,如利用抗体、受体或配体对目标分子进行特异性捕获,可显著提高纯化效率和速度,同时减少杂质残留。
此外,连续流亲和色谱技术的应用进一步缩短了处理时间,提高了生产效率。
三、多模式和混合模式色谱技术的发展随着对分离机制的深入理解,多模式和混合模式色谱技术应运而生,它们结合了不同类型的相互作用机理(如疏水、离子交换、尺寸排阻等),在单一柱上实现多级分离,大大简化了分离流程,降低了成本。
这种技术通过灵活调整操作参数,如pH值、盐浓度等,可在保持高纯度的同时,提高目标产物的回收率和处理量,为复杂生物大分子的分离提供了更为高效的选择。
四、膜分离技术的进步膜分离技术,尤其是纳米过滤和超滤技术,在生物大分子药物的浓缩和杂质去除中扮演着重要角色。
通过选择合适孔径的膜材料,可以有效截留目标分子而让小分子杂质透过,或反之。
膜技术的优势在于其连续操作、易于放大及操作简便,能显著提高处理速度和降低能耗。
近年来,智能膜、复合膜及动态膜表面修饰技术的进展,进一步提高了膜的分离效率和稳定性,降低了堵塞风险。
生物大分子的分离纯化技术(共34张PPT)

离心(3)
最大速度方法:
移动界面(Moving Boundary)超 速离心法
移动区带(Moving Zone)超速离心法
等密度方法(Isodensity):
样品的类型、采集与保存 酶样品的准备
亲和色谱
琼脂糖的溴化氰活化法
6-氨基己酸-琼脂糖和,1,6-己二胺-琼脂糖
层析柱短 配基-与大分子间以氢键离子键或疏水相互作用结合
透析 微过滤 盐析 冷冻干燥 离心
透析
透析膜:
材料: 火棉胶(Collodion), 玻璃纸(Cellophane), 纤维素 (Cellulose)
纤维透析管的处理: 1%乙酸水溶液 1h, 碱性EDTA (1% Na2CO3, 1 mM EDTA) 煮1h, 纯水清洗,保存.
透析液:
离心(2)
(Relative centrifugal force):
F=mω2r;
Fcf=(1.119×10-5)(rpm)2r
F摩擦=fv
F净=(Mp-Ms)ω2r-fv
沉淀速度与离心力的比率(单位离心场中颗粒的沉降速度 ), 蛋白质\核酸\病毒等的沉降系数介于1×10-13到200×10-13秒的
紫外-可见吸收法 荧光检测法
电化学检测法
质谱法
高效毛细管电泳
电泳淌度 电渗流
淌度和迁移时间 分离效率 分离度
高效毛细管电泳分离模式
毛细管区带电泳
以1×10-13s 为一个单位,称为斯韦德贝格单位(Svedberg),用S(大写)表示.
(Capillary Zone Electrophoresis, CZE) 纤维透析管的处理: 1%乙酸水溶液 1h, 碱性EDTA (1% Na2CO3, 1 mM EDTA) 煮1h, 纯水清洗,保存.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多粘菌素
凝胶过滤
CHT和CFT
层析介质及其技术
凝胶过滤层析 离子交换层析 羟基磷灰石层析 疏水层析 亲和层析
凝胶过滤层析
分离纯化原理
凝胶过滤层析
凝胶的选择
100 Bio-Gel P2 100 Bio-Gel P4 Bio-Gel P6 Bio-Gel P10 Bio-Gel P30 Bio-Gel P60 Bio-Gel P100 800 1,000 1,500 2,500 3,000 5,000 1,000 1,800 4,000 6,000,用于脱盐 20,000 40,000 60,000 100,000 10,000 100,000
pI
2
stability range 与阴离子交换 介质结合
10
pH
-
denaturation
离子交换层析
离子交换层析原理
Products:
UNOsphere™ Q & S, Macro-Prep® High Q & S, CM, DEAE, AG® resins
-
+ ++ + + + + ++ + + + + ++ + + +
凝胶过滤层析用于工艺的特点:
1. 层析柱规模很大,实验室1.5×50cm以上,2.5×100cm,工艺 10-20×200cm,从而设备成本很高;
2. 上样体积少,必须少于柱床体积的3%才能达到较好的分离效果, 如果大体积样品必须浓缩,从而造成样品的损失和增大工艺的 复杂性;
3. 工艺时间(生产周期)长,24小时或以上;
4. 分辨率低;
5. 不需摸索纯化条件,按照分子量区带大小洗脱。 因此,往往用分子筛分离时只适用于纯化的最后一步去热原,或离子
交换上样前的脱盐
离子交换层析
离子交换层析类型及其选择
anion cation
weak DEAE
Diethylaminoethyl
-O-CH2CH2-NH+ C2H5 C2H5
2006
Profinia
Model 2110
2700/2800 HPLC System
Maximizer
BioFrac
层析原理与操作
原理与操作
层析的起源和原理
• 起源----1906年,俄国植物学家Tsweet • 原理----利用物质分配系数不同达到分离 目的
0.100 0.090 0.080 0.070 0.060
High Pressure pumps and detectors(高压 泵和检测器)
1986
1988
BioLogic HR medium pressure system completes our chromatography line
2001
1999
EGP
New products, new systems, welcome to our presentation
strong
Q
Quaternary amine
-N+(CH3)3
weak
CM
Carboxymethyl
O -O-CH2-C-O-
strong
S
Sulfonate
-SO3-
离子交换层析
离子交换层析原理——蛋白质滴定曲线
+
蛋 白 质 净 电 荷 与阳离子交换 介质结合
stability range denaturation
Fractions 37 40 42 44 46 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 -0.25 00:00:00
59 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 -0.25 00:00:00 00:30:00 Hr:Min:Sec
Unosphere Q,S MacroPrep High Q,High S,DEAE,CM
凝胶过滤层析介质
Bio-Gel P系列 Bio-Beads S-X介质
亲和层析
Profinity IMAC金属螯合介质 Profinity Epoxide环氧亲和介质 Affi-Gel Protein A, Affi-Prep Protein A Affi-Gel蓝胶,DEAE蓝胶,CM蓝胶 Affi-Prep多粘菌素介质 Affi-Gel硼胶 Affi-Gel配体固定化活化介质
• 这些特性的区别使不同蛋白质分子在层析的固定相 和流动相的分配不同而达到分离
原理与操作
层析技术
• Ion Exchange (IEX)-离子交换
–电荷 – 可用于 层析的任何步骤,根据纯度要求,包括粗纯捕获、中间纯化和 最后的精细纯化
• Size Exclusion (SEC)-分子筛(或凝胶过滤) –分子大小 – 用于中间纯化、脱盐和缓冲液交换、最后精细纯化
-
+ ++ + + +
+ ++ + + +
-
+ ++ + + + + ++ + + + + ++ + + +
+ ++ + + + + ++ + + +
Equilibration
Sample Application
Sample Adsorption
Elution
Regeneration
离子交换层析
离子交换层析操作参数选择
Unosphere MacroPrep
Q,S,DEAE,CM
疏水层析 -CH3, t-Butyl 亲和层析 Protein A IDA-Ni
Profinity IMAC Profinity Epoxide Affi-Gel Protein A, Affi-Prep Protein A Affi-Gel, DEAE, CM Affi-Prep Polymixin Affi-Gel硼胶 Affi-Gel配体固定化活化 MacroPrep Methyl HIC MacroPrep t-Butyl HIC
羟基磷灰石介质(CHT) 氟代羟基磷灰石介质(CFT) 疏水层析介质
Macro-Prep Methyl HIC Macro-Prep t-Butyl HIC Bio-Beads SM-2吸附剂
层析柱
分析柱
离子交换分析柱:Uno Q, S Aminex分析柱——分析单糖、寡糖、有机酸、有机碱,以及 羟基磷灰石分析柱:Bio-Scale CHT-I 凝胶过滤分析柱:Bio-Sil, Bio-Silect HPLC 分析柱 反相层析分析柱:Hi-Pore RP304, Hi-Pore RP318 UNO Column
00:00:00 AU
01:00:00 Hr:Min:Sec
02:00:00 Volts
原理与操作
什么是生物层析
• 根据生物分子物理化学特性的不同而达到分离
– 极性:polarity (solubility, volatility) HIC, RP – 离子特性:ionic characteristics (charge) IEX – 大小与形状:size/mass (diffusion, sedimentation) GF – 结构特征与活性位点:shape (ligand binding, affinity) AC
–独特分离机理,包含离子交换和金属螯合等,可用于 层析的任何步骤,根据纯 度要求,包括粗纯捕获、中间纯化和最后的精细纯化
原理与操作
液相层析
• 最广泛的蛋白质分离纯化方法
– 条件温和 – 维持蛋白质空间结构与活性
• 基于蛋白质对固定相的不同保留达到分离 • 蛋白质溶于流动相中,经过装填固定相的柱子 分离
10 pH
-
蛋白质稳定性范围
离子交换层析
离子交换层析操作参数选择
缓冲液与pH的影响——阴离子交换
1 34 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 -0.25 00:00:00 00:30:00 Hr:Min:Sec Fractions 19 21 24 25 01:00:00 Fractions 57 9 12 1416 10.00 9.50
• Affinity (AC)-亲和
–生物相互作用 – 用于复杂样品的最早捕获或中间纯化 • Hydrophobic Interaction (HIC和RP) -疏水和反相 –疏水相互作用- 用于中间纯化,去除脂类和脂多糖
• Ceramic Hydroxyapatite (CHT) & Ceramic Fluoroapatite (CFT)-羟基磷灰石
1989
Econo System,
stormed the low pressure market (席卷 低压市场)
BioLogic BioLogic LP DuoFlow
1997
2000
Detector
1996 LP Data View
QuadTec
2007
1950
Profinity eXact
1994
Fractions 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 -0.050