小学数学:全部奥数公式汇总,经典奥数题(含解析)
小学奥数公式大全及其运用

小学奥数公式大全及其运用1 、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 、速度×时间=路程路程÷速度=时间路程÷时间=速度4 、单价×数量=总价总价÷单价=数量总价÷数量=单价5 、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 、加数+加数=和和-一个加数=另一个加数7 、被减数-减数=差被减数-差=减数差+减数=被减数8 、因数×因数=积积÷一个因数=另一个因数9 、被除数÷除数=商被除数÷商=除数商×除数=被除数1 、正方形C周长 S面积 a边长周长=边长× 4C=4a面积=边长×边长S=a×a2 、正方体V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=长+宽×2C=2a+b面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高1表面积长×宽+长×高+宽×高×2 S=2ab+ah+bh2体积=长×宽×高V=abh5 、三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 、平行四边形s面积 a底 h高面积=底×高s=ah7 、梯形s面积 a上底 b下底 h高面积=上底+下底×高÷2s=a+b× h÷28、圆形S面积 C周长∏ d=直径 r=半径1周长=直径×∏=2×∏×半径C=∏d=2∏r2面积=半径×半径×∏9 、圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长1侧面积=底面周长×高2表面积=侧面积+底面积×23体积=底面积×高4体积=侧面积÷2×半径10 、圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式和+差÷2=大数和-差÷2=小数和倍问题和÷倍数-1=小数小数×倍数=大数或者和-小数=大数差倍问题差÷倍数-1=小数小数×倍数=大数或小数+差=大数植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树;那么:株数=段数+1=全长÷株距-1全长=株距×株数-1株距=全长÷株数-1⑵如果在非封闭线路的一端要植树;另一端不要植树;那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树;那么:株数=段数-1=全长÷株距-1全长=株距×株数+1株距=全长÷株数+12 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题盈+亏÷两次分配量之差=参加分配的份数大盈-小盈÷两次分配量之差=参加分配的份数大亏-小亏÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=顺流速度+逆流速度÷2 水流速度=顺流速度-逆流速度÷2 浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=售出价÷成本-1×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%折扣<1 利息=本金×利率×时间税后利息=本金×利率×时间×1-20% 平方差公式奥数网每周专题训练四1、甲、乙两车分别从A、B两地出发相向而行..出发时;甲、乙的速度比是5:4;相遇后;甲的速度减少20%;乙的速度增加20%;这样;当甲到达B地时;乙离A地还有10千米..那么A、B两地相距___千米..解甲、乙原来的速度比是5:4;相遇后的速度比是5×1-20%:4×1+20%=4:4.8=5:6.. 相遇时;甲、分别走了全程的和 ..A、B两地相距10÷-×=450千米2、早晨8点多钟有两辆汽车先后离开化肥厂向幸福村开去..两辆车的速度都是每小时60千米..8点32分的时候;第一辆汽车离开化肥厂的距离是第二辆汽车的三倍..到了8 点39分的时候;第一辆汽车离开化肥厂的距离是第二辆汽车的2倍..那么;第一辆汽车是8点几分离开化肥厂的解39-32=7;这7分钟每辆行驶的距离恰好等于第二辆车在8点32分行过的距离的1=3-2倍;因此第一辆车在8点32分已行了7×3=21分;它是8点11分离开化肥厂的32-21=11注:本题结论与两车的速度大小无关;只要它们的速度相同;答案都是8点11分..3、甲、乙两车都从A地出发经过B地驶往C地;A、B两地的距离等于B、C两地的距离..乙车的速度是甲车速度的80%..已知乙车比甲车早出发11分钟;但在B地停留了7分钟;甲则不住地驶往C地..最后乙车比甲车迟4分钟到达C地..那么;乙车出发后____分钟时;甲车就超过乙车..解从A地到C地;不考虑中途停留;乙车比甲车多用时8分钟.最后甲比乙早到4分钟;所以甲车在中点B超过乙.甲车行全程所用时间是乙所用时间的80%;所以乙行全程用8÷1-80%=40分钟甲行全程用40-8=32分钟甲行到B用32÷2=16分钟即在乙出发后11+16=27分钟甲车超过乙车4、铁路旁的一条平等小路上;有一行人与一骑车人同时向南行进;行人速度为3.6千米/小时;骑车人速度为10.8千米/小时..这时;有一列火车从他们背后开过来;火车通过行人用22秒钟;通过骑车人用26秒钟..这列火车的车身总长是____①22米②56米③781米④286米⑤308米解设这列火车的速度为x米/秒;又知行人速度为1米/秒;骑车人速度为3米/秒..依题意;这列火车的车身长度是x-1×22=x-3×26 化简得4 x=56;即x=14米/秒所以火车的车身总长是14-1×22=286米;故选④..5、人乘竹排沿江顺水飘流而下;迎面遇到一艘逆流而上的快艇;他问快艇驾驶员:“你后面有轮船开过来吗”快艇驾驶员回答:“半小时前我超过一艘轮船..”竹排继续顺水飘流了1小时遇到了迎面开来的这艘轮船..那么快艇静水速度是轮船静水速度的___倍..解对于竹排来说;它自身不动;而快艇、轮船都以它们在静水中的速度向它驶来.. 快艇半小时走的路程;轮船用了1小时;因此快艇静水中的速度是轮船静水速度的2倍..6、某司机开车从A城到B城..如果按原定速度前进;可准时到达..当路程走了一半时;司机发现前一半路程中;实际平均速度只可达到原定速度的11/13 ..现在司机想准时到达B城;在后一半的行程中;实际平均速度与原速度的比是_______.. 解前一半路程用的时间是原定的 ;多用了-1= ..要起准时到达;后一半路程只能用原定时间的1-= ;所以后一半行程的速度是原定速度的 ;即11:97、甲、乙两辆汽车分别从A、B两站同时出发;相向而行;第一次相遇在距A站28千米处;相遇后两车继续行进;各自到达B、A两站后;立即沿原路返回;第二次相遇在距A站60千米处..A、B两站间的路程是___千米..解甲、乙第一次相遇在C处;此时;甲、乙所行路程之和等于A、B间的距离..甲、乙第二次相遇在D处;乙由C到A再沿反方向行到D;共走60+28=88千米;甲由C到B再沿反方向行到D..此时;甲、乙所行路程之和等于A、B间的距离的2倍;于是第二次之和等于A、B间的距离的2倍;甲、乙所走的路程也分别是第一次相遇时各自所行路程的2倍..这样;第一次相遇时乙所行路程BC=88÷2=44千米..从而AB=28+44=72千米8、一个圆的周长为1.26米;两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒;3秒;5秒……连续的奇数;就调头爬行.那么;它们相遇时已爬行的时间是多少秒半圆周长63厘米..如果蚂蚁不调头走;用63÷5.5+3.5=7秒即相遇由于13-11+9-7+5-3+1=7;所以经过13+11+9+7+5+3+1=49秒;两只蚂蚁相遇..。
(新)小学数学奥数34个解答公式+30类对应经典题型汇总附解析

34+30 1、和差倍问题:2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题:基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7、牛吃草问题:基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
奥数题公式——精选推荐

奥数题公式1.过桥问题路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速桥长=车速×通过时间—车长车长=车速×通过时间—桥长2.相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间3.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。
两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。
一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。
文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
在中国古代,文案亦作" 文按"。
公文案卷。
《北堂书钞》卷六八引《汉杂事》:"先是公府掾多不视事,但以文案为务。
小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
[荐]小学奥数核心公式及经典例题详解
![[荐]小学奥数核心公式及经典例题详解](https://img.taocdn.com/s3/m/14d1e50ce009581b6ad9eb78.png)
小学奥数核心公式及经典例题详解1.鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:①假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)②假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:①假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)②假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)例1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)140-80=60(只)60÷6=10(只)鸵鸟:70-10=60(只)。
例3:李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。
鸡和兔一共有多少只?解:根据题意可得:前后鸡的总只数=前后兔的总只数。
把1只鸡和1只兔子看做一组,共有6条腿。
前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。
例4:一次数学考试,只有20道题。
做对一题加5分,做错一题倒扣3分(不做算错)。
(完整版)小学奥数数学公式集汇总

小学奥数知识总结手册和差倍和差和倍差倍已知条件 几个数的和与差几个数的和与倍数几个数的差与倍数公式合用范已知两个数的和,差,倍数关系①(和-差 ) ÷2= 小数小数+差 = 大数 和÷ (倍数+ 1)= 小数 差÷ (倍数 - 1)= 小数和- 小数 = 大数公式小数×倍数 =大数 小数×倍数 =大数 ②(和+差 ) ÷2= 大数和-小数 =大数小数+差 =大数大数-差 = 小数和- 大数 = 小数关求出同一条件下的和与差和与倍数差与倍数年 的三个基本特色:①两个人的年 差是不 的;②两个人的年 是同 增添或许同 减少的; ③两个人的年 的倍数是 生 化的; 一 的基本特色:中有一个不 的量,一般是那个“ 一量” , 目一般用“照 的速度”⋯⋯等 来表示。
关 :依据 目中的条件确立并求出 一量; 植在直 或许不封 在直 或许不封在直 或许不封的曲 上植 封 曲 基本 型 的曲 上植 ,的曲 上植 ,只有两头都植,两头都不植上植一端植棵数=段数- 1棵数=段数棵数=段数+ 1基本公式棵距×段数=棵距×段数 =棵距×段数 =关 确立所属 型,进而确立棵数与段数的关系兔同基本观点: 兔同 又称 置 、假 , 就是把假 的那部分置 出来;基本思路: ①假 ,即假 某种 象存在(甲和乙一 或许乙和甲一 ) : ②假 后, 生了和 目条件不一样的差,找出 个差是多少; ③每个事物造成的差是固定的,进而找出出 个差的原由; ④再依据 两个差作适合的 整,消去出 的差。
基本公式:①把所有 假 成兔子: 数=(兔脚数× 数- 脚数)÷(兔脚数- 脚数) ②把所有兔子假 成 :兔数=( 脚数一 脚数× 数)÷(兔脚数一 脚数)关 :找出 量的差与 位量的差。
基本观点:必定量的对象,依照某种标准分组,产生一种结果:依照另一种标准分组,又产生一种结果,因为分组的标准不一样,造成结果的差别,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分派方案进行比较,剖析因为标准的差别造成结果的变化,依据这个关系求出参加分派的总份数,而后依据题意求出对象的总量.基此题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不够数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不够数一较小不够数)÷两次每份数的差基本特色:对象总量和总的组数是不变的。
小学奥数解题方法大全100道及答案(完整版)

小学奥数解题方法大全100道及答案(完整版)题目1:计算1 + 2 + 3 + 4 + …+ 100 的和。
解题方法:使用等差数列求和公式,首项为1,末项为100,公差为1,项数为100。
求和公式为:(首项+ 末项)×项数÷2 。
答案:(1 + 100) ×100 ÷2 = 5050题目2:鸡兔同笼,共有30 个头,88 只脚,求鸡兔各有多少只?解题方法:假设全是鸡,共有脚30×2 = 60 只,比实际少88 - 60 = 28 只。
因为每把一只兔当成鸡,就少算4 - 2 = 2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
答案:鸡16 只,兔14 只。
题目3:一条路长100 米,从头到尾每隔10 米栽1 棵梧桐树,共栽多少棵树?解题方法:因为两端都栽树,所以棵数= 间隔数+ 1 ,间隔数为100÷10 = 10 ,则棵数为10 + 1 = 11 棵。
答案:11 棵。
题目4:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?解题方法:参加数学或航模小组的人数为15 + 18 - 10 = 23 人,所以两个小组都不参加的人数为40 - 23 = 17 人。
答案:17 人。
题目5:甲乙两数的和是32,甲数的3 倍与乙数的5 倍的和是122,求甲、乙二数各是多少?解题方法:设甲数为x,乙数为y,则x + y = 32 ,3x + 5y = 122 。
将第一个式子乘以3 得到3x + 3y = 96 ,用第二个式子减去这个式子得到2y = 26 ,y = 13 ,则x = 19 。
答案:甲数19,乙数13 。
题目6:一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?解题方法:火车40 秒走的路程= 桥长+ 车长,30 秒走的路程= 山洞长+ 车长。
小学数学:全部奥数公式汇总,经典奥数题(含解析)

小学数学:全部奥数公式汇总,经典奥数题(含解析)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:5×3+45=15+45=60(千克)答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学:全部奥数公式汇总,经典奥数题(含解析)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:5×3+45=15+45=60(千克)答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)解题思路:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。
根据两车的速度和行驶的时间可求两车行驶的总路程。
答题:解:下午2点是14时。
往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。
6. 学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?解题思路:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。
又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。
答题:解:第一组追赶第二组的路程:3.5-(4.5-?3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。
7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?解题思路:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。
若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
答题:解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨。
8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?解题思路:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。
由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
答题:解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米。
9. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?解题思路:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
答题:解:每把椅子的价钱:(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)每张桌子的价钱:25+30=55(元)答:每张桌子55元,每把椅子25元。
10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?解题思路:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
答题:解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)答:甲乙两地相距560千米。
11. 某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?解题思路:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。
根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
答题:解:(20×250-4400)÷(10+20)=600÷120=5(箱)答:损坏了5箱。
12. 五年级一中队和二中队要到距学校20千米的地方去春游。
第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。
第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?解题思路:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
答题:解:4×2÷(12-4)=4×2÷8 =1(时)答:第二中队1小时能追上第一中队。
13. 某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。
这堆煤有多少千克?解题思路:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
答题:解:原计划烧煤天数:(1500+1000)÷(1500-1000)=2500÷500=5(天)这堆煤的重量:1500×(5-1)=1500×4=6000(千克)答:这堆煤有6000千克。
(马上点标题下“家长会”关注可获得更多有态度的智慧文章,每天更新哟!)14. 妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。
结果小红却买了8支铅笔和5本练习本,找回0.45元。
求一支铅笔多少元?解题思路:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。
由此可求练习本的单价比铅笔贵的钱数。
从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。
进而可求出每支铅笔的价钱。
答题:解:每本练习本比每支铅笔贵的钱数:0.45÷(8-5)=0.45÷3=0.15(元)8个练习本比8支铅笔贵的钱数:0.15×8=1.2(元)每支铅笔的价钱:(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)答:每支铅笔0.2元。
15. 根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
解题思路:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
答题:解:卡车的数量:360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)客车的数量:360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)答:可用卡车12辆,客车9辆。
16. 某筑路队承担了修一条公路的任务。
原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。
这条公路全长多少米?解题思路:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。
根据每天多修80米可求已修的天数,进而求公路的全长。
答题:解:已修的天数:(720×3-1200)÷80=960÷80=12(天)公路全长:(720+80)×12+1200=800×12+1200=9600+1200=10800(米)答:这条公路全长10800米。
17. 某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。
如果3个纸箱加2个木箱装的鞋同样多。
每个纸箱和每个木箱各装鞋多少双?解题思路:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
答题:解:12个纸箱相当木箱的个数:2×(12÷3)=2×4=8(个)一个木箱装鞋的双数:1800÷(8+4)=18000÷12=150(双)一个纸箱装鞋的双数:150×2÷3=100(双)答:每个纸箱可装鞋100双,每个木箱可装鞋150双18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。