旋转体的表面积与体积
空间几何旋转体的表面积与体积

空间几何旋转体的表面积与体积空间几何常常涉及到旋转体的表面积与体积的计算,这在数学中具有重要的理论和应用价值。
本文将介绍旋转体的概念,并探讨如何计算旋转体的表面积与体积。
一、旋转体的概念旋转体是指由平面图形绕某一轴旋转而生成的立体图形。
在数学中,旋转体通常围绕x轴、y轴或z轴旋转。
根据旋转轴的不同,旋转体可以分为横截面旋转体和轴截面旋转体。
横截面旋转体是指当一个平面图形沿与它平行的轴旋转一周,形成的立体图形。
常见的横截面旋转体有圆柱体、圆锥体和球体。
其中圆柱体是由一个矩形或圆形横截面图形沿着与横截面平行的轴旋转一周形成,圆锥体是由一个三角形横截面图形沿着与横截面平行的轴旋转一周形成,而球体是由一个圆形横截面图形沿着与横截面平行的轴旋转一周形成。
轴截面旋转体是指当一个平面图形沿与它的一个边垂直的轴旋转一周,形成的立体图形。
常见的轴截面旋转体有圆盘和球壳。
圆盘是指由一个圆形边界沿着与边界垂直的轴旋转一周形成,球壳是由一个圆形边界沿着与边界垂直的轴旋转一周形成。
二、计算旋转体的表面积计算旋转体的表面积需要根据旋转体的类型进行计算,下面将分别介绍横截面旋转体和轴截面旋转体的表面积计算方法。
1. 横截面旋转体的表面积计算对于圆柱体的表面积计算,可以利用公式S = 2πrh + 2πr²,其中r是圆柱体的底面半径,h是圆柱体的高。
对于圆锥体的表面积计算,可以利用公式S = πrl + πr²,其中r是圆锥体的底面半径,l是圆锥体的斜高。
对于球体的表面积计算,可以利用公式S = 4πr²,其中r是球体的半径。
2. 轴截面旋转体的表面积计算对于圆盘的表面积计算,可以利用公式S = πr²,其中r是圆盘的半径。
对于球壳的表面积计算,可以利用公式S = 2πrh,其中r是球壳的半径,h是球壳的高。
三、计算旋转体的体积计算旋转体的体积同样需要根据旋转体的性质进行计算,下面将分别介绍横截面旋转体和轴截面旋转体的体积计算方法。
利用形心坐标计算旋转体的体积和表面积

2 形心的坐标为: x c =
0 x 2dx = 4 / 5 = 3 。
A
4/3 5
故所求体积:V = 2π 3 ⋅ 4 = 8π 53 5
5. 结论
在平面图形形心已知和平面曲线形心已知的情况下,用古鲁金定理求旋转体的体积和 表面积,运算非常简单。因此,第二古鲁金定理适于求圆、半圆、三角形、矩形、梯形绕其 平面内不相交的直线旋转所得立体之体积;第一古鲁金定理适于求圆、半圆、三角形、梯形、 矩形、直线段绕其平面内某直线旋转所得立体之表面积。
R
⋅2R
+
2π
π
− π
2
R
⋅π
R
= 2π 2 R 2
例 7:求圆锥的侧面积。已知圆锥的高为 H, 底圆半径为 R。
解:示意图如图 11,圆锥可以看成直线绕 y 轴旋转而成。直线段的长为
形心坐标为 x c
=
1 2
R 。故所求侧面积为:
A = 2π R ⋅ R 2 + H 2 = π R R 2 + H 2 2
1. 重心与形心
在图 1 中,设总重力作用在 C( x c , y c ),它对原点的力矩必须等于诸分力对原点的力
矩之和,即:
∑ ∑ P xc =
pi xi =
ρi gxi∆si
∑ ∫∫ ∫∫ ∴ x c =
pixi = P
xdp
S
=
dp
S
xρ gds
S
ρ gds
S
这就是重心 x 的坐标公式[1]。
A
=
2π
xc
⋅π
R
=
4π
R2
,所以: xc
=
2R π
简单旋转体的表面积和体积关系教学案

简单旋转体的表面积和体积关系教学案一、引言旋转体是数学中的一种非常重要的几何体,在现实生活中也有很多应用。
比如我们日常生活中听到的“圆柱形”、“圆锥形”、“球形”等,这些都属于旋转体。
旋转体的表面积和体积关系是数学中一个基础又实用的概念,而且对于那些想深入研究数学的人来说,这是必学的一部分。
二、旋转体的概念旋转体是由一个基本形状,绕某一条轴线旋转而生成的几何体,比如圆形绕着轴线旋转,就可以生成一个圆柱形;三角形绕着轴线旋转,可以生成一个圆锥形。
旋转体有许多种类,比如圆柱体、圆锥体、球体,甚至我们平时看到的各种像眼镜、奖杯、水瓶等等,都可以看成是由某一基本形状旋转而成的。
三、旋转体的表面积和体积旋转体的表面积和体积是我们最为关心的问题,因为在很多实际问题中,我们需要通过表面积和体积来计算物体的质量、重量、密度等等一系列问题。
1、旋转体的表面积旋转体的表面积就是它的侧面积与底面积的和。
比如一个圆柱体,它的表面积等于其侧面积与两个底面积之和,即:S=2πrh+2πr²其中r为圆柱体的半径,h为圆柱体的高度。
对于其他类型的旋转体,我们也可以采用类似的方法来计算它的表面积。
2、旋转体的体积旋转体的体积就是其所包含的空间体积。
对于圆柱体、圆锥体、球体等等,它们的体积计算公式分别为:圆柱体的体积:V=πr²h圆锥体的体积:V=13πr²h球体的体积:V=43πr³其中r为基本形状的半径,h为由基本形状绕轴线旋转得到的旋转体的高度。
四、旋转体的表面积和体积关系一个简单的旋转体,它的表面积和体积之间并没有什么直接关系。
但是在实际应用中,我们通常会遇到一些需要计算其表面积和体积之比的问题。
比如我们需要制作一个密度为1克/立方厘米的铁球体,在保证铁球体积不变的条件下,如果我们要增加铁球体的质量,我们应该怎样做?答案是,这时我们需要将铁球表面加厚,因为铁球的密度不变,增加表面积就等于增加了总质量。
简单几何体的面积与体积

例2.如图所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=3.(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;(2)求这个平行六面体的体积.题型2:锥体的体积和表面积例3.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60 ,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60 ,求四棱锥P-ABCD的体积.例4. 在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=55.(1)证明:SC⊥BC;(2)求侧面SBC与底面ABC所成二面角的大小;(3)求三棱锥的体积V S-AB C.例5.ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GB垂直于正方形ABCD所在的平面,且GC=2,求点B到平面EFC的距离?例6.如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有()A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定题型3:棱台的体积、面积及其综合问题例7. 在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等, 侧棱延长后相交于E ,F 两点,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h .(1)求侧面ABB 1A 1与底面ABCD 所成二面角的大小;(2)证明:EF ∥面ABCD ;(3)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是 V =6h(S 上底面+4S 中截面+S 下底面),试判断V 估与V 的大小关系,并加以证明.题型4:球的体积、表面积例8.已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积.例9. 如图,球面上有四个点P 、A 、B 、C ,如果PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a ,求这个球的表面积.DBAOCEF例10. 如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,P 在球面上,如果 163P ABCD V -=,(1)求球O 的表面积;(2)半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方 体棱长为6,求球的表面积和体积.题型5:球的经纬度、球面距离问题例11. 我国首都靠近北纬40纬线,(1)求北纬40纬线的长度等于多少km ?(地球半径大约为6370km ) (2)在半径为13cm 的球面上有,,A B C 三点,12AB BC AC cm ===,求球心到经过这三点的截面的距离. 随堂练习 (一)选择题1. 如果棱台的两底面积分别是S 、S ′,中截面的面积是S 0,那么( ) A .S S S '+=02B .S S S '=0C .2S 0=S +S ′D .S 02=2S ′S2. 已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为( ) A .323B .283C .243D .2033. 一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .64. 将一个长方体沿从同一个顶点出发的三条棱截去一个棱锥,棱锥的体积与剩下的几何体的体积之比为( ) A .1:2 B .1:3 C .1:4 D .1:55. 如图,在多面体ABCDEF 中,已知四边形ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为( ) A .23B .33 C .43D .326. 已知几何体的三视图如图所示,它的表面积是( )A.42+ B.22+C.32+D.6(二)填空题7. 如图,三棱柱111CBAABC-中,若FE,分别为ACAB,的中点,平面11CEB将三棱柱分成体积为21,VV的两部分,那么21VV:= .8.已知三棱柱111CBAABC-的体积为V,E是棱CC1上一点,三棱锥E—ABC的体积是V1,则三棱锥E—A1B1C1 的体积是________.9. 已知某个几何体的三视图如,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是3cm.(三)解答题10. 如图在ABC∆中,若AC=3,BC=4,AB=5,以AB所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积和体积.11.表面积为324π的球,其内接正四棱柱的高是14,(1)求这个正四棱柱的表面积.(2)正四面体ABCD的棱长为a,球O是内切球,球O1是与正四面体的三个面和球O都相切的一个小球,求球O1的体积.12.在北纬45圈上有,A B两点,设该纬度圈上,A B两点的劣弧长为24Rπ,求,A B两点间的球面距离.家庭作业(一)选择题1. 一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A.ππ221+B.ππ441+C.ππ21+D.ππ241+2.如图,啤酒瓶的高为h,瓶内酒面高度为a,若将瓶盖盖好倒置,酒面高度为a′(a′+b=h),则酒瓶容积与瓶内酒的体积之比为()A. 1+ba且a+b>h B. 1+ba且a+b<hC. 1+ab且a+b>h D. 1+ab且a+b<h3. 设计一个杯子,其三视图如图所示,现在向杯中匀速注水,杯中水面的高度h随时间t变化的图象是()4. 在△ABC中,AB=2,BC=1.5,∠ABC=120°(如图所示),若将△ABC绕直线BC旋转一周,则所形成的旋转体的体积是()A.π29B.π27C.π25D.π235. 若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是()A.π3 B.π33C.π6 D.π9(二)填空题6. 如图,一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则rR= .7.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.8. 已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V=________. (三)解答题9. 在右图所示的几何体中,平面PAC⊥平面ABC,PM∥BC,PA=PC,AC=1,BC=2PM=2,AB=5,若该几何体的侧视图的面积为3.4(1)求证:PA⊥BC;(2)画出该几何体的正视图,并求其面积S;(3)求出多面体A—BMPC的体积V.10. 如图,AA1是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任意一点,A1A=AB=2. (1)求证:BC⊥平面A1AC;(2)求三棱锥A1-ABC的体积的最大值.参考答案 例题讲解例1.解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy ())2(1由(2)的平方得:x2+y2+z2+2xy+2yz+2xz=36(3) 由(3)-(1)得x2+y2+z2=16,即l2=16,所以l=4(cm).点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察.我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系. 例2.解析:(1)如图,连结A 1O ,则A 1O ⊥底面ABCD ,作OM ⊥AB 交AB 于M , 作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N.由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD.∵∠A 1AM=∠A 1AN ,∴Rt △A 1NA ≌Rt △A 1MA ,∴A 1M=A 1N ,从而OM=ON. ∴点O 在∠BAD 的平分线上. (2)∵AM=AA 1cos3π=3×21=23,∴AO=4cosπAM =223. 又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29, ∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=. 例3. 解:(1)在四棱锥P-ABCD 中,由PO ⊥ABCD ,得∠PBO 是PB 与平面ABCD 所成的角, ∠PBO=60°.在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO ,于是PO=BOtan60°=3,而底面菱形的面积为23. ∴四棱锥P -ABCD 的体积V=31×23×3=2. 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积.在能力方面主要考查空间想象能力. 例4. 解:(1)证明:∵∠SAB =∠SAC =90°,∴SA ⊥AB ,SA ⊥A C.又AB ∩AC =A ,∴SA ⊥平面AB C.由于∠ACB =90°,即BC ⊥AC ,由三垂线定理,得SC ⊥BC .(2)解:∵BC ⊥AC ,SC ⊥BC .∴∠SCA 是侧面SCB 与底面ABC 所成二面角的平面角.在Rt △SCB 中,BC =5,SB =55,得SC =22BC SB -=10.在Rt △SAC 中AC =5,SC =10,cos SCA =21105==SC AC , ∴∠SCA =60°,即侧面SBC 与底面ABC 所成的二面角的大小为60°. (3)解:在Rt △SAC 中,∵SA =755102222=-=-AC SC , S △ABC =21·AC ·BC =21×5×5=225,∴V S -ABC =31·S △ACB ·SA =631257522531=⨯⨯. 点评:本题较全面地考查了空间点、线、面的位置关系.要求对图形必须具备一定的洞察力,并进行一定的逻辑推理. 例5. 解:如图,取EF 的中点O ,连接GB 、GO 、CD 、FB 构造三棱锥B -EFG.设点B 到平面EFG 的距离为h ,BD =42,EF =22, CO =344232×=. G O C O G C =+=+=+=222232218422(). 而GC ⊥平面ABCD ,且GC =2. 由V V B E F G G E F B--=,得16EF GO h ··=13S E F B △·GC点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解.构造以点B 为顶点,△EFG 为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算. 例6. 解:连OA 、OB 、OC 、OD ,则V A -BEFD =V O -ABD +V O -ABE +V O -BEFDV A -EFC =V O -ADC +V O -AEC +V O -EFC 又V A -BEFD =V A -EFC , 而每个三棱锥的高都是原四面体的内切球的半径,故S ABD +S ABE +S BEFD =S ADC +S AEC +S EFC 又面AEF 公共,故选C点评:该题通过复合平面图形的分割过程,增加了题目处理的难度,求解棱锥的体积、表面积首先要转化好平面图形与空间几何体之间元素间的对应关系.例7.(1)解:过B 1C 1作底面ABCD 的垂直平面,交底面于PQ ,过B 1作B 1G ⊥PQ ,垂足为G .如图所示:∵平面ABCD ∥平面A 1B 1C 1D 1,∠A 1B 1C 1=90°, ∴AB ⊥PQ ,AB ⊥B 1P .∴∠B 1PG 为所求二面角的平面角.过C 1作C 1H ⊥PQ ,垂足为H .由于相对侧面与底面所成二面角的大小相等,故四边形B 1PQC 1为等腰梯形. ∴PG =21(b -d ),又B 1G =h ,∴tan B 1PG =d b h -2(b >d ),∴∠B 1PG =arctand b h -2,即所求二面角的大小为arctan db h-2. (2)证明:∵AB ,CD 是矩形ABCD 的一组对边,有AB ∥CD ,又CD 是面ABCD 与面CDEF 的交线,∴AB ∥面CDEF . ∵EF 是面ABFE 与面CDEF 的交线,∴AB ∥EF .∵AB 是平面ABCD 内的一条直线,EF 在平面ABCD 外,∴EF ∥面ABC D. (3)证明:∵a >c ,b >d ,∴V -V 估=h d b c a d b c a ab cd h 22)224(6+⋅+-+⋅+⋅++ =12h [2cd +2ab +2(a +c )(b +d )-3(a +c )(b +d )]=12h (a -c )(b -d )>0. ∴V 估<V .点评:该题背景较新颖,把求二面角的大小与证明线、面平行这一常规运算置于非规则几何体(拟柱体)中,能考查考生的应变能力和适应能力,而第三步研究拟柱体的近似计算公式与可精确计算体积的辛普生公式之间计算误差的问题,是极具实际意义的问题.考查了考生继续学习的潜能. 例8. 解:设截面圆心为O ',连结O A ',设球半径为R ,则23232323O A '=⨯⨯=, 在Rt O OA '∆中,222OA O A O O ''=+,∴222231()34R R =+, ∴43R =,∴26449S R ππ==. 点评: 正确应用球的表面积公式,建立平面圆与球的半径之间的关系.例9. 解析:如图,设过A 、B 、C 三点的球的截面圆半径为r ,圆心为O ′,球心到该圆面的距离为d.在三棱锥P —ABC 中,∵PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a , ∴AB=BC=CA=2a ,且P 在△ABC 内的射影即是△ABC 的中心O ′. 由正弦定理,得︒60sin 2a =2r ,∴r=36a .又根据球的截面的性质,有OO ′⊥平面ABC ,而PO ′⊥平面ABC ,∴P 、O 、O ′共线,球的半径R=22d r +.又PO ′=22r PA -=2232a a -=33a , ∴OO ′=R -33a =d=22r R -,(R -33a )2=R 2 – (36a )2,解得R=23a , ∴S 球=4πR 2=3πa 2.点评:本题也可用补形法求解.将P —ABC 补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=23a . 例10. 解:(1)如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,PO ⊥底面ABCD ,PO=R ,22ABCD S R =,163P ABCD V -=, 所以2116233R R ⋅⋅=,R=2, 球O 的表面积是16π.(2)作轴截面如图所示,6CC '=,2623AC =⋅=,设球半径为R ,则222R OC CC '=+22(6)(3)9=+=∴3R =,∴2436S R ππ==球,34363V R ππ==球. 点评:本题重点考查球截面的性质以及球面积公式,解题的关键是将多面体的几何要素转化成球的几何要素. 例11. 解:(1)如图,A 是北纬40上一点,AK 是它的半径,∴OK AK ⊥, 设C 是北纬40的纬线长,∵40AOB OAK ∠=∠=,∴22cos 2cos 40C AK OA OAK OA πππ=⋅=⋅⋅∠=⋅⋅42 3.1463700.7660 3.06610()km ≈⨯⨯⨯≈⨯所以北纬40纬线长约等于43.06610km ⨯.(2)解:设经过,,A B C 三点的截面为⊙O ',设球心为O ,连结OO ',则OO '⊥平面ABC ,∵32124323AO '=⨯⨯=,∴2211OO OA OA ''=-=, 所以,球心到截面距离为11cm .随堂练习(一)选择题1. 解析:设该棱台为正棱台来解即可,答案为A ;2. 解析:正六棱台上下底面面积分别为:S 上=6·43·22=63,S 下=6·43·42=243, V 台=328)(31=+⋅+下下上上S S S S h ,答案B.3. 解析:设长方体共一顶点的三边长分别为a =1,b =2,c =3,则对角线l 的长为l =6222=++c b a ;答案D.4. 解析:设长方体同一顶点引出的三条棱长分别是a ,b ,c ,则棱锥的体积V1=13×12abc=16abc.长方体的体积V=abc ,剩下的几何体的体积为V2=abc-1566abc =abc ,所以V1:V2=1:5,故选D. 5. 解析:将几何体割成一个三棱柱和两个相同的三棱锥.在梯形ABFE 中,易知BN=32, ∴S △BCN=12BC·HN=12×1×22.24=故该几何体体积为24×1+2×1212,3423=⨯⨯选A. 6. 解析:该几何体为直三棱柱,其表面积为2×12×1×1+2×12+2×1=3+2,选C.(二)填空题7. 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh.∵E 、F 分别为AB 、AC 的中点,∴S △AEF =41S , V 1=31h(S+41S+41⋅S )=127Sh ,V 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5.点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系.最后用统一的量建立比值得到结论即可.8. 解析:如图,过E 作AC 、BC 的平行线EF 、EG ,分别与AA1、BB1交于F 、G ,连接FG.∵三棱锥E —ABC 的体积是V1,∴三棱柱EFG —CAB 的体积是3V1,∴三棱柱EFG —C1A1B1的体积是V-3V1,∵VE —A1B1C1=13VEFG —C1A1B1, ∴VE —A1B1C1=13 (V-3V1)=3V -V1, 答案:3V -V1 9.解析:该几何体由半个圆柱和一个正方体构成的组合体.其体积为23+12×π×2=(8+π) cm3,答案:8+π (三)解答题 10. 解:如图所示,所得旋转体是两个底面重合的圆锥,高的和为AB=5.底面半径等于CO=125AC BC AB =,所以所得旋转体的表面积 S=π·OC·(AC+BC)=π·125·(3+4)=845π; 其体积V=13·π·OC2·AO+13·π·OC2·BO=13·π·OC2·AB=485π. 评析:求一些组合体的表面积和体积时,首先要弄清楚它由哪些基本几何体构成,再通过轴截面分析和解决问题.11. 解:(1)设球半径为R ,正四棱柱底面边长为a ,则作轴截面如图,14AA '=,2AC a =, 又∵24324R ππ=,∴9R =,∴2282AC AC CC ''=-=, ∴8a =,∴6423214576S =⨯+⨯=表(2)如图,设球O 半径为R ,球O 1的半径为r ,E 为CD 中点,球O 与平面ACD 、BCD切于点F 、G ,球O 1与平面ACD 切于点H .由题设a GE AE AG 3622=-= ∵ △AOF ∽△AEG∴ a R a a R 233663-=,得a R 126= ∵ △AO 1H ∽△AOF∴ R r R a r R a =---36236,得a r 246= ∴ 3331728624634341a a r V O =⎪⎪⎭⎫ ⎝⎛==ππ球 点评:正四面体的内切球与各面的切点是面的中心,球心到各面的距离相等.12. 解:设北纬45圈的半径为r ,则24r R =,设O '为北纬45圈的圆心,α=∠B AO ', ∴24r R απ=,∴2224R R απ=, ∴2πα=,∴2AB r R ==,∴ABC ∆中,3AOB π∠=,所以,,A B 两点的球面距离等于3R π.点评:要求两点的球面距离,必须先求出两点的直线距离,再求出这两点的球心角,进而求出这两点的球面距离. 家庭作业(一)选择题1. 解析:设圆柱的底面半径为r ,高为h ,则由题设知h =2πr .∴S 全=2πr 2+(2πr )2=2πr 2(1+2π).S 侧=h 2=4π2r 2,∴ππ221+=侧全S S .答案为A. 点评:本题考查圆柱的侧面展开图、侧面积和全面积等知识. 2. 解析:设酒瓶下底面面积为S ,则酒的体积为Sa ,酒瓶的体积为Sa+Sb ,故体积之比为1+,b a 显然有a<a′,又a′+b=h ,故a+b<h.选B.3. 解析:由三视图可知杯子是圆柱形的,由于圆柱形的杯子上下大小相同,所以当向杯中匀速注水时,其高度随时 间的变化是相同的,反映在图象上,选项B 符合题意.故选B.4. 解析:如图所示,该旋转体的体积为圆锥C —ADE 与圆锥B —ADE 体积之差,又∵求得AB =1.∴23133125331πππ=⋅⋅⋅-⋅⋅⋅=-=--ADE B ADE C V V V ,答案D. 5. 解析:∵S =21ab sin θ,∴21a 2sin60°=3,∴a 2=4,a =2,a =2r , ∴r =1,S 全=2πr +πr 2=2π+π=3π,答案A.(二)填空题6. 解析:水面高度升高r ,则圆柱体积增加πR 2·r .恰好是半径为r 的实心铁球的体积,因此有34πr 3=πR 2r . 故 332=r R .答案为332. 点评:本题主要考查旋转体的基础知识以及计算能力和分析、解决问题的能力.7. 解析:由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P —ABCD(如图),其中PD ⊥平面ABCD , 因此该四棱锥的体积V=13×6×6×6=72,而棱长为6的正方体的体积V=6×6×6=216,故需要216372=个这样 的几何体,才能拼成一个棱长为6的正方体. 答案:3评析:几何体的展开与折叠问题是近几年高考的一个热点内容,通过折叠与展开问题,可以很好地考查学生的空间想象能力以及推理能力.解决折叠与展开问题时,关键是弄清楚折叠与展开前后,位置关系和数量关系变化的情况,画出准确的图形解决问题.8. 解析:该几何体形状如图所示,是一个正方体与正四棱锥的组合体,正方体的体积是1,正四棱锥的体积是2,6故该凸多面体的体积为216+.点评:通过识图、想图、画图的角度考查了空间想象能力.而对空间图形的处理能力是空间想象力深化的标志,是高考从深层上考查空间想象能力的主要方向.(三)解答题9.解:(1)证明:AC=1,BC=2,AB=5,∴AC2+BC2=AB2.∴AC⊥BC.又∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,∴BC⊥平面PAC.又∵PA⊂平面PAC,∴PA⊥BC.(2)设几何体的正视图如图所示:∵PA=PC,取AC的中点D,连接PD,则PD⊥AC.又平面PAC⊥平面ABC,∴PD⊥平面ABC.∴几何体侧视图的面积=12AC·PD=12×1×PD=34.∴PD=32.易知△PAC是边长为1的正三角形.∴正视图的面积是上、下底边长分别为1和2,PD的长为高的直角梯形的面积.∴S=12333.224=⨯+(3)取PC的中点N,连接AN,由△PAC是边长为1的正三角形,可知AN⊥PC,由(1)知BC⊥平面PAC,∴AN⊥BC,∴AN⊥平面PCBM.∴AN是四棱锥A—PCBM的高,且AN=3.2由BC⊥平面PAC,可知BC⊥PC.由PM∥BC,可知四边形PCBM是上、下底边长分别为1和2,PC的长1为高的直角梯形.其面积S′=32,∴V=13S′·AN=3.410. 解:(1)证明:∵C是底面圆周上异于A、B的任意一点,且AB是圆柱底面圆的直径,∴BC⊥AC.∵AA 1⊥平面ABC ,BC平面ABC ,∴AA 1⊥BC . ∵AA 1∩AC =A ,AA 1平面AA 1C ,AC 平面AA 1C ,∴BC ⊥平面AA 1C .(2)设AC =x ,在Rt △ABC 中,BC =AB 2-AC 2=4-x 2(0<x <2),故VA 1-ABC =13S △ABC ·AA 1=13·12·AC ·BC ·AA 1=13x 4-x 2(0<x <2), 即VA 1-ABC =13x 4-x 2=13x 2(4-x 2)=13-(x 2-2)2+4. ∵0<x <2,0<x 2<4,∴当x 2=2,即x =2时,三棱锥A 1-ABC 的体积最大,其最大值为23.。
柱体、锥体、台体的表面积与体积(附答案)

柱体、锥体、台体的表面积与体积[学习目标] 1.通过对柱、锥、台体的研究,掌握柱、锥、台体的表面积的求法.2.了解柱、锥、台体的表面积和体积计算公式;能运用柱、锥、台的表面积和体积公式进行计算和解决有关实际问题.知识点一 多面体的表面积多面体的表面积就是各个面的面积的和,也就是展开图的面积. 知识点二 旋转体的表面积思考 求圆柱、圆锥、圆台的表面积时,要求的关键量是什么?答 求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径. 知识点三 体积公式1.柱体:柱体的底面面积为S ,高为h ,则V =Sh .2.锥体:锥体的底面面积为S ,高为h ,则V =13Sh .3.台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V 3思考 简单组合体分割成几个几何体,其表面积如何变化?其体积呢? 答 表面积变大了,体积不变.题型一 空间几何体的表面积例1 圆台的母线长为8 cm ,母线与底面成60°角,轴截面两条对角线互相垂直,求圆台的表面积.解 如图所示的是圆台的轴截面ABB 1A 1,其中∠A 1AB =60°,过A 1作A 1H ⊥AB 于H ,则O 1O =A 1H =A 1A ·sin 60°=43(cm), AH =A 1A ·cos 60°=4(cm), 即r 2-r 1=AH =4.① 设A 1B 与AB 1的交点为M , 则A 1M =B 1M . 又∵A 1B ⊥AB 1,∴∠A 1MO 1=∠B 1MO 1=45°. ∴O 1M =O 1A 1=r 1. 同理OM =OA =r 2.∴O 1O =O 1M +OM =r 1+r 2=43,② 由①②可得r 1=2(3-1),r 2=2(3+1).∴S 表=πr 21+πr 22+π(r 1+r 2)l =32(1+3)π(cm 2).跟踪训练1 已知棱长为a ,各面均为等边三角形的四面体SABC (即正四面体SABC ),求其表面积.解 由于四面体SABC 的四个面是全等的等边三角形, 所以四面体的表面积等于其中任何一个面面积的4倍. 先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D ,如图所示.因为BC =a ,SD =SB 2-BD 2=a 2-⎝⎛⎭⎫a 22=32a ,所以S △SBC =12BC ·SD =12a ×32a =34a 2.因此,四面体SABC 的表面积为S =4×34a 2=3a 2.题型二 空间几何体的体积例2 在Rt △ABC 中,AB =3,BC =4,∠ABC =90°,把△ABC 绕其斜边AC 所在的直线旋转一周后,所形成的几何体的体积是多少?解 如图所示,两个圆锥的底面半径为斜边上的高BD , 且BD =AB ·BC AC =125,两个圆锥的高分别为AD 和DC , 所以V =V 1+V 2=13πBD 2·AD +13πBD 2·CD=13πBD 2·(AD +CD )=13πBD 2·AC =13π×⎝⎛⎭⎫1252×5=485π. 故所形成的几何体的体积是485π. 跟踪训练2 如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求A 到平面A 1BD 的距离d .解 在三棱锥A 1-ABD 中,AA 1⊥平面ABD ,AB =AD =AA 1=a , A 1B =BD =A 1D =2a , ∵11--=,A ABD A A BD V V∴13×12a 2·a =13×12×2a ×32·2a ·d . ∴d =33a .∴A 到平面A 1BD 的距离为33a . 题型三 与三视图有关的表面积、体积问题例3 (1)某几何体的三视图如图所示(单位:cm),则该几何体的表面积等于( ) A.8π cm 2 B.7π cm 2 C.(5+3)π cm 2D.6π cm 2(2)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 (1)B (2)6+π解析 (1)此几何体是由一个底面半径为1,高为2的圆柱与一个底面半径为1,母线长为2的圆锥组合而成的,故S 表=S 圆柱侧+S 圆锥侧+S 底=2π×1×2+π×1×2+π×12=7π. (2)由三视图可知该几何体是组合体.下面是长方体,长、宽、高分别为3,2,1;上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为3×2×1+13π×12×3=(6+π) m 3.跟踪训练3 某几何体的三视图如图所示,则该几何体的体积是________.答案 16π-16解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.分割转化求体积例4 如图所示,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E ,F 分别为AA 1,CC 1的中点,求四棱锥A 1-EBFD 1的体积.分析 本题若直接求解较为困难,这里利用“割”的思想,将四棱锥的体积转化为两个等底的三棱锥的体积之和,从而简化求解步骤. 解 因为EB =BF =FD 1=D 1E = a 2+⎝⎛⎭⎫a 22=52a ,D 1F ∥EB ,所以四边形EBFD 1是菱形. 连接EF ,则△EFB ≌△EFD 1.易知三棱锥A 1-EFB 与三棱锥A 1-EFD 1的高相等, 故111122---==.A EBFD A EFB F EBA V V V 又因为1∆EBA S =12EA 1·AB =14a 2,则1-F EBA V =112a 3,所以111122---==A EBFD A EFB F EBA V V V =16a 3.圆柱体积的求解例5 把长、宽分别为4,2的矩形卷成一个圆柱的侧面,求这个圆柱的体积. 分析 利用底面的周长,求得底面半径,利用圆柱的体积公式求解. 解 设圆柱的底面半径为r ,母线长为l ,高为h .如图①所示,当2πr =4,l =2时,r =2π,h =l =2,所以V 圆柱=πr 2h =8π;如图②所示,当2πr =2,l =4时,r =1π,h =l =4;所以,此时V 圆柱=πr 2h =4π.1.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比是( ) A.1+2π2π B.1+2π4π C.1+2ππ D.1+4π2π2.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A.5πB.6πC.20πD.10π3.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为( )A.12πB.18πC.24πD.36π4.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.5.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC 1的平面A 1B 1EF ,这个平面分三棱台成两部分,这两部分的体积之比为________.一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π2.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1-ABC 的体积为( ) A.14 B.12C.36D.343.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的表面积是( ) A.3π B.33π C.2π D.9π4.在一个长方体中,过一个顶点的三条棱长的比是1∶2∶3,它的体对角线长是214,则这个长方体的体积是( ) A.6 B.12 C.24 D.485.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+3C.21D.186.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A.54B.54πC.58D.58π7.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D.1二、填空题8.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.11.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 三、解答题12.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ;(2)求该几何体的侧面积S .13.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积及体积.当堂检测答案1.答案 A解析 设底面圆半径为r ,母线长为h ,∴h =2πr ,则S 表S 侧=2πr 2+2πrh 2πrh =r +h h =r +2πr 2πr =1+2π2π.2.答案 D解析 用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π. 3.答案 C解析 由三视图知该几何体为圆锥,底面半径r =3,母线l =5,∴S 表=πrl +πr 2=24π.故选C. 4.答案 12解析 设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×2×32×h =23,∴h =1.∴斜高h ′=12+⎝⎛⎭⎫2×322=2,∴S 侧=6×12×2×2=12.5.答案 3∶4(或4∶3)解析 设三棱台的上底面面积为S 0,则下底面面积为4S 0,111-A B C ABC V 三棱柱=S 0h .111-ABC A B C V 三棱台=73S 0h .设剩余的几何体的体积为V , 则V =73S 0h -S 0h =43S 0h ,体积之比为3∶4或4∶3.课时精练答案一、选择题 1.答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.答案 D 解析 S 底=12×1×1-⎝⎛⎭⎫122=34,所以1B ABC V -三棱锥=13S 底·h =13×34×3=34.3.答案 A解析 设圆锥底面的半径为R ,则由12×2R ×3R =3,得R =1.所以S圆锥表=πRl +πR 2=π×1×2+π=3π. 4.答案 D解析 设长方体的三条棱长分别为a,2a,3a ,那么a 2+(2a )2+(3a )2=214.解得a =2,长方体的体积为V =2×4×6=48. 5.答案 A解析 由三视图可知,该多面体为一个边长为2的正方体在左下角与右上角各切去一个三棱锥,因此该多面体的表面积为6×⎝⎛⎫4-12+12×2×62×2=21+ 3. 6.答案 A解析 设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r 2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似知识得r 3r =h -h 1h ,∴h =32h 1,∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.7.答案 B解析 如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B. 二、填空题 8.答案 2∶1解析 S 圆柱=2·π⎝⎛⎭⎫a 22+2π·a 2·a =32πa 2, S 圆锥=π⎝⎛⎭⎫a 22+π·a 2·a =34πa 2, ∴S 圆柱∶S 圆锥=2∶1. 9.答案7解析 设新的底面半径为r ,则有13×πr 2×4+πr 2×8=13×π×52×4+π×22×8,解得r =7.10.答案 83π11 解析 由三视图可知原几何体是由两个圆锥和一个圆柱组成的,它们有共同的底面,且底面半径为1,圆柱的高为2,每个圆锥的高均为1,所以体积为2×13π×12×1+π×12×2=8π3(m 3). 11.答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2.由S 1S 2=94,得πr 21πr 22=94,∴r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2.∴V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 三、解答题12.解 由已知可得该几何体是一个底面为矩形、高为4、顶点在底面的投影是矩形中心的四棱锥V -ABCD .(1)V =13×(8×6)×4=64. (2)该四棱锥的两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1= 42+⎝⎛⎭⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB 边上的高为h 2= 42+⎝⎛⎭⎫622=5.因此S 侧=2⎝⎛⎭⎫12×6×42+12×8×5=40+24 2. 13.解 作轴截面如图,设挖去的圆锥的母线长为l ,底面半径为r ,则l =(6)2+(3)2=9=3(cm).故几何体的表面积为S =πrl +πr 2+2πr ·AD=π×3×3+π×(3)2+2π×3× 6=33π+3π+62π =(33+3+62)π(cm 2).几何体的体积为V =V 圆柱-V 圆锥=π·r 2·AD -13πr 2AD =π×3×6-13×π×3× 6 =26π(cm 3).。
极坐标系下旋转体体积和表面积的计算

极坐标系下旋转体体积和表面积的计算
极坐标系是一种二维坐标系,它的一个特征是,坐标变换出来的体积和表面积计算是比较复杂的问题。
本文将介绍用于计算极坐标系下旋转体体积和表面积的方法。
极坐标系体积和表面积的计算可以分为以下三个步骤:首先,对被转模型实行极坐标变换,即把三维模型变成极坐标系下的模型;其次,将极坐标系下的模型分别朝x、y、z方向旋转,求出旋转体的体积和表面积;最后,将旋转体体积和表面积的计算结果应用到实际应用中去。
极坐标系下,旋转体体积和表面积的计算有其比较复杂的特点。
首先,需要考虑旋转体在极坐标系下变形的问题,以此来改变旋转体的表面面积;其次,需要考虑极坐标系下的体积和表面积的计算方法,才能正确的计算出旋转体的体积和表面积。
所以,正确的极坐标系下旋转体体积和表面积的计算,要综合运用极坐标变换和旋转体的特性,按照该坐标系下的公式和方法来解决。
本文介绍了极坐标系下旋转体体积和表面积的计算方法,希望能帮助大家深入理解极坐标系旋转体的表面积和体积的计算。
专题4 第1讲 空间几何体(教师版)

第1讲 空间几何体【要点提炼】考点一 表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr(r +l)(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr(r +l)(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式V 柱=Sh(S 为底面面积,h 为高);V 锥=13Sh(S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径). 【热点突破】【典例】1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.【答案】 402π【解析】 因为母线SA 与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直角三角形.设底面圆的半径为r ,则母线长l =2r.在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158. 因为△SAB 的面积为515,即12SA ·SBsin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.【答案】 233 【解析】 如图,取BC 的中点O ,连接AO.∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3.又11BB C S =12×2×2=2, ∴11D BB C V =13×2×3=233. 易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算).(2)一些不规则几何体的体积不会采用分割法或补形思想转化求解.(3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.【拓展训练】1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】 B【解析】 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.【答案】 327 【解析】 设CD =DE =x(0<x<1),则四边形ABDE 的面积S =12(1+x)(1-x)=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝ ⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 【要点提炼】考点二 多面体与球解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.【典例】2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________.【答案】 64π【解析】 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上,即球心就是△PAB 的外心,根据正弦定理AB sin ∠APB=2R ,解得R =4, 所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【答案】 23π 【解析】 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π. 规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)多面体的内切球可利用等积法求半径.【拓展训练】2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C【解析】 如图所示,设球O 的半径为R ,因为∠AOB =90°,所以S △AOB =12R 2,因为V O -ABC =V C -AOB ,而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36, 故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.【答案】 20π【解析】 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3,∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1,则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21, 可得PA 2=R 21-r 21=102,∴PA =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10,∴r 2=102,∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题训练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形【答案】 A【解析】 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12 【答案】 C【解析】 设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′,则由已知得h 2=12ah ′. 如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22, ∴h ′2=12ah ′+14a 2, ∴⎝ ⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( ) A.12 B.13 C.14 D.18【答案】 C【解析】 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形,设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元【答案】 B【解析】 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】 B【解析】 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h(h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3 D .2π 【答案】 C【解析】 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3. 7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】 A【解析】 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a.由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3 B .3π C.4π3 D .8π【答案】 A【解析】 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3, ∴2r =AB sin ∠ACB =112=2, 即O 1A =1,O 1O =12AA 1=3, ∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A. 9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81πD .128π【答案】 B 【解析】 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h(0<h<5),底面半径为r(0<r<5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h<5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h<53时,V ′>0,V 单调递增;当53<h<5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.32【答案】 C【解析】 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,∵球O 的半径为1, ∴正方体的边长为233,即PA =PB =PC =233, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △PAB ×PC =13× 12×⎝ ⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形, S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13. 二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值【答案】 AD【解析】 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确. 12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π【答案】 AD【解析】 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE.由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.【答案】 1【解析】 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r ·l =2.由于侧面展开图为半圆,可知12πl 2=2π, 可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【答案】 2 600π【解析】 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2). 15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________.【答案】 823π 【解析】 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π. 16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2π2【解析】 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ. 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2, 知PQ 的长为π2×2=2π2,即交线长为2π2.。
旋转体的概念

旋转体的对称 轴数量:旋转 体可以有多个 对称轴,但只 有一个主对称
轴。
旋转体的对称 性分类:根据 旋转体的几何 特性,可以分 为轴对称、中 心对称、旋转 对称等类型。
04
旋转体的物理特性
旋转体的转动惯量
定义:物体转动惯量是指物体转动时,惯性大小的量度 计算公式:I=mr^2,其中m是质量,r是质点到旋转轴的距离 物理意义:转动惯量是描述旋转体转动状态的物理量,与旋转体的质量和形状等因素有关 应用:在物理学、工程学等领域中,转动惯量是研究旋转体运动规律的重要参数
添加标题
添加标题
测量技术:采用高精度测量仪器, 对旋转体的各项参数进行测量, 以评估其性能和精度。
数据处理:对实验数据进行处理 和分析,提取有用的信息,进一 步验证旋转体的性能和仿真结果 的可靠性。
感谢观看
汇报人:
05
旋转体的动力学特 性
旋转体的动力学方程
旋转体的动力学 方程是描述旋转 体运动状态的重 要公式,由牛顿 第二定律推导而 来。
旋转体的动力学 方程包括角动量 守恒定律和角动 量定理,它们描 述了旋转体的转 动惯量、力矩和 角速度之间的关 系。
旋转体的动力学 方程还包括科里 奥利力和离心力 等效应,这些效 应在高速旋转或 非惯性参考系中 尤为重要。
航空航天:旋转体的 应用也涉及到航空航 天领域,如飞机的螺 旋桨、直升机的旋翼 等。
交通运输:旋转体的 应用还涉及到交通运 输领域,如汽车的轮 胎、火车的车轮等。
日常生活:旋转体 的应用也涉及到我 们的日常生活,如 电风扇的叶片、洗 衣机的工作原理等。
03
旋转体的几何特性
旋转体的几何描述
旋转体的定义:由一个平面图形绕该平面内的一条直线旋转一周形成的立体 旋转体的轴:旋转时所围绕的那条直线 旋转体的面:由旋转体上任意一点与旋转轴构成的平面 旋转体的体积:由旋转体的几何特性所决定的立体体积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱柱、棱锥、棱台的表面积和体积
h'
h'
表面积就是各侧面面积和底面面积之和.
V柱体 Sh
V台体
V锥体
1 Sh 3
1 (S上 3
S上S下 S下)h
圆柱的表面积和体积
r O
O 圆柱的侧面展开图是矩形
S圆柱表面积 S上 S下 S侧
V圆柱
2r 2rl 2r (r l ) 2 Sh r h
圆台的表面积和体积
参照圆柱和圆锥的侧面展开图,试想象圆台的侧 面展开图是什么 . 圆台的侧面展开图是扇环
O’
S圆台表面积 S上 S下 S侧
2 2
O
r上 r下 (r上l r下l )
V圆台 1 (S上 3 S上S下 表面积 r上 r
V圆台
S上 S下
S圆锥侧面积 r下l
1 上 0 (S上 S上S下 S下)h S 3
V圆锥 1 Sh 3
V圆柱 Sh
球的表面积和体积
S球表面积 4R
2
V球
1 R 3 3
思考:圆柱的底面直径与高都等于球的直径: ① 球的体积等于圆柱体积的2/3; ② 球的表面积等于圆柱的侧面积.
《运动会素描》
莘莘学子竞赛场,政杰浩然各无双。 前有四百已囊括,后破纪录如反掌。
一千五百犹激烈,朝生夏杰均相当。 最喜接力压轴戏,巾帼不把须眉让。
跑跳投掷展身手, 听说读写竞风流。 化赛场力量,竞学习风流。
旋转体的表面积和体积
圆柱 棱柱 圆锥 多面体棱锥 旋转体 圆台 棱台 球体
2
2 下
(r上l r下l )
O’
V圆台
1 (S上 3
S上S下 S下)h
O
思考:已知如图所示圆台的 三视图,求其表面积和体积。
圆柱、圆台、圆锥的侧面积和体积的内在联系
S圆台侧面积 (r上l r下l )
r上 0
r上 r下
S圆柱侧面积 2r下l
2
思考:边长为1的正方形以其一边所在直线旋转 一周,所得几何体的表面积和体积?
圆锥的表面积和体积
圆锥的侧面展开图是扇形
S圆锥表面积 S底 S侧 r rl r (r l )
2
V圆锥 1 1 Sh r 2 h 3 3
O
思考:边长为2的正方形以其一对角线所在直 线旋转一周,所得几何体的表面积和体积?