实验4 组合逻辑电路实验

合集下载

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验组合逻辑电路实验一一、实验目的1、熟悉半加器、全加器的实验原理,学习电路的连接;2、了解基本74LS系列器件(74LS04、00、32)的性能;3、对实验结果进行分析,得到更为优化的实验方案。

二、实验内容1、按照实验原理图连接电路。

2、实验仪器:74LS系列的芯片、导线。

实验箱内的左侧提供了插放芯片的地方,右侧有控制运行方式的开关KC0、KC1及KC2。

其中KC1用来选择实验序号。

序号为0时,手动进行。

自动运行时按加、减选择所做实验的序号。

试验箱内有分别用于手动和自动实验的输入的控制开关Kn和Sn。

3、三、实验原理实验原理图如下:四、实验结果及分析1、将实验结果填入表1-11-1 表2、实验结果分析由实验结果可得半加和:Hi=Ai⊕Bi 进位:Ci=AiBi则直接可以用异或门和与门来实现半加器,减少门的个数和级数,提高实验效率。

实验二全加器一、实验目的1、掌握全加器的实验原理,用简单的与、或非门来实现全加器的功能。

2、分析实验结果,得到全加器的全加和和进位的逻辑表达式,根据表达式用78LS138和与、或、非门来实现全加器。

二、实验内容同半加器的实验,先采用手动方式,再用自动方式。

用自动方式时选实验序号2。

三、实验原理四、实验结果及其分析表1-2 2、实验结果分析从表1-2中的实验结果可以得到:Si=AiBiCi?1+AiBiCi?1+AiBiCi-1=Ai?Bi?Ci-1Ci=AiBi+AiCi-1+BiCi-1故Si=?m(1,2,4,7) Ci=?m(3,5,6,7)因此可用三—八译码器74LS138和与非门实现全加器,逻辑电路图如下:实验三三—八译码器与八—三编码器一、实验目的1、进一步了解译码器与编码器的工作原理,理解译码和编码是相反的过程。

2、在连接电路时,注意译码器74LS138和编码器74LS148使能端的有效级,知道两者的区别。

3、通过实验理解74LS148是优先权编码器。

实验报告组合逻辑电(3篇)

实验报告组合逻辑电(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。

二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。

其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。

通过这些逻辑门可以实现各种组合逻辑功能。

三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。

四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。

2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。

3. 搭建实验电路根据逻辑电路图,搭建实验电路。

将各个逻辑门按照电路图连接,并确保连接正确。

4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。

五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。

(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。

组合逻辑电路的设计与测试实验

组合逻辑电路的设计与测试实验

文章标题:深度探析:组合逻辑电路的设计与测试实验1. 前言组合逻辑电路是数字电路中的重要组成部分,它在计算机领域、通信领域、工业控制等领域都有着广泛的应用。

在本文中,我们将深入探讨组合逻辑电路的设计与测试实验,旨在帮助读者更深入地理解这一主题。

2. 组合逻辑电路的基本原理组合逻辑电路由多个逻辑门按照一定的逻辑功能组成,并且没有存储功能。

其输入变量的取值和逻辑门的连接方式确定了输出变量的取值。

在组合逻辑电路中,常见的逻辑门包括与门、或门、非门等。

通过这些逻辑门的组合,可以实现各种复杂的逻辑功能。

3. 组合逻辑电路的设计方法(1)真值表法:通过列出输入变量的所有可能取值,计算输出的取值,得到真值表。

然后根据真值表来设计逻辑门的连接方式。

(2)卡诺图法:将真值表中的1和0用图形方式表示出来,然后通过化简操作,得到最简的逻辑表达式。

(3)逻辑代数法:利用逻辑代数的基本定理,将逻辑函数化简到最简形式。

4. 组合逻辑电路的测试实验组合逻辑电路的测试实验是为了验证设计的电路是否符合设计要求和功能。

常用的测试方法包括输入端给定法、输出端测量法、故障诊断法等。

在进行测试实验时,需要注意测试的充分性和有效性,避免遗漏潜在的故障。

5. 个人观点和理解组合逻辑电路的设计与测试实验是数字电路课程中非常重要的一部分,它不仅需要对逻辑门的基本原理有深入的理解,还需要具备灵活运用逻辑门的能力。

测试实验则是验证设计是否符合要求,是课程中的一次实际应用练习。

6. 总结与回顾通过本文的探讨,我们更深入地了解了组合逻辑电路的设计与测试实验。

通过对其基本原理和设计方法的分析,我们可以更好地掌握其设计和实验的要点。

在参与实验的过程中,我们也能够理解数字电路理论知识的实际应用。

结语组合逻辑电路的设计与测试实验是一门充满挑战的学科,通过不断地学习和实践,我们可以逐步掌握其中的精髓,为将来的应用打下坚实的基础。

在此,我希望读者能够在实践中不断提升自己,探索数字电路领域更多的精彩,期待你也能在这片领域中取得更多的成就。

组合逻辑电路的设计实验报告总结

组合逻辑电路的设计实验报告总结

组合逻辑电路的设计实验报告总结这次课程设计是一个关于组合逻辑电路的实验,通过本次实验,让我们初步了解了常用的一些元器件的作用,熟悉了基本电路的设计与连接。

同时在设计的过程中,也培养了我们发现问题,分析问题和解决问题的能力。

我们通过阅读指导书和相关资料来了解关于这方面的知识。

并且指导书上已经给我们介绍了许多电路中的元器件的功能,还给我们举了很多例子,让我们可以理解的更加清楚,并且对这些知识有了一定的掌握。

由于时间有限,所以没能够把整个实验做完,而只是做了其中的几部分。

在这些实验中,我设计的是低通滤波器和二极管的放大电路。

虽然说实验还未全部完成,但我已经从这些设计中看到了自己的不足。

以后还应该多加练习。

希望老师能给我这个机会,对我的不足之处进行指正。

这次实验的题目是关于组合逻辑电路的设计。

其中最重要的就是电路板的制作,我认为本实验的重点就是制作电路板。

虽然说第一次尝试,但是在制作过程中遇到了很多困难。

首先是焊接电路板的过程,因为第一次制作,根本就不知道应该注意什么。

而且不知道怎样去选择器件。

我想这可能是由于我们没有老师的指导。

其次就是在电路板上的印刷电路板,这是由于在电路板的制作过程中忽视了。

比如说焊接过程中会有大量的焊锡留在上面。

最后一点就是在上电路板时,忘记了给每个元器件的电阻标注上符号。

当时我就有点紧张,结果把第一个电阻给贴反了。

而且当时的焊锡还是热的。

虽然说焊接电路板这方面存在着很多问题,但在后面制作过程中也有不少收获。

这次实验的主要目的是: 1、学会画出组合逻辑电路图; 2、对基本电路的设计与连接; 3、能设计出简单的组合逻辑电路; 4、能查阅相关资料; 5、培养我们发现问题,分析问题和解决问题的能力;6、培养严谨的科学态度。

其次就是将两个组合电路连接起来,连接组合电路的时候,要保证电路运行的可靠性。

并且要遵守器件安装的规则。

同时我还明白了一个道理,那就是电路是死的,人是活的,只要你肯动脑筋,一定能设计出好的电路。

组合逻辑电路实验报告

组合逻辑电路实验报告

组合逻辑电路实验报告引言组合逻辑电路是由与门、或门和非门等基本逻辑门组成的电路,它的输出仅仅依赖于当前的输入。

在本实验中,我们将学习如何设计和实现组合逻辑电路,并通过实验验证其功能和性能。

实验目的本实验的目的是让我们熟悉组合逻辑电路的设计和实现过程,掌握基本的逻辑门和组合逻辑电路的基本原理,并能够通过实验验证其功能和性能。

实验器材与预置系统本实验使用以下器材和预置系统:•模型计算机实验箱•功能切换开关•LED指示灯•逻辑门芯片实验内容1. 初级组合逻辑电路设计首先,我们将设计一个简单的初级组合逻辑电路。

根据实验要求,该电路需要实现一个2输入1输出的逻辑功能。

1.1 逻辑设计根据逻辑功能的要求,我们可以先用真值表来表示逻辑关系,然后根据真值表来进行逻辑设计。

假设我们需要实现的逻辑功能是“与门”(AND gate),其真值表如下:输入A输入B输出000010100111根据真值表,我们可以得到逻辑方程为:输出 = 输入A AND 输入B。

1.2 逻辑电路设计根据逻辑方程,我们可以得到逻辑电路的设计图如下:+--------------+------ A ---| || AND Gate |--- Output------ B ---| |+--------------+在这个设计图中,A和B为输入引脚,Output为输出引脚,AND Gate表示与门。

1.3 实验验证在实验过程中,我们可以通过观察LED指示灯的亮灭来验证逻辑电路是否正确实现了目标功能。

通过设置不同的输入A 和B,我们可以观察输出是否符合预期结果。

2. 高级组合逻辑电路设计接下来,我们将设计一个更复杂的高级组合逻辑电路。

这个电路由多个逻辑门连接而成,实现多个输入和多个输出的逻辑功能。

2.1 逻辑设计根据实验要求,我们可以先确定需要实现的逻辑功能,并用真值表来表示逻辑关系。

假设我们需要实现的逻辑功能是“四位全加器”(4-bit full adder),其真值表如下:输入A输入B输入C输出S进位输出Cout0000000110010100110110010101011100111111根据真值表,我们可以得到逻辑方程为:输出S = 输入A XOR 输入B XOR 输入C 进位输出Cout = (输入A AND 输入B) OR (输入C AND (输入A XOR 输入B))2.2 逻辑电路设计根据逻辑方程,我们可以使用多个逻辑门来实现四位全加器电路。

组合逻辑电路实验报告

组合逻辑电路实验报告

实验名称:组合逻辑电路一、实验目的1、掌握组合逻辑电路的分析、设计方法与测试方法;2、了解组合逻辑电路的冒险现象及消除方法。

二、实验器材需要与非门CC4011×3,异或门CC4030×1,或门CC4071×1。

CC4011引脚图CC4030引脚图CC4071引脚图三、实验内容及实验电路1、分析、测试用与非门CC4011组成的半加器的逻辑功能。

列出真值表并画出卡诺图判断是否可以简化。

图1由与非门组成的半加器电路A B S C2、分析、测试用异或门CC4030与与非门CC4011组成的半加器逻辑电路。

图2由异或门和与非门组成的半加器电路A B S C3、分析、测试全加器的逻辑电路。

写出实验电路的逻辑表达式,根据实验结果列出真值表与全加器的逻辑功能对比,并画出i S和i C的卡诺图。

图3由与非门组成的全加器电路A B1 i C i S i C4、设计、测试用异或门、与非门和或门组成的全加器逻辑电路。

全加和:()1-⊕⊕=i i i i C B A S 进位:()ii i i i i B A C B A C ⋅+⋅⊕=-1将全加器的逻辑表达式,变换成由两个异或门,四个与非门,一个或门组成;画出全加器电路图,按所画的原理图选择器件并在实验板上连线;进行功能测试并自拟表格填写测试结果。

电路图:A B 1-i C i S i C 5、观察冒险现象。

按图4接线,当1==C B 时,A 输入矩形波(MHz f 1=以上),用示波器观察输出波形,并用添加冗余项的方法消除冒险现象。

图4观察冒险现象实验电路四、实验预习要求1、复习组合逻辑电路的分析方法。

2、复习组合逻辑电路的设计方法。

3、复习用与非门和异或门等构成半加器和全加器的工作原理。

4、复习组合电路冒险现象的种类、产生原因和如何防止。

5、根据试验任务要求,设计好实验时必要的实验线路。

五、实验报告1、整理实验数据、图表,并对实验结果进行分析讨论。

实验四 组合逻辑电路设计

实验四  组合逻辑电路设计

实验四组合逻辑电路设计一、实验目的1、掌握组合逻辑电路的设计方法。

2、掌握实现组合逻辑电路的连接和调试方法。

3、通过功能验证锻炼解决实际问题的能力。

二、实验任务1、用基本门电路设计一个四变量的多数表决电路。

2、设计一个车间开工启动控制电路。

3、设计一个加减器。

4、试设计一个8421BCD码的检码电路。

5、用Multisim8进行仿真,并在实验仪器上实现。

三、实验原理组合逻辑电路是数字系统中逻辑电路形式的一种,它的特点是:电路任何时刻的输出状态只取决于该时刻输入信号(变量)的组合,而与电路的历史状态无关。

组合逻辑电路的设计是在给定问题(逻辑命题)情况下,通过逻辑设计过程,选择合适的标准器件,搭接成实验给定问题(逻辑命题)功能的逻辑电路。

通常,设计组合逻辑电路按下述步骤进行。

其流程图如。

(1)列真值表。

设计的要求一般是用文字来描述的。

设计者很难由文字描述的逻辑命题直接写出逻辑函数表达式。

由于真值表在四种逻辑函数表示方法中,表示逻辑功能最为直观,故设计的第一步为列真值表。

首先,对命题的因果关系进行分析,“因”为输入,“果”为输出,即“因”为逻辑变量,“果”为逻辑函数。

其次,对逻辑变量赋值,即用逻辑0和逻辑1分别表示两种不同状态。

最后,对命题的逻辑关系进行分析,确定有几个输入,几个输出,按逻辑关系列出真值表。

(2)由真值表写出逻辑函数表达式。

(3)对逻辑函数进行化简。

若由真值表写出的逻辑函数表达式不最简,应利用公式法或卡诺图法进行逻辑函数化简,得出最简式。

如果对所用器件有要求,还需将最简式转换成相应的形式。

(4)按最简式画出逻辑电路图。

图3.4.1 组合逻辑电路设计流程图通常情况下的逻辑设计都是在理想情况下进行的,但是由于半导体参数的离散性以及电路存在过渡过程,造成信号在传输过程中通过传输线或器件都需要一个响应时间——延迟。

所以,在理想情况下设计出的电路有时在实际应用中会出现一些错误,这就是组合逻辑电路中的竞争与冒险,应在逻辑设计中要特别注意的。

实验4 组合逻辑电路1

实验4  组合逻辑电路1

实验四组合逻辑电路(半加器全加器及逻辑运算)一、实验目的1.掌握组合逻辑电路的功能调试。

2。

验证半加器和全加器的逻辑功能。

3。

学会二进制数的运算规律。

二、实验仪器及材料器件74LS00 二输入端四与非门3片74LS86 二输入端四异或门1片三、预习要求1.预习组合逻辑电路的分析方法.2.预习用与非门和异或门构成的半加器、全加器的工作原理。

3.预习二进制数的运算。

四、实验内容1.组合逻辑电路功能测试。

图4.1(1).用2片74LS00组成图4.1所示逻辑电路。

为便于接线和检查.在图中要注明芯片编号及各引脚对应的编号。

(2).图中A、B、C接电平开关,YI,Y2接发光管电平显示.(3)。

按表4。

1要求,改变A、B、C的状态填表并写出Y1,Y2逻辑表达式.(4).将运算结果与实验比较.2.测试用异或门(74LS86)和与非门组成的半加器的逻 辑功能.根据半加器的逻辑表达式可知.半加器Y 是A 、B异或,而进位Z 是A 、B 相与,故半加器可用一个集 成异或门和二个与非门组成如图4.2.(1).在学习机上用异或门和与门接成以上电路. 接电平开关S .Y 、Z 接电平显示.(2).按表4.2要求改变A 、B 状态,填表. 图 4.2 0 1 113.测试全加器的逻辑功能。

(1).写出图4.3电路的逻辑表达式。

(2).根据逻辑表达式列真值表.(3).根据真值表画逻辑函数S i 、 Ci 的卡诺图.图4.3 (4).填写表4.3各点状态(5).按原理图选择与非门并接线进行测试,将测试结果记入表4.4,并与上表进行比较看逻辑功能是否一致.五、实验报告1.整理实验数据、图表并对实验结果进行分析讨论。

2.总结组合逻辑电路的分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 组合逻辑电路实验
1.设计一个完整的组合逻辑电路,并用MAXPLUS进行仿真,将结果下载到实验箱中,测试电路的正确性。

要求:设计一个6输入的表决电路,其中1路输入为主裁,优先级最高,其余5路的估先级相同,用LED显示各路输入的状态(同意的亮灯,反对的灭灯),同时用数码管显示同意的人数。

2.应包含VHDL源程序,详细的设计报告,对程序,仿真结果,实验箱运行结果(图片贴到报告中)进行详尽的分析
一、实验分析:6输入表决电路,需要六个输入,并且设置一个主裁位,优先级最高,当他同意,为高电平时,其他五个人,有三个以上同意才通过,否则不通过。

二、程序如下:
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity a6_1is
port (
a: in STD_LOGIC_VECTOR (6 downto 0);
c: out STD_LOGIC
);
end a6_1;
architecture dsf_arch of a6_1is
signal tmp1: integer ;
begin
process (a)
variable tmp: integer ;
begin
tmp := 0;
for i in 0 to 6 loop
if a(i) ='1' then tmp := tmp +1 ;
end if;
end loop;
tmp1<=tmp;
end process;
c<='1' when tmp1=3 and a(0)='1' else
'1' when tmp1=4and a(0)='1' else
'1' when tmp1=5 and a(0)='1' else
'1' when tmp1=6 and a(0)='1' else
'0' ;
end dsf_arch;
由下图可以看出,六个输入,1个输出,当主裁为高电平时,有三人以上同意,输出则为高电平
引脚分配图。

相关文档
最新文档