2020-2021学年第一学期初三数学期中试卷
2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每题4分,共40分)1.(4分)下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2B.y=3(x﹣1)2C.y=3(x﹣1)2+2D.y=2x22.(4分)下列四组线段中,不是成比例线段的是()A.a=3 b=6 c=2 d=4B.a=1 b=√2c=√6d=2√3C.a=4 b=6 c=5 d=10D.a=2 b=√5c=√15d=2√33.(4分)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线的开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.当x≥2时,y随x增大而增大4.(4分)如图,反比例函数y=kx的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1B.x≥2C.x<0或0<x≤1D.x<0或x≥2 5.(4分)如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A .①②④B .①③④C .②③④D .①②③ 6.(4分)如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC的面积为( )A .2B .4C .5D .87.(4分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是( ) A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1) 8.(4分)已知抛物线y =12(x ﹣1)2+k 上有三点A (﹣2,y 1),B (﹣1,y 2),C (2,y 3),则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 3>y 1D .y 2>y 1>y 3 9.(4分)a ≠0,函数y =a x 与y =﹣ax 2+a 在同一直角坐标系中的大致图象可能是( )A .B .C .D .10.(4分)如图所示,已知点E,F分别是△ABC中AC、AB边的中点,BE,CF相交于点G,S△EFG=1,则四边形BCEF的面积是()A.7B.8C.9D.10二、填空题(每题5分,共20分)11.(5分)反比例函数y=m−1x的图象在第一、三象限,则m的取值范围是.12.(5分)赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=−125x2,当水面离桥拱顶的高度DO是4米时,这时水面宽度AB为米.13.(5分)如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.14.(5分)如图,点A的坐标为(1,1),点C是线段OA上的一个动点(不运动至O,A 两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,若以B,E,F为顶点的三角形与△OFE相似,B 点的坐标是.15.(8分)已知函数y=3x2﹣2x﹣1,求出此抛物线与坐标轴的交点坐标.16.(8分)装卸工人往一辆大型运货车上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图:(1)求y与x之间的函数关系式;(2)货车到达目的地后开始卸货,如果以1.5t/min的速度卸货,需要多长时间才能卸完货物?四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图所示,小明从路灯下向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高是1.6米,那么路灯离地面的高度AB是多少米?18.(8分)如图,已知反比例函数y=6x的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)直接写出不等式6x≥kx+b的解集.19.(10分)如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°.AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)图中共有对相似而不全等的三角形;(2)选取其中一对进行证明.20.(10分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)(1)求抛物线的解析式和顶点E坐标;(2)该抛物线有一点D,使得S△DBC=S△EBC,求点D的坐标.六、(本题满分12分)21.(12分)如图是3×5的网格,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点的图形叫做格点图.(1)图1中的格点△ABC与△DEF相似吗?请说明理由;(2)请在图2中选择适当的位似中心作△A1B1C1与△ABC位似,且相似比不为1;(3)请在图3中画一个格点△A2B2C2与△ABC相似(注意:△A2B2C2与△ABC、△DEF、△A1B1C1都不全等).七、(本题满分12分)22.(12分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?八、(本题满分14分)23.(14分)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE 于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.。
人教版2020---2021学年度九年级数学(上)期中考试卷及答案(含三套题)

密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共15题,每题3分,共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( ) A .11 B .13 C .11或13 D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( ) A .﹣4 B .﹣1 C .1 D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( ) A .12 B .6 C .9 D .166.关于x 的一元二次方程9x 2﹣6x+k=0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC 绕点 A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于( )A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( )A .y=1+x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( ) A .y=2(x+1)2+3 B .y=2(x ﹣1)2﹣3 C .y=2(x+1)2﹣3 D .y=2(x ﹣1)2+310.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1) 11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1) 12.已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:x﹣1123题号一 二 总分 得分密 封 线 内 不 得y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x= 13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.(4分)解方程:x 2﹣4x+2=0.17.(5分)已知抛物线的顶点为A (1,﹣4),该抛物线的解析式.18.(6分)如图,点O 是等边△ABC 内一点,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60接OD .(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD19.(6分)份套餐的成本为5套餐成本).若每份售价不超过10每份售价超过10元,每提高1元,了便于结算,每份套餐的售价x 示该店日净收入.( 日净收入=天固定支出 )(1)当5<x ≤10时,y= ;当x >10时,(2)若该店日净收入为1560密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题20.(9分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2. (3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.(10分)已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.(11分)某房地产开放商欲开发某一楼盘,于2018年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2020年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2022年初完工并还清银行贷款),同时开始房屋出售,开发总面积为5万平方米,动工后每年的土地管理费降为购买土地费用的5%,工程完工后不再上交土地管理费.出售之前,该开发商聘请调查公司进行了市场调研,发现在该片区,若房价定位每平方米3000元,则会销售一空.若房价每平方米上涨100元,则会少卖1000平方米,且卖房时间会延长2.5个月.该房地产开发商预计售房净利润为8660万. (1)问:该房地产开发商总的投资成本是多少万? (2)若售房时间定为2年(2年后,对于未出售的面积,开发商不再出售,准备作为商业用房对外出租),则房价应定为每平方米多少元?23.(12分)正方形ABCD 中,将一个直角三角板的直角顶点与点A 重合,一条直角边与边BC 交于点E (点E 不与点B 和点C 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边MN 与边CD 交于G ,且点G 是斜边MN 的中点,连接EG ,求证:EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.24.(12分)如图,已知点A(0,1),C(4,3),E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的一动点,点D在y轴上,抛物线y=ax2+bx+1以P为顶点.(1)说明点A,C,E在一条直线上;(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点,这时能确定a、b的值吗?若能,请求出a,b的值;若不能,请确定a、b的取值范围.参考答案与试题解析一、选择题(共15题,每题3分共45分)1.解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项D不正确.故选:B.2.解:x2﹣3x=0, x(x﹣3)=0, x=0或x﹣3=0,所以x1=0,x2=3.故选C.3.解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x1=2,x2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为故选B.4.解:根据韦达定理得x1•x2=1.故选:C.5.解:∵a为方程x2+x﹣5=0的解,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴a 2+a ﹣5=0,∴a 2+a=5 则a 2+a+1=5+1=6.故选:B .6.解:∵关于x 的一元二次方程9x 2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k >0,解得k <1.故选A . 7.解:∵在等腰直角△ABC 中,∠B=90°,∴∠BAC=45°,∵将△ABC 绕点 A 逆时针旋转60°后得到的△AB ′C ′, ∴∠BAB ′=60°,∠B ′AC ′=∠BAC=45°,∴∠BAC ′=∠BAB ′+∠B ′AC ′=60°+45°=105°,故选A . 8.解:y=2(x ﹣1)2+3中,a=2.故选D .9.解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x ﹣h )2+k ,代入得:y=2(x+1)2+3. 故选A .10.解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B .11.解:∵y=﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐标为(﹣2,1);故选B . 12.解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选:D .13.解:根据二次函数图象的性质, ∵开口向下, ∴a <0,∵与y 轴交于正半轴, ∴c >0, 又∵对称轴x=﹣<0,∴b <0,所以A 正确.故选A .14.解:A 、由二次函数的图象可知a <0,此时直线y=ax+b 应经过二、四象限,故A 可排除;B 、由二次函数的图象可知a <0,对称轴在y 轴的右侧,可知a 、b 异号,b >0,此时直线y=ax+b 应经过一、二、四象限,故B 可排除;C 、由二次函数的图象可知a >0,此时直线y=ax+b 应经过一、三象限,故C 可排除;正确的只有D .故选:D . 15.解:∵y=﹣2x 2+8x ﹣6=﹣2(x ﹣2)2+2.∴该抛物线的对称轴是x=2,且在x <2上y 随x 的增大而增大. 又∵0≤x ≤,∴当x=时,y 取最大值,y 最大=﹣2(﹣2)2+2=﹣2.5.故选:C .二、解答题(本大题共9小题,共75分)密16.解:x 2﹣4x=﹣2 x 2﹣4x+4=2 (x ﹣2)2=2或 ∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4, ∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形. ∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或1420.解:(1)作图如右:△A 1B 1C 1即为所求; (2)作图如右:△A 2B 2C 2即为所求; (3)x 的值为6或7.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题21.解:(1)所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2, 原方程为x 2﹣5x+6=0⇒x 1=2,x 2=3 即,等腰三角形的三边为3,3,2. 则周长为8,面积为 若底为3,则原方程为x 2﹣4x+4=0⇒x 1=x 2=2 即,等腰三角形的三边为2,2,3. 则周长为7,面积为22.解:(1)15×100=1500万, 1500×10%×2=300万,1500+3500+3500×5%×2=5350万, 1500×5%×2=150万,四者相加1500+300+5350+150=7300万.答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x 个100元,依题意有(5﹣0.1x )=8660+7300, 解得x 1=12,x 2=8,又因为当x 1=12时,卖房时间为30个月,此时超过两年,所以舍去;当x 2=8时,卖房时间为20个月; 则房价为3000+8×100=3800元. 答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD 是正方形, ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD . ∵∠EAF=90°, ∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD , ∴∠BAE=∠DAF . 在△ABE 和△ADF 中,∴△ABE ≌△ADF (ASA ) ∴AE=AF ;(2)如图②,连接AG , ∵∠MAN=90°,∠M=45°,密 封 线 内 不 得 答 题∴∠N=∠M=45°, ∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°. ∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF , ∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x ,∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k , ∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 上,且P 为顶点,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴这条抛物线有最高点,抛物线的开口向下.解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部,∴1<<3,由1<1﹣得﹣>0.∴a <0. ∴抛物线开口向下;(3)连接GA 、FA . ∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2, 又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 的坐标为(3,1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3,∴﹣<a <0① 由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,而这条抛物线与线段AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.封 线 内 不 得 答人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m+2的值等于( )A .4B .1C .0D .﹣13.已知点P 关于x 轴的对称点P 1的坐标是(2,3),那么点P 关于原点的对称点P 2的坐标是( )A .(﹣3,﹣2)B .(2,﹣3)C .(﹣2,﹣3)D .(﹣2,3) 4.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.已知关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0相等的实数根,则k 的取值范围是( ) A .k <﹣2 B .k <2 C .k >2 D .k <2且k≠16.二次函数y=ax 2+bx+c (a≠0论:①b 2﹣4ac >0;②2a+b <0;③4a ﹣2b+c=0;④a :b :﹣1:2:3.其中正确的是( )A .①②B .②③C .③④D .①④二、填空题(本大题共8小题,每小题3分,共24分) 7.一元二次方程x 2﹣3x=0的根是 .8.某药品原价每盒25号召,经过连续两次降价,现在售价每盒16均每次降价的百分率是 .密线学校 班级 姓名 学号密 封 线 内 不 得 答 题9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 . 10.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图象如图所示,则ax 2+bx+c≤mx+n 时,x 的取值范围是 .11.方程x 2﹣2x ﹣k=0的一个实数根为3,则另一个根为 .12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 .13.已知抛物线y=x 2﹣2(k+1)x+16的顶点在x 轴上,则k 的值是 .14.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 .三、(本大题共4小题,每小题6分,共24分) 15.解方程:x (2x+3)=4x+6.16.如图,已知:BC 与CD 重合,∠ABC=∠CDE=90°,△ABC≌△CDE ,并且△CDE 可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O (保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 .17.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC .(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1,(只画出图形).(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,(只画出图形),写出B 2和C 2的坐标.密封线内18.已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.20.已知等腰△ABC的一边长a=3,另两边长b、c恰好是关于x的方程x2﹣(k+2)x+2k=0的两个根,求△ABC的周长.21.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点Q分别从A、B同时出发,P在边AB上沿AB方向以每秒的速度匀速运动,Q在边BC上沿BC方向以每秒1cm间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.22.在同一平面内,△ABC和△ABD如图①放置,其中小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△绕着边AD的中点旋转180°得到△DFA问题:(1)试猜想四边形ABDF(2)连接EF,CD,如图③,求证:四边形CDEF边形.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题五、(本大题共10分)23.如图,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系(如图1),y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m .(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m ,宽2.4m ,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m 的隔离带,则该辆货运卡车还能通过隧道吗?六、(本大题共12分)24.如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).(1)求A 、B 的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P ,使得△PAB 的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.解:A.是轴对称图形,不是中心对称图形,故本选项错误; B.既不是中心对称图形,也不是轴对称图形,故本选项错误; C.不是轴对称图形,是中心对称图形,故本选项错误; D.是中心对称图形,也是轴对称图形,故本选项正确.故选D . 2.解:把x=m 代入方程x 2﹣x ﹣2=0得: m 2﹣m ﹣2=0,m 2﹣m=2,所以m2﹣m+2=2+2=4.故选A.3.解:∵点P关于x轴的对称点P1的坐标是(2,3),∴点P的坐标是(2,﹣3).∴点P关于原点的对称点P2的坐标是(﹣2,3).故选D.4.解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.5.解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.6.解:由二次函数图象与x轴有两个交点,∴b2﹣4ac>0,选项①正确;又对称轴为直线x=1,即﹣=1,可得2a+b=0(i),选项②错误;∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a﹣2b+c<0,选项③错误;∵﹣1对应的函数值为0,∴当x=﹣1时,y=a﹣b+c=0(ii),联立(i)(ii)可得:b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,选项④正确,则正确的选项有:①④.故选D二、填空题(本大题共8小题,每小题3分,共24分)7.解:x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.8.解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.9称图形,故选项正确;故答案为:②⑤.10.解:依题意得求关于x的不等式ax2+bx+c≤mx+n实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置可以得到此时x围是﹣2≤x≤1.故填空答案:﹣2≤x≤1.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题11.解:∵方程x 2﹣2x ﹣k=0的一个实数根为3,∴把3代入方程得:9﹣6﹣k=0, ∴k=3,∴把k=3代入原方程得:x 2﹣2x ﹣3=0,∴解得方程的两根分别为3和﹣1,故答案为:﹣1. 12.解:∵二次函数的解析式的二次项系数是,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(1,4),∴该二次函数图象在[﹣∞1m]上是减函数,即y 随x 的增大而减小;即:当x≤1时,y 随x 的增大而减小, 故答案为:x≤1.13.解:根据顶点纵坐标公式,抛物线y=x 2﹣2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x 轴上时, ∴顶点纵坐标为0,即=0,解得k=3或﹣5. 故本题答案为3或﹣5.14.解:∵Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上, ∴4=4a ,解得a=1, ∴抛物线为y=x 2,∵点A (﹣2,4), ∴B (﹣2,0), ∴OB=2,∵将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD , ∴D 点在y 轴上,且OD=OB=2, ∴D (0,2), ∵DC ⊥OD , ∴DC ∥x 轴, ∴P 点的纵坐标为2, 代入y=x 2,得2=x 2, 解得x=±, ∴P (,2).故答案为(,2).三、(本大题共4小题,每小题6分,共24分) 15.解:x (2x+3)﹣2(2x+3)=0,∴(2x+3)(x ﹣2)=0, ∴2x+3=0或x ﹣2=0, ∴x 1=﹣,x 2=2.16.解:如图所示:旋转角度是90°. 故答案为:90°.密 封 不17.解:(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示, B 2(4,﹣1),C 2(1,﹣2).18.解:(1)∵x 1,x 2是方程x 2﹣6x+k=0的两个根, ∴x 1+x 2=6,x 1x 2=k , ∵x 12x 22﹣x 1﹣x 2=115, ∴k 2﹣6=115, 解得k 1=11,k 2=﹣11,当k 1=11时,△=36﹣4k=36﹣44<0, ∴k 1=11不合题意当k 2=﹣11时,△=36﹣4k=36+44>0, ∴k 2=﹣11符合题意,∴k 的值为﹣11;(2)∵x 1+x 2=6,x 1x 2=﹣11∴x 12+x 22+8=(x 1+x 2)2﹣2x 1x 2+8=36+2×11+8=66. 四、(本大题共4小题,每小题8分,共32分) 19.解:(1)把(0,0)代入得k+1=0,解得k=﹣1, 所以二次函数解析式为y=x 2﹣3x ;(2)当y=0时,x 2﹣3x=0,解得x 1=0,x 2=3,则A (3,抛物线的对称轴为直线x=, 设B (x ,x 2﹣3x ), 因为△AOB 的面积等于6,所以•3•|x 2﹣3x|=6,当x 2﹣3x=4时,解得x 1=﹣1,x 2=4,则B 点坐标为(4,当x 2﹣3x=﹣4时,方程无实数解. 所以点B 的坐标为(4,4). 20.解:x 2﹣(k+2)x+2k=0 (x ﹣2)(x ﹣k )=0, 则x 1=2,x 2=k , 当b=c ,k=2,则△ABC 的周长=2+2+3=7, 当b=2,c=3或c=2,b=3密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题则k=3,则△ABC 的周长=2+3+3=8.故△ABC 的周长是7或8. 21.解:(1)∵S △PBQ =PB•BQ ,PB=AB ﹣AP=18﹣2x ,BQ=x , ∴y=(18﹣2x )x ,即y=﹣x 2+9x (0<x≤4); (2)由(1)知:y=﹣x 2+9x ,∴y=﹣(x ﹣)2+,∵当0<x≤时,y 随x 的增大而增大, 而0<x≤4,∴当x=4时,y 最大值=20, 即△PBQ 的最大面积是20cm 2.22.(1)解:四边形ABDF 是菱形.理由如下: ∵△ABD 绕着边AD 的中点旋转180°得到△DFA , ∴AB=DF ,BD=FA , ∵AB=BD , ∴AB=BD=DF=FA , ∴四边形ABDF 是菱形;(2)证明:∵四边形ABDF 是菱形, ∴AB ∥DF ,且AB=DF ,∵△ABC 绕着边AC 的中点旋转180°得到△CEA , ∴AB=CE ,BC=EA ,∴四边形ABCE 为平行四边形,∴AB ∥CE ,且AB=CE , ∴CE ∥FD ,CE=FD ,∴四边形CDEF 是平行四边形. 五、(本大题共10分)23.解:(1)∵OE 为线段BC 的中垂线, ∴OC=BC .∵四边形ABCD 是矩形, ∴AD=BC=8m ,AB=CD=2m , ∴OC=4.∴D (4,2,).E (0,6).设抛物线的解析式为y=ax 2+c ,由题意,得,解得:,∴y=﹣x 2+6; (2)由题意,得当y=4.4时,4.4=﹣x 2+6, 解得:x=±, ∴宽度为:>2.4,∴它能通过该隧道; (3)由题意,得密线内不得答题(﹣0.4)=﹣0.2>2.4,∴该辆货运卡车还能通过隧道.六、(本大题共12分)24.解:(1)对于直线y=3x+3,令x=0,得到y=3;令y=0,得到x=﹣1,则A(﹣1,0),B(0,3);(2)由A(﹣1,0),C(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把B(0,3)代入得:3=﹣3a,即a=﹣1,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(3)连接BC,与抛物线对称轴交于点P,连接AP,由对称性得AP=CP,如图1所示,此时△ABP周长最小,由抛物线解析式y=﹣x2+2x+3=﹣(x﹣1)2+4,得到对称轴为直线x=1,设直线BC解析式为y=mx+n,将B(0,3),C(3,0)代入得:,解得:m=﹣1,n=3,即直线BC解析式为y=﹣x+3,联立得:,解得:,即P(1,2),根据两点间的距离公式得:AB==,BC==3,则P(1,2),周长为AB+BP+AP=AB+BP+PC=AB+BC=3+;(4)在抛物线的对称轴上存在点Q,使△ABQ如图2所示,分四种情况考虑:当AB=AQ1==时,在Rt△AQ1Q3中,AQ3=2,AQ1=,根据勾股定理得:Q1Q3==,此时Q1(1,);由对称性可得Q2(1,);当AB=BQ3时,可得OQ3=OA=1,此时Q3(1,0);当AQ4=BQ4时,Q4为线段AB∵A(﹣1,0),B(0,3),密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴直线AB 斜率为=3,中点坐标为(﹣,),∴线段AB 垂直平分线方程为y ﹣=﹣(x+), 令x=1,得到y=1,此时Q 4(1,1),综上,Q 的坐标为(1,)或(1,﹣)或(1,0)或(1,1).人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 120分钟)一、选择题(每题3分,共30分)1.下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正方形C .正五边形D .正三角形2.已知m 是方程x 2﹣x ﹣2=0的一个根,则m 2﹣m 的值是( )A .﹣2B .0C .2D .43.抛物线y=﹣5(x+2)2﹣6的顶点坐标是( ) A .(2,﹣6) B .(﹣2,﹣6)C .(2,6) D .(﹣5,﹣6) 4.若关于x 的方程x 2﹣4x+m+4=0有实数根,则m 的取值范围是( ) A .m <0B .m ≤0C .m >0D .m ≥05.某商品的价格为100元,连续两次降x%后的价格是81元,则x 为( ) A .9B .10C .19D .86.在平面直角坐标系中,点P (﹣3,4)关于y 轴对称点的坐标为( )A .(﹣3,4)B .(3,4)C .(3,﹣4)D .(﹣3,﹣4) 7.下列说法有误的是( )A .圆是中心对称图形B .平分弦的直径垂直于弦C .垂直于弦的直径平分弦D .圆的直径是最长的弦8.抛物线y=﹣x 2+3x ﹣的对称轴是( )A .x=3B .x=﹣3C .x=6D .x=﹣9.一元二次方程2x 2﹣8x=0的根是( ) A .x=4 B .x 1=0,x 2=4C .x=+4D .x 1=2,x 2=410.在抛物线y=x 2﹣4x ﹣4上的一个点是( ) A .(4,4) B .(3,﹣1) C .(﹣2,﹣8) D .()二、填空题:(每空3分,共39分)11.已知方程3x 2﹣2x+m=0的一个根是1,则m 的值为 .12.若将二次函数y=x 2﹣2x+3配方为y=(x ﹣n )2+k 的形式,则y= ,对称轴是 ,顶点坐标为 .题号一 二 三 总分 得分13.在平面直角坐标系中,点A 的坐标为(1,2),将OA 绕原点O 按顺时针方向旋转90°得到OA ′,则点A ′的坐标是 .14.如图,在⊙O 中,弦AB 的长为8cm ,OD ⊥AB 于C 且CD=2cm ,则⊙O 的半径为15.若关于x 的一元二次方程x 2﹣2x+m=0有两个相等的实数根,则m 的值是 16.已知二次函数y=x 2﹣2x+1,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小. 17.一元二次方程x 2﹣1=3x ﹣3的解是 . 18.将抛物线y=(x ﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为 . 19.一元二次ax 2+bx+c=0(a ≠0)的根与系数的关系是:x 1+x 2= ,x 1x 2= . 三、解答题(共5小题,满分51分) 20.(每小题3分,共12分)解方程:(1)x 2+2x=2 (2)196x 2﹣1=0(3)x (x ﹣2)+x ﹣2=0 (4)x 2﹣x ﹣=0.21.(8分)两个相邻偶数的积是168,求这两个数. 22.(8分)某地有一人患了流感,经过两轮传染后共有人患了流感,每轮传染中平均一个人传染了几个人? 23.(10分)小李想用篱笆围成一个周长为60矩形面积S 随矩形一边长x (单位:米)的变化而变化. (1)求S 与x 之间的函数关系式.(2)当x 是多少时,矩形场地的面积S 少?24.(13分)某商店销售一种销售成本为40元/若按50元/千克销售,一个月可售出500kg ,月销售量就减少10kg .(1)写出月销售利润y (单位:元)与售价x (单位:元/克)之间的函数解析式.(2)当销售价定为55元时,计算月销售量和利润.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(3)当售价为多少时,会获得最大利润?求出最大利润.参考答案与试题解析 一、选择题1.解:选项中的几个图形都是旋转对称图形, A 、正六边形旋转的最小角度是=60°,故此选项正确; B 、正五边形的旋转最小角是=72°,故此选项错误;C 、正方形的旋转最小角是=90°,故此选项错误;D 、正三角形的旋转最小角是=120°,故此选项错误. 故选:A .2.解:∵m 是方程x 2﹣x ﹣2=0的一个根, ∴m 2﹣m ﹣2=0, ∴m 2﹣m=2. 故选C .3.解:抛物线y=﹣5(x+2)2﹣6的顶点坐标为(﹣2,﹣6),故选B .4.解:根据题意得△=(﹣4)2﹣4×(4+m )≥0, 解得m ≤0, 故选B .5.解:根据题意得:100(1﹣x%)2=81, 解之,得x 1=190(舍去),x 2=10. 即平均每次降价率是10%.故选:B .6.解:点P (﹣3,4)关于y 轴对称点的坐标为(3,4).故选B .7.解:A 、圆是中心对称图形,圆心是它的对称中心,所以A 选项正确;B 、平分(非直径)弦的直径垂直于弦,所以B 选项不正确;C 、垂直于弦的直径,根据垂径定理,平分弦,所以C 选项正确;D 、圆的直径是最长的弦,选项正确; 故选B .8.解:∵y=﹣x 2+3x ﹣, ∴a=﹣,b=3, ∴对称方程为x=﹣=3, 故选A .9.解:∵2x 2﹣8x=0, ∴2x (x ﹣4)=0, ∴x=0或x ﹣4=0,解得:x 1=0,x 2=4.故选:B .10.解:A 、x=4时,y=x 2﹣4x ﹣4=﹣4≠4,点(4,4)不在抛物线上;B 、x=3时,y=x 2﹣4x ﹣4=﹣7≠﹣1,点(3,﹣1)不在抛物线上;C 、x=﹣2时,y=x 2﹣4x ﹣4=8≠﹣8,点(﹣2,﹣8)不在抛物线上;内 不 得D 、x=﹣时,y=x 2﹣4x ﹣4=﹣,点()在抛物线上.故选D .二、填空题:(每空3分,共39分)11.解:把x=1代入方程3x 2﹣2x+m=0,可得3﹣2+m=0, 解得m=﹣1.故答案为:﹣1.12.解:y=x 2﹣2x+3=(x 2﹣2x+1)+2=(x ﹣1)2+2,即y=(x﹣1)2+2,所以该抛物线的对称轴是x=1,顶点坐标是(1,2).故答案为:(x ﹣1)2+2;x=1;(1,2). 13.解:A 点的坐标为(1,2),根据旋转中心0,旋转方向顺时针,旋转角度90°,从而得点A ′的坐标是(2,﹣1).14.解:∵⊙O 的弦AB=8,半径OD ⊥AB , ∴AC=AB=×8=4,设⊙O 的半径为r ,则OC=r ﹣CD=r ﹣2,连接OA , 在Rt △OAC 中,OA 2=OC 2+AC 2,即r 2=(r ﹣2)2+42,解得r=5. 故答案为:5.15.解:∵关于x 的一元二次方程x 2﹣2x+m=0数根, ∴△=0,∴(﹣2)2﹣4m=0, ∴m=1,故答案为:1.16.解:二次函数y=x 2﹣2x+1的对称轴x=﹣=﹣2,当x<﹣2时,y 随x 的增大而增大,当x >﹣2时,y 随x 的增大而减小.故答案为:<﹣2;>﹣2. 17.解:方程整理得:x 2﹣3x+2=0, 分解因式得:(x ﹣1)(x ﹣2)=0, 解得:x 1=1,x 2=2. 故答案为:x 1=1,x 2=218.解:将y=(x ﹣1)2+3向左平移1为:y=x 2+3;再向下平移3个单位为:y=x 2.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为y=x 2.19.解:根据根与系数的关系可得:x 1+x 2=﹣,x 1x 2=. 三、解答题(共5小题,满分51分) 20.解:(1)x 2+2x+1=3,(x+1)2=3, x+1=±所以x 1=﹣1+,x 2=﹣1﹣; (2)(13x+1)(13x ﹣1)=0, 13x+1=0或13x ﹣1=0, 所以x 1=﹣,x 2=;(3)(x ﹣2)(x+1)=0, x ﹣2=0或x+1=0, 所以x 1=2,x 2=﹣1;(4)△=(﹣)2﹣4×1×(﹣)=3, x=所以x 1=,x 2=.21.解:设这两个相邻偶数为x ,x+2, 根据已知得:x (x+2)=168, 解得:x=12,或x=﹣14(舍去). x+2=14,故这两个数分别为12,14.22.解:设每轮传染中平均每个人传染了x 人, 依题意得1+x+x (1+x )=121,∴x=10或x=﹣12(不合题意,舍去).所以,每轮传染中平均一个人传染了10个人. 23.解:(1)根据题意,矩形另一边长为: =30﹣x 米,故S=x (30﹣x ); (2)∵S=x (30﹣x ) =﹣(x ﹣15)2+225,∴当x=15时,S 有最大值为225平方米.即当x 是15时,矩形场地面积S 最大,最大面积是225平方米.24.解:(1)可卖出千克数为500﹣10(x ﹣50)=1000﹣10x ,y 与x 的函数表达式为y=(x ﹣40)(1000﹣10x )=﹣10x 2+1400x ﹣40000;(2)当销售单价定为每千克55元时,月销售量为:500﹣(55﹣50)×10=450(千克);利润=450×(55﹣40)=6750元; (3)∵y=(x ﹣40)[500﹣10(x ﹣50)]=﹣10x 2+1400x ﹣40000;(3)y=﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000, ∴当x=70时,利润最大为9000元.答:当售价为70元,利润最大,最大利润是9000元.。
2020-2021学年天津市红桥区九年级上学期数学期中试卷及答案

2020-2021学年天津市红桥区九年级上学期数学期中试卷及答案一、选择题(本大题共12小题,每小题3分,共36分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列方程中,是一元二次方程的是( )A. B.3561x x -=-()2310x y -+=C. D. 2270x x --=213x x=+【答案】C【解析】 【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、该方程中的未知数x 的最高次数是1,属于一元一次方程,故本选项不符合题意;B 、该方程中含有两个未知数,不属于一元二次方程,故本选项不符合题意;C 、该方程符合一元二次方程的定义,故本选项符合题意;D 、该方程不属于整式方程,不属于一元二次方程,故本选项不符合题意. 故选:C .【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是(且a≠0).特别要注意a≠0的条件.这20ax bx c ++=是在做题过程中容易忽视的知识点.2. 下列标志中,可以看作是中心对称图形的是( ) A. B.C. D.【答案】B【解析】【分析】据中心对称图形概念,逐项检验作答.【详解】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B 可以看作是中心对称图形.故选:B .【点睛】考查中心对称图形,容易题,错误原因是不会区分轴对称图形和中心对称图形.3. 一元二次方程化为一般形式后,,,的2531x x x -=+()200++=≠ax bx c a a b c 值分别是( )A. ,,B. ,, 5a =4b =-1c =-5a =4b =1c =C. ,,D. ,,4a =5b =-1c =5a =-4b =1c =-【答案】A【解析】【分析】直接利用移项、合并同类项,即可得出a ,b ,c 的值.【详解】一元二次方程化为一般形式后, 2531x x x -=+20ax bx c ++=,25410x x --=则,,.5a =4b =-1c =-故选:A .【点睛】本题主要考查了一元二次方程的一般形式,正确合并同类项是解题关键.4. 一元二次方程可以转化为两个一元一次方程,其中一个一元一次方程为269x +=(),则另一个一元一次方程为( )63x +=A. B. C. D. 63x -=-69x +=-69x +=63x +=-【答案】D【解析】【分析】利用直接开平方法求解可得答案.【详解】解:∵,269x +=()∴x+6=3或x+6=-3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5. 用配方法解方程时,配方所得的方程为( )2640x x ++=A. B. C. D. ()235x +=()234-=x ()2313x +=()265x +=【答案】A【解析】【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【详解】解:∵,2640x x ++=∴,264x x +=-∴,即.2695x x ++=()235x +=故选:A .【点睛】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6. 已知关于的一元二次方程的两根分别为,,则原方程可x 20x px q ++=12x =23x =-化为( )A.B. ()()230x x ++=()()230+-=x xC.D. ()()230x x --=()()230x x -+=【答案】D【解析】【分析】根据根与系数的关系,直接代入计算即可.【详解】解:∵关于x 的一元二次方程的两根分别为=2,=-3, 20x px q ++=1x 2x ∴2-3=-p,2×(-3)=q ,∴p=1,q=-6,∴原方程为,260x x +-=∴原方程可化为(x-2)(x+3)=0.故选:D .【点睛】本题考查了根与系数的关系,解题的关键是熟练掌握根与系数的字母表达式,并会代入计算.7. 一元二次方程的两个根分别为和,则二次函数 20ax bx c ++=3-1-2y ax bx c =++的对称轴是( )A.B. C. D. 2x =-2x =3x =-1x =-【答案】A【解析】【分析】根据两根之和公式可以求出对称轴公式.【详解】解:∵一元二次方程的两个根为−3和−1, 20ax bx c ++=∴ =−4. 12b x x a-+=∴二次函数的对称轴为x =−=. 2y ax bx c =++2b a ()114222b a ⎛⎫⨯-=⨯-=- ⎪⎝⎭故选:A .【点睛】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.8. 若点,,都在二次函数的图象上,则,1(3,)A y -()2B 2,y -()32,C y 223y x x =--1y ,的大小关系是( )2y 3y A. B. C. D. 123y y y <<213y y y <<321y y y <<312y y y <<【答案】C【解析】【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=1,根据x <1时,y 随x 的增大而减小,即可得出答案.【详解】解:∵,()222314y x x x =--=--∴图象的开口向上,对称轴是直线x=1,C (2,)关于直线x=1的对称点是(0,),3y 3y ∵-3<-2<0<1,∴<<,3y 2y 1y 故选:C .【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.9. 要组织一次排球邀请赛,参赛的每两个队之间比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A. x (x+1)=28B.12(1)28x x -=C.D. x (x-1)=28 (1)28x x +=12【答案】D【解析】 【分析】根据参赛的每两个队之间都要比赛一场结合总共28场,即可得出关于x 的一元二次方程,此题得解.【详解】解:设比赛组织者应邀请x 个队参赛, 根据题意得:x (x-1)=4×7, 12即x (x-1)=28. 12故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x 的一元二次方程是解题的关键.10. 如图,在Rt△ABC 中,∠BAC=90°.如果将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于( )A. 55°B. 60°C. 65°D. 80°【答案】B【解析】 【详解】试题分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB 1是等边三角形,即可得出旋转角度.解:∵在Rt△ABC 中,∠BAC=90°,将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处,∴AB 1=BC ,BB 1=B 1C ,AB=AB 1,12∴BB 1=AB=AB 1,∴△ABB 1是等边三角形,∴∠BAB 1=60°,∴旋转的角度等于60°.故选B .11. 有一个人患了流感,经过两轮传染后共有121人患了流感,则每轮传染中平均一个人传染的人数为( )A.B. C. D. 8101214【答案】B【解析】【分析】患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人,第二轮作为传染源的是(x+1)人,则传染x (x+1)人,依题意列方程:1+x+x (1+x )=121,解方程即可求解.【详解】解:设每轮传染中平均一个人传染了x 个人,依题意得1+x+x (1+x )=121,即,2(1)121x +=解方程得=10,=-12(舍去).1x 2x 故选:B .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图所示,正方形ABCD 的边长为1.E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为S ,AE 为,则S 关于的函数图象大致是( )x xA. B. C. D.【答案】B【解析】【分析】根据条件可知,设为,则,AEH BFE CGF DHG △≌△≌△≌△AE x 1AH x =-根据勾股定理,进而可求出函数解析式,由此可求出答22222(1)EH AE AH x x =+=+-案.【详解】解:四边形ABCD 是正方形,∴,,AB BC CD DA ===90A B C D ∠=∠=∠=∠=︒又∵,AE BF CG DH ===∴,BE CF DG AH ===(SAS ).AEH BFE CGF DHG ∴△≌△≌△≌△设为,则,AE x 1AH x =-根据勾股定理,得,22222(1)EH AE AH x x =+=+-即22(1)s x x =+-2221x x =-+22()1x x =-+ 2112(144x x =-+-+, 2112()22x =-+所求函数图象是一条开口向上的抛物线,对称轴是直线. ∴12x =由题意可知自变量的取值范围是.01x <<故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用以及二次函数的综合运用.关键是根据题意,列出函数关系式,判断二次函数的自变量取值范围,开口方向及对称轴.二、填空题(本大题共6小题,每小题3分,共18分)13. 在平面直角坐标系中,为原点,将点绕点逆时针旋转得点,则点O ()2,0A O 90︒A 'A '的坐标为_____. 【答案】02(,)【解析】【分析】利用图象法,画出图形解决问题即可.【详解】解:如图,观察图象可知,A′(0,2).故答案为:(0,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是学会利用图象法解决问题,属于中考常考题型.14. 二次函数的最大值为_______.22y x x =-+【答案】1【解析】【分析】根据二次函数的性质直接求解即可.【详解】解:22y x x =-+∵a=-1<0∴当时有最大值 2=--12-2b x a ==即:2=-1211y +⨯=故答案为:1.【点睛】本题考查二次函数的最值,根据抛物线的开口方向,在时,函数有最值. =-2b x a 15. 若一元二次方程可以配方成的形式,则代数式的2610x x -+=()20x p q ++=p q +值为______.【答案】11-【解析】【分析】根据配方法解一元二次方程的步骤得出p 、q 的值,据此可得答案.【详解】解:∵-6x+1=0,2x ∴-6x=-1,2x ∴-6x+9=-1+9,即,2x ()()2380x +-+-=⎡⎤⎣⎦∴p=-3,q=-8,则p+q=-3-8=-11,故答案为:-11.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16. 若,则关于的方程的实数根的个数为_______.2k ≥x 22210x k x k k -+-+=【答案】2【解析】【分析】计算根的判别式,根据k 的取值范围,得到判别式的取值范围,即可得到结论.【详解】解:∵,22210x k x k k -+-+=∴△= 22(2)4(1)k k k ---+=,4(1)k -因为,2k ≥所以,4(1)0k ->故方程有两个不相等的实数根,故答案为:2.【点睛】本题考查了一元二次方程根的判别式的应用,熟练掌握判别式的意义是解题的关键.17. 某村2016年的人均收入为20000元,2018年的人均收入为24200元,则2016年到2018年该村人均收入的年平均增长率为______【答案】10%【解析】【分析】设2016年到2018年该村人均收入的年平均增长率为,根据题意列一元二次方程,x 解方程可得答案.【详解】解:设2016年到2018年该村人均收入的年平均增长率为,则x()220000124200,x +=()21 1.21,x ∴+=或 1 1.1x ∴+=1 1.1,x +=-1210%, 2.1,x x ∴==-经检验:不合题意,舍去,2 2.1x =-答:2016年到2018年该村人均收入的年平均增长率为10%.故答案为:10%.【点睛】本题考查的是一元二次方程的应用,增长率问题,掌握一元二次方程的增长率问题的解答是求解的关键.18. 若抛物线(为常数)与轴的两个交点都在轴的正半轴上,则的取2y x x k =--k x x k 值范围是______.【答案】## 104-<<k 0.250k -<<【解析】【分析】根据题意可得:抛物线与y 轴交于正半轴,从而 且()()2140k ∆=--⨯-> ,即可求解.0k ->【详解】解:设x 1,x 2是抛物线和x 轴的交点横坐标,∵抛物线y =x 2﹣x﹣k 与x 轴的两个交点都在x 轴正半轴上,∴ 且 ,()()2140k ∆=--⨯->12·0x x k =->解得:. 104-<<k 故答案为:. 104-<<k 【点睛】本题主要考查了二次函数的性质和图象,熟练掌握二次函数的性质和图象,运用数形结合思想是解题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19. 在平面直角坐标系中,各顶点的坐标分别为,,. ABC ()50A ,()32B -,()13C --,(1)请在图中作出关于原点对称的,并写出各顶点的坐标;ABC A B C '''V A B C '''V (2)求的面积.A B C '''V S 【答案】(1)见解析 (2)的面积A B C '''V 8S =【解析】【分析】(1)先根据关于原点对称的点的坐标特征求出点A′,点B′,点C′的坐标,然后描出点A′,点B′,点C′,最后顺次连接点A′,点B′,点C′即可;(2)根据△A′B′C′的面积等于其所在的长方形面积减去周围三个小三角形面积求解即可.【小问1详解】关于原点对称的图形如图所示.ABC点A 的对称点的坐标为; A '()50-,点的对称点的坐标为; B B '()32-,点的对称点的坐标为. C C '()13,【小问2详解】解:由题意可得: 11185256382222S =⨯-⨯⨯-⨯⨯-⨯⨯.18=【点睛】本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.20. 解下列关于的方程.x (1);()2130x --=(2).23620x x --=【答案】(1),11x =-21x =(2), 1x =2x =【解析】【分析】(1)直接利用开平方的方法解方程即可;(2)利用公式法求解即可.【小问1详解】解:移项,得. 213x -=()开方得:,1-=x解得,11x =-21x =【小问2详解】解:∵23620x x --=∴,,.3a =6b =-2c =-∴.()()2246432600b ac ∆=-=--⨯⨯-=>∴方程有两个不等的实数根∴ x =解得,. 1x =2x =【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.21. 已知关于的一元二次方程(为常数).x 220x x m ++=m(1)若是该方程的一个实数根,求的值;1x =m (2)当时,求该方程的实数根;6m =-(3)若该方程有两个不相等的实数根,求的取值范围.m 【答案】(1)3m =-(2), 132x =22x =-(3)的取值范围是 m 18m <【解析】 【分析】(1)代入x=1可得出关于m 的方程,解之即可得出m 的值;(2)代入m=-6,利用因式分解法解一元二次方程,即可得出方程的实数根;(3)根据方程的系数结合根的判别式Δ>0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【小问1详解】解:将x=1代入原方程,得:2+1+m=0,解得:m=-3,∴m 的值为-3;【小问2详解】解:当m=-6时,原方程为,2260x x +-=∴(2x-3)(x+2)=0,解得:=,=-2, 1x 322x ∴该方程得实数根为=,=-2; 1x 322x 【小问3详解】解:∵该方程有两个不相等的实数根,∴,21420m ∆=-⨯⨯>∴m<, 18∴m 的取值范围为m <. 18【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)代入x=1求出m 值;(2)代入m 的值,解一元二次方程;(3)牢记“当Δ>0时,方程有两个不相等的实数根”.22. 已知二次函数的图象为抛物线.243y x x =-+C (1)写出抛物线的开口方向、对称轴和顶点坐标;C (2)当时,求该二次函数的函数值的取值范围;23x -≤≤y (3)将抛物线先向左平移个单位长度,得到抛物线;再将抛物线向上平移个单C 11C 1C 2位长度,得到抛物线.请直接写出抛物线,对应的函数解析式.2C 1C 2C 【答案】(1)抛物线的开口向上,抛物线的对称轴为直线,顶点坐标为C C 2x =()2,1-(2)函数值的取值范围是y 115y -≤≤(3)抛物线对应的函数解析式为;抛物线对应的函数解析式为1C 22y x x =-2C .222y x x -=+【解析】【分析】(1)根据二次函数的性质进行解题即可;(2)根据二次函数的增减性进行解题即可;(3)根据二次函数平移规律:左加右减,上加下减进行解题即可.【小问1详解】解:∵,=10a >∴抛物线的开口向上.C ∵,224321y x x x =-+=--()∴抛物线的对称轴为直线,顶点坐标为.C 2x =21-(,)【小问2详解】解:∵当时,随的增大而减小;当时,随的增大而增大. 22x -≤≤y x 23x ≤≤y x ∵当时,;当时,,x=2时,y=-1,2x =-15y =3x =0y =∴函数值的取值范围是:.y 115y -≤≤【小问3详解】解:∵抛物线向左平移个单位长度:,1222+11=2y x x x =---()∴抛物线对应的函数解析式为;1C 22y x x =-∵再向上平移两个单位:222y x x -=+∴抛物线对应的函数解析式为.2C 222y x x -=+【点睛】本题考查二次函数的性质和平移.熟练掌握二次函数的性质和平移规律是解题的关键.23. 一块三角形材料如图所示,,,.用这块材料剪出一个30A ∠=︒90C ∠=︒12AB =矩形CDEF ,其中,点D ,E ,F ,分别在AC ,AB ,BC 上.设AE 的长为x ,矩形CDEF 的面积为S .(1)写出S 关于x 的函数解析式,并写出x 的取值范围;(2)当矩形CDEF 的面积为AE 的长;(3)当AE 的长为多少时,矩形CDEF 的面积最大?最大面积是多少?【答案】(1) ()2012CDEF S x x =+<<矩形(2)AE 的长为4或8(3)当点E 为AB 的中点时,矩形CDEF 的面积最大,最大面积是【解析】【分析】(1)先确定,再由矩形的性质得到,根据含30°角直角012x <<90AFE ∠=︒三角形的性质解得,,接着由勾股定理得到12EF AE =162BC AB ==,最后根据矩形的面AC ==CF AC AF AE =-=积公式解答即可;(2)由矩形CDEF 的面积为,再)26x -+=利用直接开平方解题;(3)利用配方法得到,据此解答. )26CDEF S x =-+矩形【小问1详解】解:解:∵,,点E 与点A 点B 均不重合,12AB =AE x =∴,012x <<∵四边形CDEF 是矩形,∴,90AFE ∠=︒∵,30A ∠=︒∴, 12EF AE =在中,,,,Rt ABC △90C ∠=︒30A ∠=︒12AB =∴, 162BC AB ==根据勾股定理得:AC ==∴, CF AC AF AE =-=∴; ()210122CDEF S CF EF x x x x ⎛⎫=⋅==+<< ⎪ ⎪⎝⎭矩形【小问2详解】根据题意得,2CDEF S x =+=矩形2(6)36x ⎡⎤--=⎣⎦, )26x -+=()264x -=62x ∴-=±解得:,,14x =28x =∴AE 的长为4或8; 【小问3详解】∵ ()2012CDEF S x =+<<矩形212)x x =-2221266)x x =-+-2(6)36x ⎤=--⎦, )26x =-+∴当时,矩形CDEF 的面积最大,6x =即当点E 为AB 的中点时,矩形CDEF 的面积最大,最大面积是.【点睛】本题考查一元二次方程的应用、二次函数的应用,涉及解一元二次方程、求二次函数的最值、矩形的性质、含30°角直角三角形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.24. 如图,在中,,将绕点顺时针旋转得到,点Rt ABC △90ACB ∠=︒ABC C DEC 的对应点为,点的对应点落在线段上,与相交于点,连接.B E A D AB DE BC F BE(1)求证:平分;DC ADE ∠(2)试判断与的位置关系,并说明理由;BE AB (3)若, 求的大小(直接写出结果即可).BE BD =ABC ∠【答案】(1)见解析 (2),理由见解析BE AB ⊥(3)的大小为ABC ∠22.5︒【解析】【分析】(1)利用等腰三角形的性质以及旋转不变性解决问题即可;(2)结论:AB⊥BE.证明∠DBE+∠DCE=180°,即可解决问题;(3)连接AF .过点B 作BH⊥CD 交CD 的延长线于H ,作BT⊥CE 于T ,证明△BHD≌△BTE,推出CB 是∠DCE 的角平分线,得到∠ACD=45°,据此求解即可解决问题.【小问1详解】证明:∵△DCE 是由△ACB 旋转得到,∴CA=CD,∠A=∠CDE,∴∠A=∠CDA,∴∠CDA=∠CDE,∴CD 平分∠ADE;【小问2详解】解:结论:BE⊥AB.由旋转的性质可知,∠ACD=∠BCE,∵CA=CD,CB=CE ,∴∠CAD=∠CDA=∠CBE=∠CEB,∵∠ABC+∠CAB+∠ACD+∠DCB=180°,∴∠ABC+∠CBE+∠DCB+∠BCE=180°,∴∠DCE+∠DBE=180°,∵∠DCE=90°,∴∠DBE=90°,∴BE⊥AB;【小问3详解】解:如图,连接AF ,过点B 作BH⊥CD 交CD 的延长线于H ,作BT⊥CE 于T ,∵∠H=∠BTC=∠HCT=90°,∴∠HBT=∠DBE=90°,∴∠DBH=∠EBT,∵BD=BE,∠H=∠BTE=90°,∴△BHD≌△BTE(AAS ),∴BH=BT,∵BH⊥CH,BT⊥CE,∴CB 是∠DCE 的角平分线, ∴∠DCB=∠ECB=∠DCE=45°,12∵∠ACB=90°,∴∠ACD=∠FCD=45°,∵AC=CD, ∴∠CAD=∠ADC==67.5°, 180452︒-︒∴∠ABC=90°-∠CAD=22.5°.【点睛】本题属于三角形综合题,考查了旋转变换,全等三角形的判定和性质,角平分线的判定和性质,等腰直角三角形的性质等知识,解题的关键是证明△BHD≌△BTE.25. 已知抛物线(为常数,)交轴于点,点,26y ax bx =++a 0a ≠x ()6,0A ()1,0B -交轴于点.y C (1)求点的坐标和抛物线的解析式;C (2)是抛物线上位于直线上方的动点,过点作轴平行线,交直线于点,P AC P y ACD 当取得最大值时,求点的坐标;PD P(3)是抛物线的对称轴上一点,为抛物线上一点;当直线垂直平分的M l N AC AMN 边时,求点的坐标.MN N【答案】(1)y =−x 2+5x +6,C (0,6);(2)P (3,12);(3)()或72) 72【解析】【分析】(1)当x =0时,y =6,可求点C 坐标,利用待定系数法可求解析式;(2)先求出直线AC 的解析式,再设D (t ,−t +6)(0<t <6),知P (t ,−t 2+5t +6),从而得PD =−(t −3)2+9,据此可得答案;(3)先判断出NF∥x 轴,进而求出点N 的纵坐标,即可建立方程求解得出结论.【详解】解:(1)∵抛物线经过点A (6,0),B (−1,0), 26y ax bx =++∴, 6036660a b a b -+=⎧⎨++=⎩∴, 15a b =-⎧⎨=⎩∴抛物线的解析式为y =−x 2+5x +6,当x =0时,y =6,∴点C (0,6);(2)如图(1),∵A(6,0),C (0,6),∴直线AC 的解析式为y =−x +6,设D (t ,−t +6)(0<t <6),则P (t ,−t 2+5t +6),∴PD=−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9,当t =3时,PD 最大,此时,−t 2+5t +6=12,∴P(3,12);(3)如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF ,∵点F 在线段MN 的垂直平分线AC 上,∴FM=FN ,∠NFC=∠MFC,∵l∥y 轴,∴∠MFC=∠OCA=45°,∴∠MFN=∠NFC+∠MFC=90°,∴NF∥x 轴,由(2)知,直线AC 的解析式为y =−x +6,由(1)可知:抛物线的对称轴为直线x= 52当x =时,y =, 5272∴F(,), 5252∴点N 的纵坐标为, 72设N 的坐标为(m ,−m 2+5m +6),∴−m 2+5m +6=, 72或m∴点N ,,). 7272【点睛】本题是二次函数综合题,主要考查了待定系数法,解一元二次方程,(2)中判断出PD =PE,(3)中NF∥x轴是解本题的关键.。
2020-2021学年人教版第一学期九年级期中考试数学试卷(含答案)

九年级期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若x=1是方程x2+ax-2=0的一个根,则a的值为()A. 0B. 1C. 2D. 33.将二次函数y=2(x-1)2+2的图象向左平移2个单位长度得到的新图象的表达式为()A. B. C. D.4.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是()A. (b−2,−a)B. (b+2,−a)C. (−a+2,−b)D. (−a−2,−b)5.同一坐标系中,抛物线y=(x-a)2与直线y=a+ax的图象可能是( )A. B. C. D.6.一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1+x2的值是( )A. 6B. -6C. 5D. -57.如图,已知在△ABC中,∠ABC=90°,AB=8,BC=6,将线段AC绕点A顺时针旋转得到AD,且∠DAC=∠BAC,连接CD,且△ACD的面积为()A. 24B. 30C. 36D. 408.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染的人数是()A. 5人B. 6人C. 7人D. 8人9.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A. B. C. D. 且10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c >b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A. ②④⑤⑥⑦B. ①②③⑥⑦C. ①③④⑤⑦D. ①③④⑥⑦二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为________.12.某乡村种的水稻2018年平均每公顷产3200kg ,2020年平均每公顷产5000kg ,则水稻每公顷产量的年平均增长率为________.13.一抛物线的形状,开口方向与y=3x2−3x+1相同,顶点在(-2,3),则此抛物线的解析式为2________.14.如图,是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0),则方程ax2+bx+c=0(a≠0)的两根是________15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=________.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B 点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.17.如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是________.18.如图,抛物线y=−14x2+12x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于X轴,与拋物线相交于P、Q两点,则线段PQ的长为________.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.20.已知关于x的一元二次方程x2+(k−1)x+k−2=0.(1)求证:方程总有两个实数根;(2)任意写出一个k值代入方程,并求出此时方程的解.21.已知二次函数y=x2-4x+3,设其图象与x轴的交点分别是A、B(点A在点B的左边),与y轴的交点是C,求:(1)A、B、C三点的坐标;(2)△ABC的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.24.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.25.如图,已知抛物线y=1x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上2O、A之间的一个动点,过点B分别作x轴和y轴的平行线与直线OA交于点C、E,(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC、BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m、n之间的关系式.26.在一-次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F 重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4 cm,并进行如下研究活动。
人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含4套题)

密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(每小题3分,共24分)1.下列图形中,既是中心对称图形又是轴对称图形的( ) A .B .C .D .2.下列方程是一元二次方程的是( ) A .ax 2+bx+c=0 B .x 2+2x=x 2﹣1 C .﹣x=2 D .(x ﹣1)(x ﹣3)=0 3.下列关于x 的方程有实数根的是( )A .x 2﹣x+1=0B .x 2+x+1=0C .x 2﹣x ﹣1=0D .(x ﹣1)2+1=0 4.用配方法解方程x 2+8x+9=0,变形后的结果正确的是( ) A .(x+4)2=﹣7 B .(x+4)2=﹣9 C .(x+4)2=7 D .(x+4)2=255.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=59°,则∠C 等于( )A .29°B .31°C .59°D .62°6.若代数式x 2+3x+5的值为7,则代数式3x 2+9x ﹣2的值等于( )A .0B .4C .6D .197.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A (,y 1),B (2,y 2),C (﹣,y 3),则y 1、y 2、y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 3>y 1>y 2 D .y 3>y 2>y 1 8.已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,对称轴是直线x=,则下列结论中,正确的是( )A .a <0B .2a+3b=0C .a ﹣b+c <0D .c <﹣1二、填空题(每小题3分,共21分)9.已知方程x 2+kx ﹣10=0的一根是2,则另一根是__________.不得答10.如果一个三角形外接圆的圆心在三角形边上,那么这个三角形是__________三角形.11.若点P(m,2)与点Q(3,n)关于原点对称,则m﹣n=__________.12.把抛物线y=x2﹣2x﹣2先向右平移2个单位,再向下平移5个单位得到新的抛物线解析式是__________.13.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于__________.14.如图,直线与x轴,y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是__________.15.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,则等腰△ABC的面积为__________.三、解答题(本大题8个小题,共75分)16.解下列方程:(1)x(x﹣3)+x﹣3=0(2)3x2+5(2x+1)=0.17.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.18.2013年,黄冈市某楼盘以每平方米4000行降价促销,经过连续两年下调后,20153240元.(1)求平均每年下调的百分率;密学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设2016年的均价仍然下调相同的百分率,李老师准备购买一套100平方米的住房,他持有现金10万元,可以在银行贷款20万元,李老师的愿望能否实现?(房价每平方米按照均价计算)19.已知二次函数y=﹣x 2+2x+m .(1)如果二次函数的图象与x 轴有两个交点,求m 的取值范围;(2)如图,二次函数的图象过点A (3,0),与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围.20.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (﹣1,1),C (﹣1,3). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2;(3)△OB 2P 为等腰三角形,且P 在x 轴上,请直接写出所有符合条件的P 点坐标.21.一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为__________,周长为__________.(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为__________,周长为__________.(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为__________.(4)在图3情况下,若AD=1,求出重叠部分图形的周长.22.某大型汽车租赁公司有高级小轿车160间,每辆车每天收租金180每辆车日租金提高20元,则减少1020元的这种方法变化下去.(1)设每辆车日租金提高x(元)(元),但会减少y2辆车租出,请分别写出y1、y2与x 函数关系式;(2)为了投资少而利润大,每辆车日租金提高x租赁公司每天日租金总收入为y(元),请写出y与x 数关系式,租金收入,并说明理由.23.如图①,直线l:y=mx+n(m<0,n>0)与x,y交于A,B两点,将△AOB绕点O逆时针旋转90°得到△过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 关联直线.密 学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若l :y=﹣2x+2,则P 表示的函数解析式为__________;若P :y=﹣x 2﹣3x+4,则l 表示的函数解析式为__________. (2)求P 的对称轴(用含m ,n 的代数式表示);(3)如图②,若l :y=﹣2x+4,P 的对称轴与CD 相交于点E ,点F 在l 上,点Q 在P 的对称轴上.当以点C ,E ,Q ,F 为顶点的四边形是以CE 为一边的平行四边形时,求点Q 的坐标;(4)如图③,若l :y=mx ﹣4m ,G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM .若OM=,直接写出l ,P表示的函数解析式.参考答案一、选择题(每小题3分,共24分) 1.D . 2. D . 3. C . 4.C 5.B . 6.B . 7.D . 8. B .二、填空题(每小题3分,共21分)9.已知方程x 2+kx ﹣10=0的一根是2,则另一根是﹣5. 10.如果一个三角形外接圆的圆心在三角形边上,那么这个三角形是直角三角形.11.若点P (m ,2)与点Q (3,n )关于原点对称,则m ﹣n=﹣1.12.把抛物线y=x 2﹣2x ﹣2先向右平移2个单位,再向下平移5个单位得到新的抛物线解析式是y=(x ﹣3)2﹣8. 13.已知x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,则+等于﹣2.14.如图,直线与x 轴,y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是.15.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,则等腰△ABC 的面积为32或8.三、解答题(本大题8个小题,共75分) 16.解下列方程:解:(1)x (x ﹣3)+x ﹣3=0 (x ﹣3)(x+1)=0 x ﹣3=0,x+1=0 解得:x 1=3,x 2=﹣1. (2)3x 2+5(2x+1)=0 3x 2+10x+5=0b 2﹣4ac=100﹣4×3×5=40 x=解得:x 1=,x 2=.17.证明:(1)连接AD ;∵AB 是⊙O 的直径, ∴∠ADB=90°. 又∵DC=BD ,∴AD 是BC 的中垂线. ∴AB=AC . (2)连接OD ;∵OA=OB ,CD=BD , ∴OD ∥AC .∴∠0DE=∠CED . 又∵DE⊥AC , ∴∠CED=90°.∴∠ODE=90°,即OD ⊥DE . ∴DE 是⊙O 的切线.密学校 班级 姓名 学号密 封 线 内 不 得 答 题18.解:(1)设平均每年下调的百分率为x , 根据题意得4000(1﹣x )2=3240, 解得x 1=0.1x 2=1.9(舍),所以平均每年下调的百分率为10%;(2)3240×(1﹣10%)×100=291600<(10+20)×10000,李老师的愿望可以实现.19.解:(1)∵二次函数的图象与x 轴有两个交点, ∴△=22+4m >0 ∴m >﹣1;(2)∵二次函数的图象过点A (3,0), ∴0=﹣9+6+m ∴m=3,∴二次函数的解析式为:y=﹣x 2+2x+3, 令x=0,则y=3, ∴B (0,3),设直线AB 的解析式为:y=kx+b , ∴,解得:,∴直线AB 的解析式为:y=﹣x+3,∵抛物线y=﹣x 2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2, ∴P (1,2).(3)根据函数图象可知:x <0或x >3.20.解:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1如图所示:(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2如图所示:(3)①OB 2=PB 2时,OP=2OA 2=2, ∴P 1(2,0);②OB 2=OP 时,∵OB=, ∴P 2(﹣,0),P 3(,0); ③OP=B 2P 时,P 4(1,0).密封 线 内 不综上,符合条件的P 点坐标为(1,0),(2,0),(,. 21.解:(1) 4,4+4; (2) 4,8. (3) 4. (4)如图所示:过点M 作ME ⊥BC 于点E ,MH ⊥AC 于点H , ∴四边形MECH 是矩形, ∴MH=CE , ∵∠A=45°, ∴∠AMH=45°, ∴AH=MH , ∴AH=CE ,在Rt △DHM 和Rt △GEM 中,,∴Rt △DHM ≌Rt △GEM . ∴GE=DH ,∴AH ﹣DH=CE ﹣GE , ∴CG=AD , ∵AD=1, ∴DH=1. ∴DM==∴四边形DMGC 的周长为: CE+CD+DM+ME =AD+CD+2DM=4+2.22.解:(1)由题意可得:y 1=180+x ,y 2=x ; (2)由题意可得:y=(180+x )(160﹣x ), 即:y=﹣(x ﹣70)2+31250,当x=70时,可获最大日租金收入31250元,因为31250>×180,又因为每次提价为20元, 所以x 是不可能取到70,根据二次函数的对称性,与70金获得最大化,而与70最接近的两个数分别是60或80,使投资少而利润大,每辆车日租金应提高80元. 23.解:(1)若l :y=﹣2x+2,则A (1,0),B (0,2). ∵将△AOB 绕点O 逆时针旋转90°,得到△COD , ∴D (﹣2,0).密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题设P 表示的函数解析式为:y=ax 2+bx+c ,将点A 、B 、D 坐标代入得:,解得,∴P 表示的函数解析式为:y=﹣x 2﹣x+2; 若P :y=﹣x 2﹣3x+4=﹣(x+4)(x ﹣1), 则D (﹣4,0),A (1,0). ∴B (0,4).设l 表示的函数解析式为:y=kx+b ,将点A 、B 坐标代入得:,解得,∴l 表示的函数解析式为:y=﹣4x+4. (2)直线l :y=mx+n (m >0,n <0), 令y=0,即mx+n=0,得x=﹣; 令x=0,得y=n .∴A (﹣,0)、B (0,n ), ∴D (﹣n ,0).设抛物线对称轴与x 轴的交点为N (x ,0), ∵DN=AN ,∴﹣﹣x=x ﹣(﹣n ), ∴2x=﹣n ﹣,∴P 的对称轴为x=﹣.(3)若l :y=﹣2x+4,则A (2,0)、B (0,4), ∴C (0,2)、D (﹣4,0).可求得直线CD 的解析式为:y=x+2. 由(2)可知,P 的对称轴为x=﹣1.∵以点C ,E ,Q ,F 为顶点的四边形是以CE 为一边的平行四边形,∴FQ ∥CE ,且FQ=CE .设直线FQ 的解析式为:y=x+b . ∵点E 、点C 的横坐标相差1, ∴点F 、点Q 的横坐标也是相差1. 则|x F ﹣(﹣1)|=|x F +1|=1, 解得x F =0或x F =﹣2.∵点F 在直线l l :y=﹣2x+4上, ∴点F 坐标为(0,4)或(﹣2,8).若F (0,4),则直线FQ 的解析式为:y=x+4, 当x=﹣1时,y=, ∴Q 1(﹣1,);密 封 线 内 不 得 答 题若F (﹣2,8),则直线FQ 的解析式为:y=x+9, 当x=﹣1时,y=, ∴Q 2(﹣1,).∴满足条件的点Q 有2个,如答图1所示,点Q 坐标为Q 1(﹣1,)、Q 2(﹣1,).(4)如答图2所示,连接OG 、OH . ∵点G 、H 为斜边中点, ∴OG=AB ,OH=CD .由旋转性质可知,AB=CD ,OG ⊥OH , ∴△OGH 为等腰直角三角形. ∵点M 为GH 中点,∴△OMG 为等腰直角三角形, ∴OG=OM=•=2,∴AB=2OG=4. ∵l :y=mx ﹣4m ,∴A (4,0),B (0,﹣4m ).在Rt △AOB 中,由勾股定理得:OA 2+OB 2=AB 2, 即:42+(﹣4m )2=(4)2, 解得:m=﹣2或m=2, ∵点B 在y 轴正半轴,∴m=2舍去,∴m=﹣2.∴l 表示的函数解析式为:y=﹣2x+8; ∴B (0,8),D (﹣8,0). 又A (4,0),利用待定系数法求得P :y=﹣x 2﹣x+8.密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、填空题(共24分)1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m= .2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形ABFE绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,BC=4,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=﹣1时,y=3,那么当x=3时,y= .二、选择题(共30分)9.如图中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( ) A .x 1=1,x 2=﹣3 B .x 1=4,x 2=﹣2 C .x 1=﹣1,x 2=3 D .x 1=﹣4,x 2=2密封线内不11.已知a、b满足a+b=5且ab=6,以a、b为根的一元二次方程为()A.x2+5x+6=0 B.x2﹣5x+6=0 C.x2﹣5x﹣6=0 D.x2+5x﹣6=012.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y313.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50° B.60° C.70° D.80°14.如图是二次函数y=ax2+bx+c的部分图象,y<0时自变量x的取值范围是()A.﹣1<x<5 B.x>5C.x<﹣1且x>5 D.x<﹣1或x>515.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为()A.B.C.D.16.如图是一个中心对称图形,A为对称中心,若∠C=90∠B=30°,AC=1,则BB′的长为()A.4 B. C.D.17.若1人患流感,经过两轮传染后共有121照这样的传染速度,则经过第三轮传染后共有(感.A.1210 B.1000 C.1100 D.133118.二次函数y=ax2+bx+c(a≠0结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b﹣1:2:3.其中正确的是()密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .①②B .②③C .③④D .①④三、解答题(共66分) 19.解方程(1)(x ﹣2)2=(2x+5)2 (2)=.20.已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块部分种草,使每块草坪面积都是144m 2,求甬路宽度.23.如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A 逆时针旋转后,得到△P ′AB . (1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.得答题24.为了落实中央的惠农政策,积极推进农业机械化,黄冈市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A型、B型农机设备所投资的金额x(万元)与政府补贴的金额y1(万元)、y2(万元)的函数关系如图所示(图中OA段是抛物线,A是抛物线的顶点).(1)分别写出y1、y2与x的函数关系式;(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,四边形OEAF是以OA为对角线的平行四边形,求▱OEAFS与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E标;若不存在,请说明理由.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、填空题( 共24分) 1.或. 2.,.3.c=9.4.P ′的坐标为(﹣3,2).5. x <0或x >.6.120.7.10.8.3. 二、选择题(共30分)9.B .10.B .11.B .12.C .13.C .14.C .15.C.16.A 17.D 18.D 三、解答题(共66分)19. 解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5),所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:内 不得 答(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90°可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.61.6=4k ,解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;密学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元,当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ; =﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限. ∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 是菱形; 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF 不是菱形. ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E 的坐标为(﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF 为正方形.密 封线 人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD 为M ,OM :OC=3:5,则AB 的长为( )A .cm B .8cm C .6cm D .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c 的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16四边形ABCD 的面积最大值是( )密学校 班级 姓名 学号密 封 线 内 不 得 答 题A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法: ①b 2﹣4ac <0;②ab+ac <0;③方程ax 2+bx+c=0有两个不同根x 1、x 2,且(x 1﹣1)(1﹣x 2)>0;④二次函数的图象与坐标轴有三个不同交点, 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是_________. 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为_________.13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离_________.14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为_________.15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_________.16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是_________.三、解答题(共8小题,共72分) 17.解方程:x 2+x ﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式.19.已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值; (2)求2x 12+6x 2﹣2015的值.密封线内不得20.如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.飞机着陆后滑行的距离S(单位:m)关于滑行时间t位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.如图,△ABC是边长为6cm的等边三角形,点D从B发沿B→A方向在线段BA上以a cm/s点E从线段BC的某个端点出发,以b cm/s速度在线段BC运动,当D到达A点后,D、E运动停止,运动时间为t密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1.B . 2.A . 3. B .4.C .5.D .6.D .7.B .密封线内不得答题8.D.9.D.10.C.二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是直线x=﹣.12.已知x=(b2﹣4c>0),则x2+bx+c的值为0 .13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离7cn或17cm .14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为﹣2 .15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是x>3或x<﹣1 .16.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是(2﹣3)a≤DE≤a..密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(共8小题,共72分)17. 解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作; (2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°,密 内 不 得 答∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2, 解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来, 则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°, ∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°.设AF=x ,FC=y ,则有FG=AF=x ,BG=CF=y . 在Rt △BHG 中,BH=BG •sin ∠BGH=BG •sin60°=y ,GH=BG •cos ∠BGH=BG •cos60°=y ,∴FH=FG ﹣GH=x ﹣y . 在Rt △BHF 中,BF 2=BH 2+FH 2 =(y )2+(x ﹣y )2=x 2﹣xy+y 2.∴==1;(2)过点E 作EN ⊥AB 于N ,连接MC ,如图3,由题可得:∠BEN=30°,BD=1×t=t ,CE=2(t ﹣3)=2t ﹣6. ∴BE=6﹣(2t ﹣6)=12﹣2t ,BN=BE •cosB=BE=6﹣t , ∴DN=t ﹣(6﹣t )=2t ﹣6, ∴DN=EC .∵△DEM 是等边三角形,密 封 线 内 不 得 答 题∴DE=EM ,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°, ∴∠NDE=∠MEC . 在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,∴M 点运动的路径为过点C 垂直于BC 的一条线段. 当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC •sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3. 24.解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y+|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n 2由y=x 2向下平移n 2个单位所得, ∴其焦点为A (0,﹣n 2),准线为y=﹣﹣n 2,由定义知P 为抛物线上的点,则PA=PH , ∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2, ∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2), 设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(30分)1.下列图形中,旋转60°后可以和原图形重合的是( )A .正六边形 B .正方形C .正五边形D .正三角形2.已知m 是方程x 2﹣x ﹣2=0的一个根,则m 2﹣m 的值是( )A .﹣2B .0C .2D .43.抛物线y=﹣5(x+2)2﹣6的顶点坐标是( ) A .(2,﹣6) B .(﹣2,﹣6)C .(2,6) D .(﹣5,﹣6) 4.若关于x 的方程x 2﹣4x+m+4=0有实数根,则m 的取值范围是( ) A .m <0B .m ≤0C .m >0D .m ≥05.某商品的价格为100元,连续两次降x%后的价格是81元,则x 为( ) A .9B .10C .19D .86.在平面直角坐标系中,点P (﹣3,4)关于y 轴对称点的坐标为( )A .(﹣3,4)B .(3,4)C .(3,﹣4)D .(﹣3,﹣4) 7.下列说法有误的是( )A .圆是中心对称图形B .平分弦的直径垂直于弦C .垂直于弦的直径平分弦D .圆的直径是最长的弦8.抛物线y=﹣x 2+3x ﹣的对称轴是( ) A .x=3B .x=﹣3C .x=6D .x=﹣9.一元二次方程2x 2﹣8x=0的根是( ) A .x=4B .x 1=0,x 2=4C .x=+4D .x 1=2,x 2=410.在抛物线y=x 2﹣4x ﹣4上的一个点是( ) A .(4,4) B .(3,﹣1) C .(﹣2,﹣8) D .()二、填空题:(每空3分,共39分)11.已知方程3x 2﹣2x+m=0的一个根是1,则m 的值为 .12.若将二次函数y=x 2﹣2x+3配方为y=(x ﹣n )2+k 的形式,则y= ,对称轴是 ,顶点坐标为 .13.在平面直角坐标系中,点A 的坐标为(1,2),将OA 绕原点O 按顺时针方向旋转90°得到OA ′,则点A ′的坐标是 .14.如图,在⊙O 中,弦AB 的长为8cm ,OD ⊥AB 于C 且CD=2cm ,则⊙O 的半径为15.若关于x 的一元二次方程x 2﹣2x+m=0有两个相等的实数根,则m 的值是 16.已知二次函数y=x 2﹣2x+1,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小。
2020_2021学年初三(上)期中考试数学试卷与详细参考答案

2020~2021学年江苏省泰州市某校初三(上)期中考试数学试卷一、选择题1. 下列方程是一元二次方程的是( )−1=0 C.x2=x+1 D.x+1=2xA.x+y−1=0B.x+2x2. 若⊙O的半径为4cm,点A到圆心O的距离为5cm,那么点A与⊙O的位置关系是( )A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定3. 用配方法解一元二次方程x2+2x−2=0时,原方程可变形为( )A.(x+1)2=2B.(x−1)2=2C.(x+1)2=3D.(x−1)2=34. 一种药品经过两次降价,药价从每盒60元下调至48.6元,若平均每次降价的百分率为x,则可列方程为( )A.60(1+x)=48.6B.60(1−x)=48.6C.60(1+x)2=48.6D.60(1−x)2=48.65. 在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部6. 如图,在矩形ABCD中,AB=a(a<2),BC=2.以点D为圆心,CD的长为半径画弧,交AD于点E,交BD于点F.下列哪条线段的长度是方程x2+2ax−4=0的一个根( )A.线段AE的长B.线段BF的长C.线段BD的长D.线段DF的长二、填空题方程x2−2x=0的根是________.若x=−1是关于x的一元二次方程x2+ax+2b=0的解,则2a−4b=________.若正六边形的边长为2cm,则它的外接圆半径为________cm.若一个圆锥的底面半径为3,母线长为5,则该圆锥侧面展开图的面积为________.如图,AB为⊙O的弦,半径OC⊥AB,垂足为D,如果AB=8cm,CD=2cm,那么⊙O的半径是________cm.已知关于x的一元二次方程(x−5)2=m+1有实数根,则m的取值范围是________.在平面直角坐标系xOy中,A(5,6),B(5,2),C(3,0),△ABC的外接圆的圆心坐标为________.如图,△ABC的周长为24cm,AC=8cm,⊙O是△ABC的内切圆,⊙O的切线MN 与AB,BC分别交于点M,N,则△BMN的周长为________cm.若关于x的一元二次方程2ax2−(a+4)x+2=0有一个正整数解,则正整数a=________.如图,在平面直角坐标系xOy 中,A (8,0),⊙O 半径为3,B 为⊙O 上任意一点,P 是AB 的中点,则OP 的最小值是________.三、解答题解下列方程(1)(x −1)2=5;(2)(2x +1)2=−6x −3.先化简再求值:(1−1m−1)÷m 2−4m+4m−1,其中m 是方程x 2−x =0的根.已知关于x 的方程x 2−3x −m 2=0.(1)不解方程,判断该方程根的情况;(2)设方程的两实数根分别为x 1,x 2,若x 1+2x 2=2,试求m 的值.如图,在⊙O 中,弦AB 与弦CD 相交于点E ,且AB =CD .求证:CE =BE .一根长8m 的绳子能否围成一个面积为3m 2的矩形?若能,请求出矩形的长和宽;若不能,请说明理由.如图,在△ABC中,∠C=90∘,AB=10,BC+AC=14,且BC>AC.(1)求BC的长;(2)在线段BC上求作一点Q,使得以点Q为圆心,QC为半径的⊙Q刚好与AB相切,请运用尺规作图找出符合条件的点Q,并求出⊙Q的半径.(不写作法,保留作图痕迹)一批发市场某服装批发价为240元/件.为拉动消费,该批发市场规定:当批发数量超过10件时,给予降价优惠,但批发价不得低于150元/件.经市场调查发现,优惠时批发价y(元/件)与x(件)之间成一次函数关系,当批发数量为15件时,批发价为210元/件;当批发数量为22件时,批发价为168元/件.(1)求批发价y(元/件)与x(件)之间的一次函数表达式;(2)在该市场降价优惠期间,某顾客一次性支付了3600元,求该顾客批发了多少件服装?如图,在Rt△ABC中,∠ACB=90∘,点D是AB上一点,以CD为直径的⊙O交BC于点E,连接AE交⊙O于点F,且∠DFE=∠BAC.(1)求证:AB与⊙O相切;(2)若∠DFE=30∘,CD=2,求弧DE与弦CD,CE围成的阴影部分面积.阅读理解:转化思想是常用的数学思想之一.在研究新问题或复杂问题时,常常把问题转化为熟悉的或比较简单的问题来解决.如解一元二次方程是转化成一元一次方程来解决的;解分式方程是转化为整式方程来解决的.由于“去分母”可能产生增根,所以解分式方程必须检验.利用转化思想,我们还可以解一些新的方程,如无理方程(根号下含有未知数的方程).解无理方程关键是要去掉根号,可以将方程适当变形后两边同时平方,将其转化为整式方程.由于“去根号”可能产生增根,所以解无理方程也必须检验.例如:解方程√x2+12=2x解:两边平方得:x2+12=4x2解得:x1=2,x2=−2经检验,x1=2是原方程的根,x2=−2代入原方程中不合理,是原方程的增根.∴原方程的根是x=2.解决问题:(1)填空:已知关于x的方程√3x−a=x有一个根是x=1,那么a的值为________;(2)求满足√x+6=x的x的值;(3)代数式√x2+9+√(8−x)2+9的值能否等于8?若能,求出x的值;若不能,请说明理由.如图,在平面直角坐标系xOy中,A(0,1),点P(t,0)为x轴上一动点(不与原点重合).以P为圆心,PA为半径的⊙P与x轴正半轴交于点B,连接AB,以AB为直角边在AB的右上方作等腰直角三角形ABC,且∠BAC=90∘,直线BC与⊙P的另一个公共点为F,连接PF.(1)当t=2时,点C的坐标为(________,________);(2)当t>0时,过点C作x轴的垂线l.①判断当点P运动时,直线l的位置是否发生变化?请说明理由;②试说明点F到直线l的距离始终等于OP的长;(3)请直接写出t为何值时,CF=2BF.参考答案与试题解析2020~2021学年江苏省泰州市某校初三(上)期中考试数学试卷一、选择题1.【答案】C【考点】一元二次方程的定义【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【解答】解:A,含有两个未知量,不是一元二次方程,故A错误;B,是分式方程,不是整式方程,故B错误;C,含有一个未知数,未知数的最高次数是2的整式方程,是一元二次方程,故C正确;D,最高次数是1,不是一元二次方程,故D错误.故选C.2.【答案】A【考点】点与圆的位置关系【解析】直接根据点与圆的位置关系即可得出结论.【解答】解:由题意知,⊙O的半径为4cm,点A到圆心O的距离为5cm,∵5cm>4cm,∴点A在圆外.故选A.3.【答案】C【考点】解一元二次方程-配方法【解析】根据配方法即可求出答案.【解答】解:原方程可化为:x2+2x=2,等式两边同时加上1得:x2+2x+1=3,即(x+1)2=3.故选C.4.【答案】D【考点】由实际问题抽象出一元二次方程【解析】此题利用基本数量关系:商品原价×(1−平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:第一次降价后的价格为60×(1−x),二次降价是在第一次降价后的价格基础上降低的,为60×(1−x)×(1−x),所以可列方程为60(1−x)2=48.6.故选D.5.【答案】B【考点】三角形的外接圆与外心确定圆的条件圆的有关概念【解析】根据圆的相关概念、确定圆的条件、三角形的外接圆与外心等知识分析即可解答. 【解答】解:A,因为只有经过圆心的弦才是直径,故A错误;B,半圆符合弧的定义,所以半圆是弧,故B正确;C,因为只有经过不在同一条直线上的三点才能确定一个圆,故C错误;D,因为锐角三角形的外心在三角形的内部,故D错误.故选B.6.【答案】B【考点】勾股定理矩形的性质解一元二次方程-公式法【解析】由方程x2+2ax−4=0的解结合线段的和差可以得到答案.【解答】解:∵x2+2ax−4=0,∴Δ=(2a)2−4×1(−4)=4a2+16>0,.∴x=−2a±√4a2+162∵ ∠BCD =90∘,BC =2,CD =AB =a ,∴ a 2+4=BD 2,∴ x =−2a±2BD 2=−a ±BD ,∴ x 1=−a +BD ,x 2=−a −BD .∵ DF =CD ,∴ BD −a =BD −CD =BD −DF =BF ,∴ 线段BF 的长是x 2+2ax −4=0的根.故选B .二、填空题【答案】x 1=0,x 2=2【考点】一元二次方程的解【解析】设方程另一根为t ,根据根与系数的关系得到−2⋅t =−12,−2+t =−k 2,然后解一次方程先求出t ,再求k 的值.【解答】解:一元二次方程x 2−2x =x(x −2)=0,所以x =0或x −2=0,解得x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【答案】2【考点】一元二次方程的解列代数式求值【解析】先把x =−1代入方程x 2+ax +2b =0得a −2b =1,然后利用整体代入的方法计算2a −4b 的值.【解答】解:∵ x =−1是关于x 的一元二次方程x 2+ax +2b =0的解,∴ 1−a +2b =0,即a −2b =1,∴ 2a −4b =2(a −2b )=2×1=2.故答案为:2.【答案】2【考点】正多边形和圆三角形的外接圆与外心【解析】利用正六边形的半径与边长相等可知.【解答】解:边长为2cm的正六边形可以分成六个边长为2cm的正三角形,而正三角形的边长即为正六边形的外接圆半径,其长度为2cm.故答案为:2.【答案】15π【考点】圆锥的展开图及侧面积【解析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3,则底面周长为6π,×6π×5=15π.侧面面积为12故答案为:15π.【答案】5【考点】勾股定理垂径定理【解析】连接OA,根据垂径定理求出AD,根据勾股定理R2=42+(R−2)2,计算求出R即可.【解答】解:连接OA.∵OC⊥AB,AB=4cm.∴AD=12设⊙O的半径为R,由勾股定理得,OA2=AD2+OD2,即R2=42+(R−2)2,解得:R=5.故答案为:5.【答案】m≥−1【考点】根的判别式【解析】根据非负数的性质可知(x−2)2≥0,所以当m+1≥0时,关于x的方程(x−2)2=m+1有解,由此求出m的取值范围.【解答】解:关于x的一元二次方程(x−5)2=m+1可化为:x2−10x+24−m=0,由题意可得:Δ=102−4(24−m)≥0,解得m ≥−1.故答案为:m ≥−1.【答案】(1,4)【考点】三角形的外接圆与外心待定系数法求一次函数解析式一次函数图象上点的坐标特点三角形中位线定理【解析】此题暂无解析【解答】解:如图所示,过点E 作EP ⊥x 轴,作AB 的中垂线交AB 于点D , 作BC 边的中垂线交BC 于点E ,交x 轴于点F ,两条中垂线交于点O .∵ EF 为BC 的中垂线,∴ FC =FB ,∴ F 的坐标为(5,0),△BCF 为等腰直角三角形.∵ E 是BC 中点,EP//BF ,∴ EP 是△BCF 的中位线,则点E 坐标为(4,1).设EF 所在直线解析式为y =kx +b ,将E(4,1),F(5,0)代入y =kx +b 得,{4k +b =1,5k +b =0,解得k =−1,b =5,∴ EF 的解析式为y =−x +5.∵ AB =6−2=4,则点D 的纵坐标为BD +BF =4,故点O 的纵坐标为4.∵ 点O 在直线EF 上,∴ 当y =4时,4=−x +5,解得x =1,故圆心O 的坐标为(1,4).故答案为:(1,4).【答案】8【考点】切线长定理【解析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BFCE=CG,ME=MH−1,NG=NH,再利用等量代换即可解题.【解答】解:由题意知,⊙O是△ABC的内切圆,MN是⊙O的切线.设AB边上的切点为E,BC边上的切点为F,AC边上的切点为G,MN边上的切点为H,连接各切点,由切线长定理易得,BE=BF,CF=CG,AE=AG,ME=MH,HN=FN.∵△ABC周长为24cm,AC=8cm,∴AC=AG+CG=AE+CF=8cm,∴△BMN的周长为BM+BN+MN=BM+ME+NF+BN=BE+BF=AB+BC−AE−CF=24−8−8=8cm.故答案为:8.【答案】1或2【考点】一元二次方程的解根的判别式解一元二次方程-公式法【解析】首先由一元二次方程的定义可得出a≠0,再利用根的判别式Δ=b2−4ac可得出Δ= (a−4)2≥0,得到a的取值范围;然后结合方程有一个正整数根,进一步得出a≠4且a≠0,利用公式法表示出两根,再根据x1、x2有一个正整数,a为整数,即可得出结论.【解答】解:∵方程2ax2−(a+4)x+2=0是关于x的一元二次方程,∴a≠0.∵Δ=(a+4)2−8a×2=(a−4)2≥0,∴当a=4时,方程有两个相等的实数根,当a≠4且a≠0时,方程有两个不相等的实数根.当a=4时,8x2−8x+2=0,即2(2x−1)2=0,解得:x=12,不合题意;当a≠4且a≠0时,x=a+4±√(a−4)22×2a =a+4±|a−4|4a,即x=a+4+a−44a =12(舍去)或x=a+4−a+44a=2a.∵此一元二次方程有一个正整数解,∴a=1或a=2.故答案为:1或2.【答案】52【考点】三角形中位线定理点与圆的位置关系【解析】此题暂无解析【解答】解:取OA的中点H,连接PH,则PH=12OB=32.∵A(8,0),∴H(4,0),∴点P的运动轨迹是以H为圆心,半径为32的圆,∴OP的最小值为OH−PH=4−32=52.故答案为:52.三、解答题【答案】解:(1)(x−1)2=5,两边直接开平方得:x−1=±√5,所以x1=1+√5,x2=1−√5 .(2)(2x+1)2=−6x−3,即(2x+1)2=−3(2x+1),即(2x+1)(2x+1+3)=0,即(2x+1)(2x+4)=0,解得:x1=−2,x2=−12.【考点】解一元二次方程-直接开平方法解一元二次方程-因式分解法【解析】(1)先将常数项移到等式的右边,然后化未知数的系数为1,通过直接开平方求得该方程的解即可;先移项得到4x2+10x+4=0,然后利用因式分解法解方程 .【解答】解:(1)(x−1)2=5,两边直接开平方得:x−1=±√5,所以x1=1+√5,x2=1−√5 .(2)(2x+1)2=−6x−3,即(2x+1)2=−3(2x+1),即(2x+1)(2x+1+3)=0,即(2x+1)(2x+4)=0,解得:x1=−2,x2=−12. 【答案】解:原式=m−1−1m−1÷(m−2)2m−1=m−2m−1×m−1(m−2)2=1m−2.解方程x2−x=0,即x(x−1)=0,解得:x1=1,x2=0. 由m−1≠0,得m≠1,所以m=0,所以1m−2=10−2=−12.【考点】分式的化简求值解一元二次方程-因式分解法【解析】先计算括号内分式的减法、将除式分子、分母因式分解,再约分即可化简原式,继而将m的值代入计算可得.【解答】解:原式=m−1−1m−1÷(m−2)2m−1=m−2m−1×m−1(m−2)2=1m−2.解方程x2−x=0,即x(x−1)=0,解得:x1=1,x2=0. 由m−1≠0,得m≠1,所以m=0,所以1m−2=10−2=−12.【答案】解:(1)Δ=(−3)2−4×1×(−m2)=9+4m2. ∵ 4m2≥0,∴ 9+4m2>0,则方程有两个不相等的实数根.(2)∵ x 1,x 2是方程的两根,∴ x 1+x 2=3.∵ x 1+2x 2=x 1+x 2+x 2=2,∴ x 2=−1,∴ (−1)2−3×(−1)−m 2=0,∴ m 2=4,∴ m =±2.【考点】根的判别式根与系数的关系一元二次方程的解【解析】(1)求出Δ的值,再判断即可;(2)由根与系数的关系求得x 2,把x 2代入方程即可求得m 的值.【解答】解:(1)Δ=(−3)2−4×1×(−m 2)=9+4m 2.∵ 4m 2≥0,∴ 9+4m 2>0,∴ Δ>0,则方程有两个不相等的实数根.(2)∵ x 1,x 2是方程的两根,∴ x 1+x 2=3.∵ x 1+2x 2=x 1+x 2+x 2=2,∴ x 2=−1,∴ (−1)2−3×(−1)−m 2=0,∴ m 2=4,∴ m =±2.【答案】证明:∵ AB =CD ,∴ AB̂=CD ̂, ∴ AB̂−BC ̂=CD ̂−BC ̂, ∴ AĈ=BD ̂, ∴ ∠C =∠B ,∴ CE =BE .【考点】圆周角定理等腰三角形的性质圆心角、弧、弦的关系【解析】由AB =CD ,得到AB ⌢=CD ⌢,再同时减去BC ⌢得到AC ⌢=BD ⌢,根据圆周角定理得到∠C =∠B ,根据三角形的判定得到答案.证明:∵ AB=CD,∴AB̂=CD̂,∴AB̂−BĈ=CD̂−BĈ,∴AĈ=BD̂,∴ ∠C=∠B,∴ CE=BE.【答案】解:设这个矩形的宽为xm,则长为(4−x)m.根据题意得,x(4−x)=3,解得x1=1,x2=3,则可以围成面积为3m2的矩形,它的长为3m,宽为1m.【考点】一元二次方程的应用【解析】设这个矩形的宽为xm,则长为(4−x)m,根据矩形面积公式列出方程,解得答案即可. 【解答】解:设这个矩形的宽为xm,则长为(4−x)m.根据题意得,x(4−x)=3,解得x1=1,x2=3,则可以围成面积为3m2的矩形,它的长为3m,宽为1m.【答案】解:(1)∵∠C=90∘,AB=10,AC+BC=14,∴AB2=AC2+BC2.设AC=x,则BC=14−x,∴x2+(14−x)2=102,解得x1=6,x2=8.又∵BC>AC,∴BC=8,AC=6,故BC的长为8.(2)如图,点Q即为所求,连接QE.∵⊙Q与AB相切于点E,则QE⊥AB.∵∠ACQ=90∘,∴AC为⊙Q的切线,∴AE=AC=6,∴BE=AB−AE=4.设⊙Q的半径为r.在Rt△BEQ中,BE=4,EQ=r,BQ=8−r,∴42+r2=(8−r)2,解得r=3,即⊙Q的半径为3.【考点】勾股定理圆的综合题切线长定理【解析】由已知条件,根据勾股定理AB2=AC2+BC2,设AC=x,则BC=14−x,则x2+(14−x)2=102,求出x,利用三角形边BC>AC,即可求出BC的长;作∠BAC的平分线交BC于Q点,然后以点Q为圆心,QC为半径作圆即可得到⊙Q;设⊙Q与AB相切于点E,连接QE,则QE⊥AB,如图,先判断AC为⊙Q的切线,则根据切线长定理得到AE=AC=6,所以BE=AB−AE=4,再△BPD∼△BAC,然后利用相似比计算出QE即可.【解答】解:(1)∵∠C=90∘,AB=10,AC+BC=14,∴AB2=AC2+BC2.设AC=x,则BC=14−x,∴x2+(14−x)2=102,解得x1=6,x2=8.又∵BC>AC,∴BC=8,AC=6,故BC的长为8.(2)如图,点Q即为所求,连接QE.∵⊙Q与AB相切于点E,则QE⊥AB.∵∠ACQ=90∘,∴AC为⊙Q的切线,∴AE=AC=6,∴BE=AB−AE=4.设⊙Q的半径为r.在Rt△BEQ中,BE=4,EQ=r,BQ=8−r,∴42+r2=(8−r)2,解得r=3,即⊙Q的半径为3.【答案】解:(1)设y 与x 的函数关系式为y =kx +b ,把x =15,y =210;x =22,y =168分别代入,得{15k +b =210,22k +b =168,解得{k =−6,b =300,∴ y =−6x +300.(2)根据题意得,(−6x +300)x =3600,即x 2−50x +600=0,解得:x 1=20,x 2=30.∵ 批发价不能低于150元,∴ 当x =30时,批发价为120元不合题意,∴ 该顾客批发了20件服装.【考点】待定系数法求一次函数解析式根据实际问题列一次函数关系式由实际问题抽象出一元二次方程解一元二次方程-因式分解法【解析】(1)设y 与x 的函数关系式为y =kx +b ,然后把x =15,y =210;x =22,y =168代入求出k 、b 的值即可求解;(2)根据支付费用=批发价×件数列一元二次方程求解,然后根据批发价不能低于150元确定件数.【解答】解:(1)设y 与x 的函数关系式为y =kx +b ,把x =15,y =210;x =22,y =168分别代入,得{15k +b =210,22k +b =168,解得{k =−6,b =300,∴ y =−6x +300.(2)根据题意得,(−6x +300)x =3600,即x 2−50x +600=0,解得:x 1=20,x 2=30.∵ 批发价不能低于150元,∴ 当x =30时,批发价为120元不合题意,∴ 该顾客批发了20件服装.【答案】(1)证明:连接DE ,∵ ∠ACB =90∘,∴ ∠BAC +∠B =90∘.∵ ∠DFE =∠BAC 且∠DFE =∠DCE ,∴ ∠BAC =∠DCB ,∴∠B+∠DCB=90∘,即∠CDB=90∘,∴AB与⊙O相切.(2)连接OE.∵CD=2,∴OD=OC=OE=12CD=1.∵CD为直径,∴∠DEC=90∘.∵∠DFE=30∘,∴∠DCE=∠DFE=30∘,∴DE=12CD=1.∵∠DEC=90∘,∴DE2+CE2=CD2∴CE=√3,∴S△CDE=CE⋅DE⋅12=√3×1×1 2=√32.∵OD=OC,∴S△DOE=S△COE=√34. ∵∠DCE=30∘,∴∠DOE=60∘,∴S阴影=60∘π360∘+√34=π6+√34.【考点】切线的判定圆周角定理勾股定理圆的综合题切线的性质三角形的面积扇形面积的计算【解析】(1)结论:AB是⊙O切线,连接DE,CF,由∠FCD+∠CDF=90∘,只要证明∠ADF=∠DCF即可解决问题.【解答】(1)证明:连接DE,∵∠ACB=90∘,∴∠BAC+∠B=90∘.∵∠DFE=∠BAC且∠DFE=∠DCE,∴∠BAC=∠DCB,∴∠B+∠DCB=90∘,即∠CDB=90∘,∴AB与⊙O相切.(2)连接OE.∵CD=2,∴OD=OC=OE=12CD=1.∵CD为直径,∴∠DEC=90∘.∵∠DFE=30∘,∴∠DCE=∠DFE=30∘,∴DE=12CD=1.∵∠DEC=90∘,∴DE2+CE2=CD2∴CE=√3,∴S△CDE=CE⋅DE⋅12=√3×1×1 2=√32.∵OD=OC,∴S△DOE=S△COE=√34. ∵∠DCE=30∘,∴∠DOE=60∘,∴S阴影=60∘π360∘+√34=π6+√34【答案】2(2)方程两边平方,得x+6=x2,即x2−x−6=0,即(x−3)(x+2)=0,解得x1=3,x2=−2,经检验,x1=3是原方程的根,x2=−2代入原方程中不合理,是原方程的增根,∴原方程的根是x=3.(3)不能.√x2+9+√(8−x)2+9=8,即√(8−x)2+9=8−√x2+9,两边同时平方得,(8−x)2+9=64−16√x2+9+x2+9,即−16x=−16√x2+9,两边同时平方得,x2=x2+9,无解,所以代数式的值不能为8.【考点】一元二次方程的解解一元二次方程-因式分解法【解析】将x=1代入原方程,求解即可;(2)通过两边平方,把无理方程转化为整式方程,求解,注意验根;【解答】解:(1)将x=1代入原方程,得:√3−a=1,∴3−a=1,解得:a=2.故答案为:2.(2)方程两边平方,得x+6=x2,即x2−x−6=0,即(x−3)(x+2)=0,解得x1=3,x2=−2,经检验,x1=3是原方程的根,x2=−2代入原方程中不合理,是原方程的增根,∴原方程的根是x=3.(3)不能.√x2+9+√(8−x)2+9=8,即√(8−x)2+9=8−√x2+9,两边同时平方得,(8−x)2+9=64−16√x2+9+x2+9,即−16x=−16√x2+9,两边同时平方得,x2=x2+9,无解,所以代数式的值不能为8.【答案】(1,3+√5)(2)①不变;如图所示,由(1)可知,△DAC≅△OBA,得DC=OA=1.∴点C的横坐标是定值为1,∴直线l是过点(1,0)且垂直于x轴的直线,直线l的位置不发生变化.②过点F作FM⊥x轴,垂足为点M,∵△ABC为等腰直角三角形,∴∠ABF=45∘,∴∠APF=90∘,∴∠APO=∠PFM.在△AOP和△PMF中,{∠AOP=∠PMF,∠APO=∠PFM,PA=FP,∴△AOP≅△PMF(AAS),∴MF=OP,即点F到直线l的距离为OP.(3)如图所示,取CF,FG中点为M,N.当t>0时,FH=t,易证△MNF≅△FHB,得到MN=FH=t.∵MN是△CGF中位线,∴CG=2MN=2t.∴y c=3t,则AD=3t−1,∴OB=AD=3t−1,即BP =3t −1−t =2t −1.在Rt △AOP 中,12+t 2=(2t −1)2解得t 1=0(舍去),t 2=43.当t <0时,易证∠APF =90∘,则△FMP ≅△POA ,∴ FM =OP =−t ,易证△FMB ≅△CEB ,得到CE =FH =−t ,∴ AD =−t −1,∴ OB =−t −1,即BP =−t +(−t −1)=−2t −1,在Rt △AOP 中,(−t)2+12=(−2t −1)2。
人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含5套题)

密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、填空题(共24分)1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m= .2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形ABFE绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,BC=4,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=﹣1时,y=3,那么当x=3时,y= .二、选择题(共30分)9.如图中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( ) A .x 1=1,x 2=﹣3 B .x 1=4,x 2=﹣2 C .x 1=﹣1,x 2=3 D .x 1=﹣4,x 2=2密封线内不11.已知a、b满足a+b=5且ab=6,以a、b为根的一元二次方程为()A.x2+5x+6=0 B.x2﹣5x+6=0 C.x2﹣5x﹣6=0 D.x2+5x﹣6=012.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y313.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50° B.60° C.70° D.80°14.如图是二次函数y=ax2+bx+c的部分图象,y<0时自变量x的取值范围是()A.﹣1<x<5 B.x>5C.x<﹣1且x>5 D.x<﹣1或x>515.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为()A.B.C.D.16.如图是一个中心对称图形,A为对称中心,若∠C=90∠B=30°,AC=1,则BB′的长为()A.4 B. C.D.17.若1人患流感,经过两轮传染后共有121照这样的传染速度,则经过第三轮传染后共有(感.A.1210 B.1000 C.1100 D.133118.二次函数y=ax2+bx+c(a≠0结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b﹣1:2:3.其中正确的是()密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .①②B .②③C .③④D .①④三、解答题(共66分) 19.解方程(1)(x ﹣2)2=(2x+5)2 (2)=.20.已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块部分种草,使每块草坪面积都是144m 2,求甬路宽度.23.如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A 逆时针旋转后,得到△P ′AB . (1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.得答题24.为了落实中央的惠农政策,积极推进农业机械化,黄冈市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A型、B型农机设备所投资的金额x(万元)与政府补贴的金额y1(万元)、y2(万元)的函数关系如图所示(图中OA段是抛物线,A是抛物线的顶点).(1)分别写出y1、y2与x的函数关系式;(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,四边形OEAF是以OA为对角线的平行四边形,求▱OEAFS与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E标;若不存在,请说明理由.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、填空题( 共24分) 1.或. 2.,.3.c=9.4.P ′的坐标为(﹣3,2).5. x <0或x >.6.120.7.10.8.3. 二、选择题(共30分)9.B .10.B .11.B .12.C .13.C .14.C .15.C.16.A 17.D 18.D 三、解答题(共66分)19. 解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5),所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:内 不得 答(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90°可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.61.6=4k ,解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;密学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元,当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ; =﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限. ∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 是菱形; 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF 不是菱形. ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E 的坐标为(﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF 为正方形.密 封线 人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD 为M ,OM :OC=3:5,则AB 的长为( )A .cm B .8cm C .6cm D .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c 的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16四边形ABCD 的面积最大值是( )密学校 班级 姓名 学号密 封 线 内 不 得 答 题A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法: ①b 2﹣4ac <0;②ab+ac <0;③方程ax 2+bx+c=0有两个不同根x 1、x 2,且(x 1﹣1)(1﹣x 2)>0;④二次函数的图象与坐标轴有三个不同交点, 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是_________. 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为_________.13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离_________.14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为_________.15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_________.16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是_________.三、解答题(共8小题,共72分) 17.解方程:x 2+x ﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式.19.已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值; (2)求2x 12+6x 2﹣2015的值.密封线内不得20.如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.飞机着陆后滑行的距离S(单位:m)关于滑行时间t位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.如图,△ABC是边长为6cm的等边三角形,点D从B发沿B→A方向在线段BA上以a cm/s点E从线段BC的某个端点出发,以b cm/s速度在线段BC运动,当D到达A点后,D、E运动停止,运动时间为t密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1.B . 2.A . 3. B .4.C .5.D .6.D .7.B .密封线内不得答题8.D.9.D.10.C.二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是直线x=﹣.12.已知x=(b2﹣4c>0),则x2+bx+c的值为0 .13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离7cn或17cm .14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为﹣2 .15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是x>3或x<﹣1 .16.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是(2﹣3)a≤DE≤a..密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(共8小题,共72分)17. 解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作; (2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°,密 内 不 得 答∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2, 解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来, 则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°, ∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°.设AF=x ,FC=y ,则有FG=AF=x ,BG=CF=y . 在Rt △BHG 中,BH=BG •sin ∠BGH=BG •sin60°=y ,GH=BG •cos ∠BGH=BG •cos60°=y ,∴FH=FG ﹣GH=x ﹣y . 在Rt △BHF 中,BF 2=BH 2+FH 2 =(y )2+(x ﹣y )2=x 2﹣xy+y 2.∴==1;(2)过点E 作EN ⊥AB 于N ,连接MC ,如图3,由题可得:∠BEN=30°,BD=1×t=t ,CE=2(t ﹣3)=2t ﹣6. ∴BE=6﹣(2t ﹣6)=12﹣2t ,BN=BE •cosB=BE=6﹣t , ∴DN=t ﹣(6﹣t )=2t ﹣6, ∴DN=EC .∵△DEM 是等边三角形,密 封 线 内 不 得 答 题∴DE=EM ,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°, ∴∠NDE=∠MEC . 在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,∴M 点运动的路径为过点C 垂直于BC 的一条线段. 当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC •sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3. 24.解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y+|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n 2由y=x 2向下平移n 2个单位所得, ∴其焦点为A (0,﹣n 2),准线为y=﹣﹣n 2,由定义知P 为抛物线上的点,则PA=PH , ∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2, ∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2), 设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共15题,每题3分共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( )A .11B .13C .11或13D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( )A .﹣4B .﹣1C .1D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( )A .12B .6C .9D .166.关于x 的一元二次方程9x 2﹣6x+k=0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC 绕点 A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于( )A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( )A .y=2(x+1)2+3B .y=2(x ﹣1)2﹣3C .y=2(x+1)2﹣3D .y=2(x ﹣1)2+3 10.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1) 11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1) 12.已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:密 封 线 内 不x ﹣1 0 1 2 3 y51﹣1 ﹣1 1则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x= 13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.解方程:x 2﹣4x+2=0.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0)该抛物线的解析式.18.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19的成本为5元,该店每天固定支出费用为600元本).若每份售价不超过10元,每天可销售400价超过10元,每提高1元,每天的销售量就减少40便于结算,每份套餐的售价x (元)取整数,用y 该店日净收入.( 日净收入=固定支出 )(1)当5<x ≤10时,y= ;当x >10时, y= ;(2)若该店日净收入为1560密学校 班级 姓名 学号密 封 线 内 不 得 答 题20.如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2. (3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.某房地产开放商欲开发某一楼盘,于2010年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2012年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2014年初完工并还清银行贷款),同时开始房屋出售,开发总面积为5万平方米,动工后每年的土地管理费降为购买土地费用的5%,工程完工后不再上交土地管理费.出售之前,该开发商聘请调查公司进行了市场调研,发现在该片区,若房价定位每平方米3000元,则会销售一空.若房价每平方米上涨100元,则会少卖1000平方米,且卖房时间会延长2.5个月.该房地产开发商预计售房净利润为8660万.(1)问:该房地产开发商总的投资成本是多少万? (2)若售房时间定为2年(2年后,对于未出售的面积,开发商不再出售,准备作为商业用房对外出租),则房价应定为每平方米多少元?23.正方形ABCD 中,将一个直角三角板的直角顶点与点A 重合,一条直角边与边BC 交于点E (点E 不与点B 和点C 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边MN 与边CD 交于G ,且点G 是斜边MN 的中点,连接EG ,求证:EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.封线内24.如图,已知点A(0,1),C(4,3),E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的一动点,点D在y轴上,抛物线y=ax2+bx+1以P为顶点.(1)说明点A,C,E在一条直线上;(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点,这时能确定a、b的值吗?若能,请求出a,b的值;若不能,请确定a、b的取值范围.参考答案一、选择题(共15题,每题3分共45分)1.B.2. C.3. B.4. C.5.B.6.A.7.A.8.D.910.B.11.B.12.D.13.A.14.D.15.C.二、解答题(本大题共9小题,共75分)16.解:x2﹣4x=﹣2x2﹣4x+4=2(x﹣2)2=2或∴,.17.解:设抛物线的解析式为y=a(x﹣1)2﹣4,∵抛物线经过点B(3,0),∴a(3﹣1)2﹣4=0,解得:a=1,∴y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.18.(1)证明:∵将△BOC绕点C按顺时针方向旋转60ADC,∴∠OCD=60°,CO=CD,∴△OCD是等边三角形;(2)解:△AOD为直角三角形.密学校 班级 姓名 学号密 封 线 内 不 得 答 题理由:∵△COD 是等边三角形.∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元;20.解:(1)作图如右:△A 1B 1C 1即为所求;(2)作图如右:△A 2B 2C 2即为所求;(3)x 的值为6或7.密 封 线 内 不 得 答 题21.解:(1)所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2, 原方程为x 2﹣5x+6=0⇒x 1=2,x 2=3 即,等腰三角形的三边为3,3,2. 则周长为8,面积为若底为3,则原方程为x 2﹣4x+4=0⇒x 1=x 2=2 即,等腰三角形的三边为2,2,3. 则周长为7,面积为22.解:(1)15×100=1500万, 1500×10%×2=300万,1500+3500+3500×5%×2=5350万, 1500×5%×2=150万,四者相加1500+300+5350+150=7300万. 答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x 个100元,依题意有(5﹣0.1x )=8660+7300, 解得x 1=12,x 2=8,又因为当x 1=12时,卖房时间为30个月,此时超过两年,所以舍去;当x 2=8时,卖房时间为20个月; 则房价为3000+8×100=3800元. 答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD 是正方形, ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD .∵∠EAF=90°, ∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD , ∴∠BAE=∠DAF . 在△ABE 和△ADF 中,∴△ABE ≌△ADF (ASA ) ∴AE=AF ;(2)如图②,连接AG , ∵∠MAN=90°,∠M=45°, ∴∠N=∠M=45°, ∴AM=AN .密学校 班级 姓名 学号密 封 线 内 不 得 答 题∵点G 是斜边MN 的中点,∴∠EAG=∠NAG=45°. ∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°,即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x , ∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得(6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k , ∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 都在抛物线上,且P 为顶点,∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0.∴抛物线开口向下;密 封 线 内不 得 答 题(3)连接GA 、FA . ∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2, 又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 的坐标为(3,1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0①由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A 段AE 有两个不同的交点,则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m+2的值等于( )A .4B .1C .0D .﹣13.已知点P 关于x 轴的对称点P 1的坐标是(2,3),那么点P 关于原点的对称点P 2的坐标是( )A .(﹣3,﹣2)B .(2,﹣3)C .(﹣2,﹣3)D .(﹣2,3) 4.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.已知关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <﹣2 B . k <2 C .k >2 D .k <2且k ≠1 6.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出下列结论:①b 2﹣4ac >0;②2a+b <0;③4a ﹣2b+c=0;④a :b :c=﹣1:2:3.其中正确的是( )A .①②B .②③C .③④D .①④二、填空题(本大题共8小题,每小题3分,共24分) 7.一元二次方程x 2﹣3x=0的根是 .得 答 题8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 .9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 . 10.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图象如图所示,则ax 2+bx+c ≤mx+n 时,x 的取值范围是 .11.方程x 2﹣2x ﹣k=0的一个实数根为3,则另一个根为 .12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 .13.已知抛物线y=x 2﹣2(k+1)x+16的顶点在x 轴上,则k 的值是 .14.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 .三、(本大题共4小题,每小题6分,共24分) 15.解方程:x (2x+3)=4x+6.16.如图,已知:BC 与CD 重合,∠ABC=∠CDE=90°,△≌△CDE ,并且△CDE 可由△ABC 尺规作出旋转中心O 墨水笔加黑),并直接写出旋转角度是 .17长为1个单位长度;已知△ABC .(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1(只画出图形).(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,形),写出B 2和C 2的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.已知x 1,x 2是关于x 的一元二次方程x 2﹣6x+k=0的两个实数根,且x 12x 22﹣x 1﹣x 2=115. (1)求k 的值; (2)求x 12+x 22+8的值.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy 中,二次函数y=x 2+(2k ﹣1)x+k+1的图象与x 轴相交于O 、A 两点. (1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B ,使△AOB 的面积等于6,求点B 的坐标.20.已知等腰△ABC 的一边长a=3,另两边长b 、c 恰好是关于x 的方程x 2﹣(k+2)x+2k=0的两个根,求△ABC 的周长.21.如图,矩形ABCD 的两边长AB=18cm ,AD=4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.22.在同一平面内,△ABC 和△ABD 如图①放置,其中AB=BD . 小明做了如下操作:将△ABC 绕着边AC 的中点旋转180°得到△CEA ,将△ABD 绕着边AD 的中点旋转180°得到△DFA ,如图②,请完成下列问题: (1)试猜想四边形ABDF 是什么特殊四边形,并说明理由; (2)连接EF ,CD ,如图③,求证:四边形CDEF 是平行四边形.五、(本大题共10分)23.如图,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系(如图1),y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m .(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m ,宽2.4m ,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2)道正中间设有0.4m 吗?六、(本大题共12分)24.如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过B 两点的抛物线交x 轴于另一点C (3,0). (1)求A、B的坐标; (2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P ,使得△PAB 并求出最小值;(4)在抛物线的对称轴上是否存在点Q ,使△ABQ 形?若存在,求出符合条件的Q 由.密 学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.D .2. A .3.D .4.B .5.D .6.D二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x 2﹣3x=0的根是 x 1=0,x 2=3 .8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 20% .9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 ②⑤ . 10.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图象如图所示,则ax 2+bx+c ≤mx+n 时,x 的取值范围是 ﹣2≤x ≤1 .11.方程x 2﹣2x ﹣k=0的一个实数根为3,则另一个根为﹣1 . 12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 x ≤1 .13.已知抛物线y=x 2﹣2(k+1)x+16的顶点在x 轴上,则k 的值是 3或﹣5 .14.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 (,2) .三、(本大题共4小题,每小题6分,共24分) 15.解:x (2x+3)﹣2(2x+3)=0, ∴(2x+3)(x ﹣2)=0, ∴2x+3=0或x ﹣2=0, ∴x 1=﹣,x 2=2.16.如图,已知:BC 与CD 重合,∠ABC=∠CDE=90°,△ABC ≌△CDE ,并且△CDE 可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O (保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 90° .内 答17.解:(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示, B 2(4,﹣1),C 2(1,﹣2).18.解:(1)∵x 1,x 2是方程x 2﹣6x+k=0的两个根, ∴x 1+x 2=6,x 1x 2=k , ∵x 12x 22﹣x 1﹣x 2=115, ∴k 2﹣6=115, 解得k 1=11,k 2=﹣11,当k 1=11时,△=36﹣4k=36﹣44<0, ∴k 1=11不合题意当k 2=﹣11时,△=36﹣4k=36+44>0, ∴k 2=﹣11符合题意,∴k 的值为﹣11; (2)∵x 1+x 2=6,x 1x 2=﹣11∴x 12+x 22+8=(x 1+x 2)2﹣2x 1x 2+8=36+2×11+8=66.四、(本大题共4小题,每小题8分,共32分) 19.解:(1)把(0,0)代入得k+1=0,解得k=﹣1, 所以二次函数解析式为y=x 2﹣3x ;(2)当y=0时,x 2﹣3x=0,解得x 1=0,x 2=3,则A (3,0抛物线的对称轴为直线x=, 设B (x ,x 2﹣3x ), 因为△AOB 的面积等于6, 所以•3•|x 2﹣3x|=6,当x 2﹣3x=4时,解得x 1=﹣1,x 2=4,则B 点坐标为(4,4当x 2﹣3x=﹣4时,方程无实数解. 所以点B 的坐标为(4,4). 20.解:x 2﹣(k+2)x+2k=0 (x ﹣2)(x ﹣k )=0, 则x 1=2,x 2=k , 当b=c ,。
2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每小题只有一个正确选项,每小题3分,共18分)1.(3分)如下图所示,下列四组图形中,左边图形与右边图形成中心对称的是()A.B.C.D.2.(3分)如图,A、B、C三点在圆O上,∠B=36°,则∠A O C的度数为()A.36°B.54°C.72°D.90°3.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.(3分)如图,⊙O的直径为10,弦AB的长为8,点P在AP上运动,则OP的最小值是()A.2B.3C.4D.55.(3分)已知函数y=x2+bx+c的图象与x轴只有一个交点,(x,2017)、(x,2017)是12该函数图象上的两个点,则当x=122时,函数值y=(A.﹣2017B.c C.0)D.c﹣20176.(3分)下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x<x<x<x<x<x<x,根据表中所提供的信息,以下判断正确的是()①a 1234567>0;②9<m<16;③k≤9;④b2≤4a(c﹣k)x… (x1x2)mx3x4kx5x6mx7……y169916 A.①②B.③④C.①②④D.①③④二、填空题(共6小题,每小题3分,共18分)7.(3分)函数y=√3−中,自变量x的取值范围是.8.(3分)如图,将正三角形绕其对称中心O旋转后,恰好能与原来的正三角形重合,那么旋转的角度至少是度.9.(3分)已知一元二次方程x2﹣4x+2=0的两根分别是x,x,那么(1+x)(1+x)的值1212是.10.(3分)如图,将△AB C绕点A逆时针方向旋转到△A DE的位置,点B落在AC边上的点D处,设旋转角为α(0°<α<90°).若∠B=125°,∠E=30°,则∠α=°.11.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围为12.(3分)如图所示的是二次函数y=ax2+bx+c的图象,有下列结论:.①二次三项式ax2++的最大值为4;②4+2+<0;③一元二次方程2++=1的bx c a b c ax bx c 两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0或x≤﹣2.其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、本大题共6小题,每小题6分,共30分)13.x2﹣2x﹣15=0.̂̂14.(6分)如图,在⊙O中,=A40D,∠=°,求∠的度数.15.(6分)如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽1度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池41面积的,求道路的宽.616.(6分)如图,将△ABC绕点A逆时针旋转得到△AB′C′.若点B′落到BC边上,∠B=50°.求∠CB′C′的度数.17.(6分)已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和B(3,﹣9).(1)求该二次函数的解析式;(2)填空:该抛物线的对称轴是;顶点坐标是;当x=时,y随x的增大而减小.18.(6分)如图,△ABC是⊙O的内接三角形,∠BA D是它的个外角,OP⊥B C交⊙O于点P,仅用无刻度的直尺分别按下列要求画图.(1)在图1中,画出△ABC的角平分线AF;(2)在图2中,画出△ABC的外角∠BA D的角平分线A G.四、(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程ax2﹣(a+2)x+2=0.(1)不解方程,判别方程的根的情况;(2)方程有两个不相等的正整数根时,求整数a的值.20.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且O D∥B C,O D与AC 交于点E.(1)若∠B=70°,求∠CA D的度数;(2)若AB=4,A C=3,求DE的长.21.(8分)如图,△OB D中,O D=B D,△OB D绕点O逆时针旋转一定角度后得到△OA C,此时B,D,C三点正好在一条直线上,且点D是B C的中点.(1)求∠C O D度数;(2)求证:四边形O D A C是菱形.五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?123.(9分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于23点C.抛物线y=ax2+bx+c的对称轴是x=−且经过A、C两点,与x轴的另一交点为点2B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PA C的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△A D E为等边三角形,M,N分别为EB,C D的中点.(1)如图1,试证C D=BE时,△A M N是等边三角形;(2)当把△A D E绕点A旋转到图2的位置时C D=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△A D E绕点A旋转到图3的位置时,△AM N还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?123.(9分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于23点C.抛物线y=ax2+bx+c的对称轴是x=−且经过A、C两点,与x轴的另一交点为点2B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PA C的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△A D E为等边三角形,M,N分别为EB,C D的中点.(1)如图1,试证C D=BE时,△A M N是等边三角形;(2)当把△A D E绕点A旋转到图2的位置时C D=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△A D E绕点A旋转到图3的位置时,△AM N还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).。