鲁教版(五四制)六年级数学上册第四章 4.1 等式与方程 课时训练

合集下载

鲁教版(五四制)六年级上册第四章第一节等式与方程 课后测试

鲁教版(五四制)六年级上册第四章第一节等式与方程 课后测试

A. 由 ܽ ৩ ,得到 1 ܽ ৩ 1 C. 由 ܽ ৩ ,得到 ܽ ৩
B. 由ܽ ৩ ,得到 ܽ ৩ D. 由 ܽ ৩ ,得到 ܽ ৩
11. 下列结论不正确的是
A. 已知 ܽ ৩ ,则ܽ ৩ B. 已知 ܽ ৩ ,m 为任意有理数,则 ܽ ৩ C. 已知 ܽ ৩ ,m 为任意有理数,则 ܽ ৩
D. 已知 ܽ㞨 ৩ ,且 ܽ
9.【答案】D
7.【答案】D
【解析】解:ܽ㞨 ⺐ ৩ 4㞨 1 而㞨
㞨 为整数 要为 4 ܽ 的倍数
ܽ ৩ 或 ܽ ৩ ⺐.
㞨৩4 ܽ
㞨৩4 ܽ ܽ4
【解析】【试题解析】
解: .由 㞨 ৩ ,两边都减去 2,可得 㞨 ৩
,等式成立,此选项不符合题意;
B.由 㞨 ৩ ,两边都加1 ,可得 㞨 1 ৩ 1 ,等式成立,此选项不符合题意;


关于 x 的方程 㞨 ⺐ ৩ ⺐ 㞨 有无数解,
1৩ ,
৩,
解得 ৩ 1, ৩ ,
৩ 1 ৩ 1.
故选:B.
【解析】 【试题解析】 【分析】 本题考查了等式的性质,熟记等式的性质是解题关键. 根据等式的性质进行逐一分析即可. 【解答】 解:A、因为 ܽ ৩ ,两边乘以同一个不为零的数,等式仍然成立,故 A 正确; B、两边乘以同一个数,等式仍然成立,故 B 正确; C、两边都除以同一个不为零的数,等式仍然成立,如果 ܽ ৩ ,当 ৩ ,则 a 与 b 不一定相等.故 C 错误; D、两边都除以同一个不为零的数,等式仍然成立,故 D 正确; 故选 C.
2.【答案】C
答案和解析
解:
⺐㞨
৩1且
৩ ⺐,
故选 B.
৩ 1৩ 是关于 x 的一元一次方程, ⺐,

鲁教版(五四制)六年级数学上册:4.1 等式与方程 学案

鲁教版(五四制)六年级数学上册:4.1 等式与方程  学案

等式与方程
【学习内容】
等式与方程——等式的基本性质
【学习目标】
1.能说出等式的两条基本性质。

2.能根据等式的基本性质判断等式变形是否正确。

3.能利用等式的基本性质解简单的一元一次方程。

4.通过本节课的学习,提高灵活运用数学性质解答数学问题的能力,提高探索创新能力。

【学习重难点】
1.灵活的运用等式性质解简单的一元一次方程。

2.对等式两个性质的判断选择与准确运用。

【学习过程】
一、学习准备
1.你见过天平吗,左右两个托盘的重量满足什么条件时天平才会平衡?
______________________________________________________________________。

2.你买东西时注意观察过使用的杆称吗?卖家是怎样给顾客称量物品的,不符合要求时,他们又是怎样调整的呢?
______________________________________________________________________。

二、探究新知
(一)等式基本性质的获得
1.基本性质的探究
(1)观察教材中的三幅天平示意图,如果把天平比作等式,你会有什么猜想?请你用自己的语言叙述你的猜想:
猜想一:______________________________________________。

提示:天平两边添加或拿去相同质量的砝码,相当于等式的左右两边如何变化?其结果会如何?大胆说出你的猜想。

(2)如果天平两边砝码的质量同时扩大或缩小相同的倍数,天平是否依然平衡?这相当于等式的左右两边发生了何种变化?其结果如何?。

(精选)六年级数学上册4.1等式与方程(第1课时) 优秀课件鲁教版五四制

(精选)六年级数学上册4.1等式与方程(第1课时) 优秀课件鲁教版五四制
第四章 一元一次方程 1 等式与方程 第1课时
方程的有关概念 (1)一元一次方程:只含有_一__个未知数,而且方程中的代数式都
是_整__式__,未知数的指数都是_1_的方程. (2)方程的解:使方程左、右两边的值_相__等__的未知数的值. (3)解方程:求_方__程__的__解__的过程.
【思维诊断】 (打“√”或“×”) 1.4x+7是方程. ( × ) 2.未知数的指数是一次的方程是一元一次方程. ( × )
x 按原价的十分之几或百分之1 几0 十出售.
【备选例题】(1)一份试卷共有30道选择题,答对一题得4分,答
错一题或不做扣1分,小红共得76分.若设小红答对了x道题,则
列方程为
.
(2)某班39人到公园划船,共租用9艘船,每艘大船可坐5人,每艘
小船可坐3人,每艘船都坐满.设租用大船x艘,则可列方程为
【方法一点通】 由实际问题列一元一次方程的“三个步骤” 1.设出未知数. 2.分析题意,找出等量关系. 3.根据等量关系列出方程.
14.一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功,要看他有谁相伴。 2.你是我无法抵达的地点,就似我和夕阳的距离。 68.你要记住你不是为别人而活,你是为自己而活。 94.即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。 16.知道自己要干什么,夜深人静,问问自己,将来的打算,并朝着那个方向去实现。而不是无所事事和做一些无谓的事。 20.没有比人更高的山,没有比心更宽的海,人是世界的主宰。 69.当我们懂得珍惜平凡的幸福时,就已经成了人生的赢家。 35.更新你的思想,你就能获得新生。 88.在各自岗位上尽职尽责,无需豪言壮语,默默行动会诠释一切。 75.比我强大的人都在努力我还有什么理由不拼命。 85.当我们在抱怨没有鞋子,却发现有些人没有脚。 65.一个今天胜过两个明天。 26.压力、挑战,这一切消极的东西都是我取得成功的催化剂。 20.身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,你唯一可以抱怨的,只有不够努力的自己。 46.贫穷本身并不可怕,可怕的是贫穷的思想,以及认为自己命中注定贫穷。一旦有了贫穷的思想,就会丢失进取心,也就永远走不出失败的阴影。 29.相信就是强大,怀疑只会抑制能力,而信仰就是力量。 50.对坎坷的人生,需要用自己鼓掌来增加力量,增加成功的希望,增加胜利的自信。与其受命运的摆布,不如做生活的强者,去找寻属于自己的一片天地。以乐观向上的精神去面对,全力以赴 去解决人生的难题。不言弃、不放弃,不屈服,就有希望走出阴霾,迎来一片

鲁教版(五四制)六年级数学上册 4.1等式与方程知识讲解与巩固练习

鲁教版(五四制)六年级数学上册 4.1等式与方程知识讲解与巩固练习

鲁教版(五四制)六年级数学上册 4.1等式与方程知识讲解与巩固练习等式与方程知识讲解与巩固练习要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.判断一个数(或一组数)是否是某方程的解,只需看两点:(1).它(或它们)是方程中未知数的值;(2).将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).巩固练习:1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1【解析】解:①x2+2x=1,是一元二次方程;②139xx-=,是分式方程;③1x92=,是一元一次方程;④3-1=2,是等式,不是方程;⑤1393xx--=是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.【变式】下列方程中是一元一次方程的是__________(只填序号).①2x-1=4;②x=0;③ax=b;④151 x-=-.【答案】①②.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.注意:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.巩固练习:1.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的.(1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________;(3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11;(2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a b c c =++. C .在等式b c a a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b.【答案】B.要点四、设未知数列方程1.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x =21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。

六年级数学上册4.1等式与方程(第1课时) 精品优选PPT课件鲁教版五四制

六年级数学上册4.1等式与方程(第1课时) 精品优选PPT课件鲁教版五四制

【方法一点通】 由实际问题列一元一次方程的“三个步骤” 1.设出未知数. 2.分析题意,找出等量关系. 3.根据等量关系列出方程.
一个穷困潦倒的青年,流浪到巴黎,期望父亲的朋友能帮助自己找到一份谋生的差事。 "数学精通吗"父亲的朋友问他。青年摇摇头。"历史,地理怎样?"青年还是摇摇头。"那法律呢?"青年窘迫地垂下头。父亲的朋友接连发问,青年只能摇头告诉对方------自己连丝毫的优点也找不出来。"那你先把住址写下来吧。"青年写下了自己的住址,转身要走,却被父亲的朋友一把拉住了:"你的名字写的很漂亮嘛,这就是你的优点啊,你不该只满足找一份糊口的工作。"数年后,青年果然写出享誉世界的经典作品。他就是家喻户晓的法国18世纪著名作家大仲马。 世间许多平凡之辈,都要一些小优点,但由于自卑常被忽略了。其实,每个平淡的生命中,都蕴涵着一座丰富金矿,只要肯挖掘,就会挖出令自己都惊讶不已的宝藏……爱因思念而美丽 我曾以为,爱一个人 可以是在心里暗暗的 并不需要对方清楚 我发誓,要把这份美好的感情 珍藏在记忆中,只是记忆 若不是,想到可能永远失去你 永远失去,这份自已如此看重的感情 若不是,又一次在梦中呼喊你的名字 并且从梦中惊醒,或许 这份感情会永远是一个秘密 在默默地想念和为你祝福之中 我从来都是幸福的 等待,我不清楚这样的结果是什么 或许,根本就没有去考虑什么结果 我一直希望 能以一种默默等待的姿势告诉你 我对你的感情是认真的 可以经受时间和距离的考验 那些过往的曾经共同拥有的细节 一一变得无比清晰 仿佛触手可摸,却明明相隔万里 是不是藏得越久 感情就会更加浓呢? 你不在的日子里 思念象野草一般疯狂生长 也许是因为终于不甘这样失去可能的机会 终于不甘刻骨铭心的思念和等待 会随岁月的流逝而染上灰尘 我鼓励自已说,释放自已 我不相信 从物理的距离到心灵的距离只是一瞬间的事情 我不相信 经过岁月沉淀以后的爱依旧不堪一击 我不相信

鲁教版(五四制)六年级上册 4.1 等式与方程专项练习(后有详细答案)

鲁教版(五四制)六年级上册 4.1 等式与方程专项练习(后有详细答案)

鲁教版(五四制)六年级上册4.1 等式与方程专项练习(后有详细答案)A .若 x =y ,则x+5=y+5B .若(a ≠0),则x =yC .若-3x =-3y ,则x =yD .若mx =my ,则x =y8.等式的下列变形属于等式性质2的变形是( ). A . B . C . D . 二、填空题.1..下列各式中,是方程的有 ,是一元一次方程的是 .(1); (2); (3); (4); (5); (6);(7); (8); (9).2.若3x 2m ﹣3+7=1是关于x 的一元一次方程,则m 的值是_____.3. (1)由a =b ,得a+c =b+c ,这是根据等式的性质_______在等式两边________.(2)由a =b ,得ac =bc ,这是根据等式的性质________在等式的两边________.4.是下列哪个方程的解:①3x+2=0;②2x-1=0;③;④_______(只填序号). 5. 若,则 .x y a a =31124x x +-=31214x x +=+31214x x +-=3148x x +-=311244x x +-=1153x x +=+220x x --=23x x+=-y x =-13x =-2)13(1=++p n m 213=-1x >03=+t 12x =122x =1124x =0)2(432=-+-y x =+y x6.比a 的3倍大5的数是9,列出方程式是 .三、解答题.1.已知x=﹣1是关于x 的方程8x 3﹣4x 2+kx+9=0的一个解,求3k 2﹣15k ﹣95的值.2.已知方程,试确定下列各数:,谁是此方程的解?3.七年级(1)班举行了一次集邮展览,展出的邮票的数量为每人3枚剩余24枚,每人4枚还少26枚,这个班有多少学生?(只列方程)【答案与解析】一、选择题1.【答案】D2.【答案】C【解析】依据一元一次方程的定义来判断.3.【答案】D【解析】把x =2代入A 、B 、C 、D 选项逐一验证.4.【答案】C【解析】 “x 与y 的的和”与“x 与y 的和的”的区别是:前者是与x 求和,即,后者是的,即,两者运算顺序是不同的. 5.【答案】B【解析】解:设轮船在静水中的速度为x 千米/时,可列出的方程为:2(x+3)=2.5(x ﹣3),故选:B .6.【答案】C22316x x x -=+12342,2,3,4x x x x ==-=-=131313y 13x y +x y +131()3x y +【解析】把x =2代入方程得,解得a =-2. 7. 【答案】D【解析】D 中由mx =my 左右两边需同时除以m ,得到x =y ,但当m =0时,左右两边不能同时除以m ,所以D 项中等式变形不正确,利用性质2对等式两边同时进行变形,特别注意等式两边同时除以一个式子时,一定先确定这个式子不是0.8. 【答案】C二、填空题1. 【答案】(1)、(2) 、(3)、 (4)、(5)、(6)、(9);(1)、(5)、(9).【解析】由方程与一元一次方程的定义即得答案.2.【答案】 2【解析】根据题意得:2m ﹣3=1,解得:m=2.3.【答案】1,同时加上c ;2,同时乘以c .【解析】等式的性质4.【答案】②④【解析】代入计算即得答案.5.【答案】 【解析】由平方和绝对值的非负性,并由题意得:,,即可求出.6.【答案】3a+5=9.【解析】解:由题意得:比a 的3倍的数大5的数为:3a+5,1212a ⨯+=-114043=-x 02=-y所以列出的方程为:3a+5=9.故答案为3a+5=9.三、解答题1. 【解析】解:将x=﹣1代入方程得:﹣8﹣4﹣k+9=0,解得:k=﹣3,当k=﹣3时,3k 2﹣15k ﹣95=27+45﹣95=﹣23.2. 【解析】分别将代入原方程的左右两边得:当时,则左=,右=当时,则左=,右=当时,则左=,右=当时,则左=,右=综上可得:是此方程解的是:.3.【解析】设这个班有学生x 人,由题意得3x+24=4x-26.12342,2,3,4x x x x ==-=-=2x =222322322x x -=⨯-⨯=1621618x +=+=∴≠左右-2x =22232(2)3(2)14x x -=⨯--⨯-=1621614x +=-+=∴左=右3x =-22232(3)3(3)27x x -=⨯--⨯-=1631613x +=-+=∴≠左右4x =2223243420x x -=⨯-⨯=1641620x +=+=∴左=右242,4x x =-=。

2021-2022学年鲁教版六年级数学上册《4-1等式与方程》同步达标训练(附答案)

2021-2022学年鲁教版六年级数学上册《4-1等式与方程》同步达标训练(附答案)

2021-2022学年鲁教版六年级数学上册《4.1等式与方程》同步达标训练(附答案)一.选择题(共7小题,满分35分)1.下列各式中:①x=0;②2x>3;③x2+x﹣2=0;④+2=0;⑤3x﹣2;⑥x=x﹣1;⑦x ﹣y=0;⑧xy=4,是方程的有()A.3个B.4个C.5个D.6个2.下列说法:①若a+b=0,且ab≠0,则x=1是方程ax+b=0的解;②若a﹣b=0,且ab≠0,则x=﹣1是方程ax+b=0的解;③若ax+b=0,则x=﹣;④若(a﹣3)x|a﹣2|+b=0是一元一次方程,则a=1.其中正确的结论是()A.只有①②B.只有②④C.只有①③④D.只有①②④3.下列判断:①若a+b+c=0,则(a+c)2=b2.②若a+b+c=0,且abc≠0,则.③若a+b+c=0,则x=1一定是方程ax+b+c=0的解④若a+b+c=0,且abc≠0,则abc>0.其中正确的是()A.①②③B.①③④C.②③④D.①②③④4.关于方程(a+1)x=1,下列结论正确的是()A.方程无解B.x=C.a≠﹣1时方程解为任意实数D.以上结论都不对5.已知(a﹣1)x|a|+3=10是一元一次方程,则a的值为()A.1B.0C.﹣1D.±16.设a,b,c均为实数,且满足(a﹣1)b=(a﹣1)c,下列说法正确的是()A.若a≠1,则b﹣c=0B.若a≠1,则=1C.若b≠c,则a+b≠c D.若a=1,则ab=c7.已知(a≠0,b≠0),下列变形正确的是()A.B.C.D.二.填空题(共7小题,满分35分)8.在有理数范围内定义一个新的运算法则“*”;当a≥b时,a*b=a b;当a<b时,a*b=ab.根据这个法则,方程4*(4*x)=256的解是x=.9.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是.10.已知x=﹣3是方程ax﹣6=a+10的解,则a=.11.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:.12.若(m+1)x|m|=6是关于x的一元一次方程,则m等于.13.如果△+△=★,〇=□+□,△=〇+〇+〇+〇,那么★÷□的值为.14.列等式表示“比a的3倍大5的数等于a的4倍”为.三.解答题(共8小题,满分50分)15.阅读题:课本上有这样一道例题:“解方程:解:去分母得:6(x+15)=15﹣10(x﹣7)…①6x+90=15﹣10x+70…②16x=﹣5 …③…④请回答下列问题:(1)得到①式的依据是;(2)得到②式的依据是;(3)得到③式的依据是;(4)得到④式的依据是.16.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)17.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈(1)中,属于一次方程的序号填入圆圈(2)中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9:②x2+4x+4=0;③2x+3y=5:④x2+y=0;⑤x﹣y+z=8:⑥xy=﹣1.18.方程17+15x=245,,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?19.阅读下列材料:关于x的方程x3+x=13+1的解是x=1;x3+x=23+2的解是x=2;x3+x=(﹣2)3+(﹣2)的解是x=﹣2;以上材料,解答下列问题:(1)观察上述方程以及解的特征,请你直接写出关于x的方程x3+x=43+4的解为.(2)比较关于x的方程x3+x=a3+a与上面各式的关系,猜想它的解是.(3)请验证第(2)问猜想的结论,(4)利用第(2)问的结论,求解关于x的方程(x﹣1)3+x=(a+1)3+a+2的解.20.已知(|m|﹣1)x2﹣(m﹣1)x+8=0是关于x的一元一次方程,求m的值.21.利用等式的性质解方程并检验:.22.(1)通常用作差法可以比较两个数或者两个式子的大小.例如:(用“>”、“<”、“=”填空).如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(2)已知:A=5m2﹣4(m﹣),B=7m2﹣7m+3,求A﹣B,并运用作差法比较A和B的大小.参考答案一.选择题(共7小题,满分35分)1.解:(1)根据方程的定义可得①③④⑦⑧是方程;(2)②2x>3是不等式,不是方程;(3)⑤3x﹣2不是等式,就不是方程.(4)⑥x=x﹣1,不是方程,故有5个式子是方程.故选:C.2.解:①ab≠0,所以一次项系数不是0,则x=1是方程ax+b=0的解;同理,②若a﹣b=0,且ab≠0,则x=﹣1是方程ax+b=0的解;④若(a﹣3)x|a﹣2|+b=0是一元一次方程,则a=1也是正确的.③若ax+b=0,则x=﹣没有说明a≠0的条件.其中正确的结论是只有①②④.故选:D.3.解:①若a+b+c=0,则a+c=﹣b,根据互为相反数的两个数的平方相等即可得到:(a+c)2=b2.故正确;②根据abc≠0即可得到a、b、c都是非0的数,根据a+b+c=0,可以得到a+c=﹣b,则=﹣1,则.故正确;③把x=1代入方程a x+b+c=0,即可求得a+b+c=0,即x=1一定是方程a x+b+c=0的解,故正确;④根据abc≠0,可得到a、b、c都是非0的数,若a+b+c=0,则a、b、c中一定至少有1个正数,至少有一个是负数,则abc>0.不一定是正确的.故选:A.4.解:该方程是一元一次方程,但其中含有一个未知量“a”,此时就要判断x的系数“a+1”是否为0.当a+1≠0即a≠﹣1时,方程有实数解,解为:x=.当a+1=0时,方程无解.故选:D.5.解:∵方程(a﹣1)x|a|+3=10是关于x的一元一次方程,∴|a|=1且a﹣1≠0.解得a=﹣1.故选:C.6.解:A.∵a≠1,∴a﹣1≠0,∵(a﹣1)b=(a﹣1)c,∴除以(a﹣1)得:b=c,∴b﹣c=0,故本选项符合题意;B.∵a≠1,∴a﹣1≠0,∵(a﹣1)b=(a﹣1)c,∴除以(a﹣1)得:b=c,如果c=0,则不成立,题目中没有对c的取值进行限定,因此B选项不符合题意;C.若b≠c,∵(a﹣1)b=(a﹣1)c,∴a﹣1=0,b、c的大小关系不能确定,故本选项不符合题意;D.若a=1,∵(a﹣1)b=(a﹣1)c,∴a﹣1=0,b、c的大小关系不能确定,故本选项不符合题意;故选:A.7.解:∵(a≠0,b≠0),∴=,故选:C.二.填空题(共7小题,满分35分)8.解:由题意得①当x≤4时,4*(4*x)=4*(4x),当4≥4x时,4*(4x)=4=256,解得x=1.当4<4x时,4*(4x)=4x+1=256,解得x=3.②当x>4时,4*(4*x)=4*(4x)=16x=256,解得x=16.故答案为:1,3,16.9.解:●用a表示,把x=1代入方程得1=1﹣,解得:a=1.故答案是:1.10.解:把x=﹣3代入方程ax﹣6=a+10,得:﹣3a﹣6=a+10,解方程得:a=﹣4.故填:﹣4.11.解:由一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,得第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,解是x=2017的方程:+=1,故答案为:+=1.12.解:根据题意得:m+1≠0且|m|=1,解得:m=1.故答案是:1.13.解:∵△+△=★,∴★=2个△,∵△=〇+〇+〇+〇,∴★=8个〇,∵〇=□+□,∴★=16个□,∴★÷□=16.故答案为:16.14.解:由题意,得3a+5=4a,故答案为:3a+5=4a.三.解答题(共8小题,满分50分)15.解:(1)得到①式的依据是等式性质2:等式两边同时乘(或除以)相等的非零的数或式子,两边依然相等.(2)得到②式的依据是乘法分配律.(3)得到③式的依据是等式性质1:等式两边同时加上(或减去)相等的数或式子,两边依然相等.(4)得到④式的依据是等式性质2.16.解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.17.解:(1)一元方程,①3x+5=9②x2+4x+4=0;(2)一次方程①3x+5=9⑤x﹣y+z=8③2x+3y=5;(3)既属于一元方程又属于一次方程的是①3x+5=9.18.解:方程x2+3=4,x2+2x+1=0,x+y=5不是一元一次方程;x2+3=4和x2+2x+1=0是一元二次方程;x+y=5是二元一次方程.19.解:(1)根据阅读材料可知:关于x的方程x3+x=43+4的解为x=4;故答案为:x=4;(2)关于x的方程x3+x=a3+a它的解是x=a;故答案为:x=a;(3)把x=a代入等式左边=a3+a=右边;(4)(x﹣1)3+x=(a+1)3+a+2整理,得(x﹣1)3+x﹣1=(a+1)3+a+1,所以x﹣1=a+1,解得x=a+2.20.解:根据题意得,|m|﹣1=0且m﹣1≠0,解得m=1或m=﹣1且m≠1,∴m=﹣1.故答案为:m=﹣1.21.解:根据等式性质1,方程两边都减去2,得:,根据等式性质2,方程两边都乘以﹣4,得:x=﹣4,检验:将x=﹣4代入原方程,得:左边=,右边=3,所以方程的左右两边相等,故x=﹣4是方程的解.22.解:如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b;故答案为:>;=;<;(2)A﹣B=5m2﹣4(m﹣)﹣(7m2﹣7m+3)=5m2﹣7m+2﹣7m2+7m﹣3=﹣2m2﹣1,因为﹣2m2﹣1<0,所以A﹣B<0,所以A<B.。

【2024秋】最新鲁教版五四制六年级上册数学第四章《一元一次方程》测试卷(含答案)

【2024秋】最新鲁教版五四制六年级上册数学第四章《一元一次方程》测试卷(含答案)

【2024秋】最新鲁教版五四制六年级上册数学第四章《一元一次方程》测试卷(含答案)一、选择题(每题3分,共36分)1.以下数据中属于定性数据的是()A.人的性别B.学生的身高C.汽车的速度D.中考人数2.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动;②篮球;③足球;④游泳;⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤3.以下调查中,适合普查的是()A.了解全国中学生的视力情况B.检测“神舟十八号”飞船的零部件C.检测台州的城市空气质量D.调查某池塘中现有鱼的数量4.[2024·菏泽期末]某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有()①这种调查方式是抽样调查;②7万名考生是总体;③每名考生的数学成绩是个体;④1000名考生的数学成绩是总体的一个样本;⑤1000名考生是样本容量.A.1个B.2个C.3个D.4个5.小方调查了她们班50名同学的身高,最大值是173cm,最小值是140cm,绘制频数分布直方图时,取组距为5cm,则可以分成()A.7组B.8组C.9组D.10组6.某中学七年级进行了一次数学测验,参加人数共400人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是()A.抽取前100名同学的数学成绩B.抽取后100名同学的数学成绩C.抽取其中100名女子的数学成绩D.抽取各班学号为5的倍数的同学的数学成绩7.[2024·聊城茌平区期末]如图是某学校九年级两个班的学生上学时步行、骑车、乘公交车、乘私家车人数的扇形统计图,已知乘公交车人数是乘私家车人数的2倍.若步行人数是18,则下列结论正确的是()(第7题)A.被调查的学生人数为90 B.乘私家车的学生人数为9C.乘公交车的学生人数为20 D.骑车的学生人数为16 8.[2024·枣庄峄城区期末]要清楚地表明某地每月的降水量变化情况应该选用哪种统计图?()A.条形统计图B.折线统计图C.扇形统计图D.以上都不对9.某班级的一次数学考试成绩统计图如图(每组含前一个边界值,不含后一个边界值),则下列说法正确的是()(第9题)A.该班的总人数为41 B.得分在60~70分的人数最多C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有35人10.“五一”假期,小刚在家整理了2024年3月份和4月份的家庭支出如图所示,已知4月份的总支出比3月份的总支出增加了20%,则下列说法正确的是()(第10题)A.3月份娱乐方面的支出与4月份其他方面的支出相同B.4月份衣食方面的支出比3月份衣食方面的支出增加了10%C.3月份的总支出比4月份的总支出少20%D.4月份教育方面的支出是3月份教育方面的支出的1.4倍11.某校对全校1500名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是()(第11题)A.样本容量是200B.样本中C等级所占百分比是10%C.D等级所在扇形的圆心角为15°D.估计全校学生A等级大约有900人12.某学校七年级学生来自农村、牧区、城镇三类地区,如图是根据其人数比例绘制的扇形统计图,由图中的信息,得出以下3个判断,错误的有()(第12题)①该校七年级学生在农村、牧区、城镇这三类地区的分布情况为3∶2∶7;②若已知该校来自牧区的七年级学生为140人,则七年级学生总人数为1080人;③若从该校七年级学生中抽取120人作为样本,调查七年级学生父母的文化程度,则从农村、牧区、城镇学生中分别随机抽取30人、20人、70人,样本更具有代表性.A.3个B.2个C.1个D.0个二、填空题(每题3分,共18分)13.进行数据的收集调查,一般可分为以下6个步骤,但它们的顺序弄乱了.正确的顺序是.(用字母按顺序写出即可)A.明确调查问题B.记录结果C.得出结论D.确定调查对象E.展开调查F.选择调查方法14.[2023·淄博博山区一模]观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为.(第14题)15.学习委员调查本班学生一周内课外阅读情况,按照阅读时间进行统计,结果如下表:的值为.16.为了解某区九年级3000名学生中“4分钟跳绳”能获得满分的学生人数,区体测中心随机调查了其中的200名学生,结果仅有45名学生未获得满分,那么估计该区九年级“4分钟跳绳”能获得满分的学生人数约为.17.[情境题教育政策]实行“双减”政策后,某区推行“5+2”的课后服务模式,学校科学利用课余时间,开展丰富的社团活动.下表是根据某学校八(1)班同学参加课外社团活动情况收集到的数据绘制的部分统计表,若选择足球的人数占该班总人数的25%,则选择手工的人数为.八(1)班同学参加课外社团活动情况统计表18同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为吨.(第18题)三、解答题(共66分)19.(10分)某校六年级开展了同学们最喜欢学习哪门学科的调查(六年级共有200人).(1)调查的问题是什么?(2)调查的对象是谁?(3)在被调查的200名学生中,有40人最喜欢学语文,60人最喜欢学数学,80人最喜欢学外语,其余的人选择其他,求最喜欢学数学这门学科的人数占学生总人数的比例.(4)根据调查情况,把六年级的学生最喜欢学习某学科的人数及其占学生总人数的百分比填入下表:20.(10分)已知某校共有七,八,九三个年级,每个年级有4个班,每个班的人数在20~30之间,为了解该校学生家庭的教育消费情况,现设计了如下的调查方案.方案一:给全校每个班都发一份问卷,由班长填写完成;方案二:把问卷发送到随机抽取的七年级某个班的家长微信群里,通过网络提交完成;方案三:给每个班学号分别为1,5,10,15,20的同学各发一份问卷,填写完成.以上哪种调查方案能较好地获得该校学生家庭的教育消费情况,并说明其他两个调查方案的不足之处.21.(10分)某区九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后绘制出如下统计图.甲同学计算出前两组的人数和是18,乙同学计算出第一组的人数是抽取的总人数的4%,丙同学计算出从左至右第二、三、四组的人数比为4∶17∶15.结合统计图回答下列问题:(1)求这次抽取的学生总人数.(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)请把频数直方图补充完整.22.(12分)[2024·济南期末]某校开展了“阅读经典,做好文化传承人”主题阅读活动月,请根据统计图表中的信息,解答下列问题:,表中=;(2)在扇形统计图中,5篇所对应的扇形圆心角度数是;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4的有多少人.23.(12分)某电视机专卖店在四个月的试销期内共销售了400台A、B两个品牌的电视机,试销结束后,专卖店只能经销其中的一个品牌,为作出决定,专卖店老板根据这四个月销售的情况,绘制了两幅统计图如图,请根据统计图提供的信息,解答下列问题:(1)第四个月的销量占总销量的百分比是.(2)在图②中补全表示B品牌电视机月销量的折线.(3)经计算,两个品牌电视机平均月销量相同,请你结合折线的走势进行简要分析,判断该专卖店应经销哪个品牌的电视机?24.(12分)[2023·长沙]为增强学生安全意识,某校举行了一次全校3000名学生参加的安全知识竞赛.从中随机抽取n名学生的竞赛成绩进行了分析,把成绩(满分为100分,所有竞赛成绩均不低于60分)分成四个等级(D:60≤x<70;C:70≤x<80;B:80≤x<90;A:90≤x≤100),并根据分析结果绘制了如下不完整的频数直方图和扇形统计图.请根据以上信息,解答下列问题:(1)填空:n=,m=;(2)请补全频数直方图;(3)扇形统计图中B等级所在扇形的圆心角度数为度;(4)若把A等级定为“优秀”等级,请你估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数.答案一、1.A2.C3.B【点拨】A.了解全国中学生的视力情况,适合抽样调查;B.检测“神舟十八号”飞船的零部件,要求所有零部件都合格,适合普查;C.检测台州的城市空气质量,适合抽样调查;D.调查某池塘中现有鱼的数量,适合抽样调查.4.C【点拨】①为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;②7万名考生的数学成绩是总体,故原说法错误;③每名考生的数学成绩是个体,故说法正确;④1000名考生的数学成绩是总体的一个样本,故说法正确;⑤1000是样本容量,故原说法错误.所以正确的说法有3个.5.A【点拨】因为数据的最大值为173cm,最小值为140cm,所以这组数据的差是173-140=33(cm).因为组距为5cm,所以这组数据应分成7组.6.D【点拨】在A,B,C中进行抽查,对抽取的对象划定了范围,因而不具有代表性.7.B【点拨】被调查的学生人数为18÷30%=60,A选项错误;乘私家车的学=9,B选项正确;乘公交车的学生人数为生人数为60×(1-25%-30%)×13=18,C选项错误;骑车的学生人数为60×25%=60×(1-25%-30%)×2315,D选项错误.8.B9.C10.D【点拨】设3月份的总支出为a,则4月份的总支出为1.2a,所以3月份娱乐方面的支出为0.15a,4月份其他方面的支出为1.2a×15%=0.18a,所以3月份娱乐方面的支出与4月份其他方面的支出不相同,故选项A不正确;4月份衣食方面的支出为1.2a×40%=0.48a,3月份衣食方面的支出为0.3a,(0.48a-0.3a)÷0.3a=60%,即4月份衣食方面的支出比3月份衣食方面的支出增加了60%,故选项B不正确;3月份的总支出比4月份的总支出少(1.2a-a)÷1.2a=16,故选项C不正确;4月份教育方面的支出为1.2a×0.35%=0.42a,3月份教育方面的支出为0.3a,0.42a÷0.3a=1.4,即4月份教育方面的支出是3月份教育方面的支出的1.4倍,故选项D正确.11.C【点拨】A.50÷25%=200,即样本容量为200;B.样本中C等级所占百分比是20200×100%=10%;C.D等级所在扇形的圆心角为360°×(1-60%-25%-10%)=18°;D.估计全校学生A等级大约有1500×60%=900(人).故选C.12.C【点拨】该校来自城镇的七年级学生的扇形的圆心角为360°-90°-60°=210°,所以该校七年级学生在农村、牧区、城镇这三类地区的分布情况为90∶60∶210=3∶2∶7,故①正确;若已知该校来自牧区的七年级学生为140人,则七年级学生总人数为140÷60360=840(人),故②错误;120×90360=30(人),120×60360=20(人),120×210360=70(人),故③正确.二、13.ADFEBC14.8【点拨】20-3-5-4=8.15.12【点拨】因为被调查的总人数为(20+16)÷(1-25%)=48,所以a=48×25%=12.16.2325【点拨】由题意可估计该区九年级“4分钟跳绳”能获得满分的学生人数约为3000×200-45200=2325.17.8【点拨】总人数为10÷25%=40,所以选择手工的人数为40-10-16-4-2=8.18.1500【点拨】该市试点区域的垃圾总量为60÷(1-50%-29%-1%)=300(吨),估计全市可收集的干垃圾总量为300×10×50%=1500(吨).三、19.【解】(1)调查的问题是:你最喜欢学习哪门学科?(2)调查的对象是:某校六年级的全体同学.(3)最喜欢学数学这门学科的人数占学生总人数的比例为60200×100%=30%.(4)最喜欢学语文的人数占学生总人数的比例为40200×100%=20%;最喜欢学数学的人数占学生总人数的比例为60×100%=30%;200×100%=40%;最喜欢学外语的人数占学生总人数的比例为80200×100%=10%.最喜欢学其他学科的人数占学生总人数的比例为200-40-60-80200填表如下:方案一的调查方案的不足之处:所抽取的对象数量太少;方案二的调查方案的不足之处:所抽取的样本的代表性不够好.21.【解】(1)因为前两组的人数和是18,第一组的人数是抽取的总人数的4%,所以抽取的总人数为(18-12)÷4%=150.(2)因为第二、三、四组的人数比为4∶17∶15,第二组的人数为12,所以第三、四组的人数分别为51,45,所以第五、六组的人数和为150-(18+51+45)=36,×100%=24%.所以这次测试成绩的优秀率是36150(3)补全频数直方图如下.22.【解】(1)100;29(2)104.4°=400(人).(3)1600×25100答:估计该校学生在主题阅读活动月内文章阅读的篇数为4的有400人.23.【解】(1)30%(2)根据扇形图及(1)的结论,可补全折线统计图如图.(3)由于两个品牌电视机平均月销量相同,从折线的走势看,A品牌电视机的月销量呈下降趋势,而B品牌电视机的月销量呈上升趋势,所以该商店应经销B品牌电视机.24.【解】(1)150;36(2)D等级的学生人数为150-54-60-24=12,补全频数直方图,如图所示.(3)144(4)3000×16%=480.答:估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数为480.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1等式与方程课时训练
1.若x=3是关于x的方程2x-k+1=0的解,则k的值()
A. -7
B. 4
C. 7
D. 5
2.关于x的方程ax+3=4x+1的解为正整数,则整数a的值为()
A. 2
B. 3
C. 1或2
D. 2或3
3.已知方程(a+3)x|a|-2+1=0是关于x的一元一次方程,则关于y的方程ay+6=0的解
是()
A. y=2
B. y=-2
C. y=2或y=-2
D. y=1
4.若x=2是关于x的方程-a=x+2的解,则a2-1的值是()
A. 10
B. -10
C. 8
D. -8
5.下列运用等式的性质对等式进行的变形中,错误的是()
A.若a=b,则
B. 若a=b,则ac=bc
C. 若a(x2+1)=b(x2+1),则a=b
D. 若x=y,则x-3=y-3
6.已知式子:①3-4=-1;②2x-5y;③1+2x=0;④6x+4y=2;⑤3x2-2x+1=0,其中是等
式的有______,是方程的有______.
7.如果x=1是关于x方程x+2m-5=0的解,则m的值是______ .
8.若关于x的方程x m-2-m+2=0是一元一次方程,则这个方程的解是______
9.已知方程(m+1)x n-1=n+1是关于x的一元一次方程.
(1)求m,n满足的条件.
(2)若m为整数,且方程的解为正整数,求m值.
10.已知单项式-7a2x+1b5与单项式a x+3b5的和仍是单项式.
(1)求x的值;
(2)若x的值是方程5a+14=2+x的解,求整式a3-3|a|+23的值.11.已知(m+1)x|m|+2=0是关于x的一元一次方程,求m的值;。

相关文档
最新文档