热处理与金相知识
金相知识-钢的热处理基础

钢的热传递基本方式
热传递 方式
定义
传导传热
热量由零件(包括于其接 触的零件)的一处传到另 一处,物体的质点没有移动。 Nhomakorabea对流传热
流体中不同部分的质点发 生了相对位移、或混合, 或流体质点与固体表面
辐射传热
由物体表面直接向外界 发射可见的和不可见的 射线,在空间传递热量
高温回火 ( 》500℃) 称调质,获得回火索氏体组织,强 韧性恰当配合,广泛用于各种结构零件。
Fe Fe3C
零件淬火后产生的应力分类 热应力 零件在加热和冷却中不同部位温度有差异,
热胀冷缩不一致导致的应力;通常表面为压应力; 心部为拉应力。只占总应力的5-10%。 组织应力 零件冷却时不同部位组织转变不一样, 引起的内应力。一般表面为拉应力,心部为压应力。
第五节 钢的热处理基础
5.1 钢的热传递 1. 基本方式 传导 对流 辐射 2. 传热一般规则 a. 先决条件存在温差. b. 通常三种传热方式同时存在 工件通过辐射和对流从加热炉中获得热量,又
以传导方式传给心部。
c. 工件的传热方式取决于加热温度和加热设备 >600 ºc时,辐射传热过程最强烈,试验以辐
铁碳相图中,共有五种不同形态的渗碳体,请根据
形成温度的高低依次写出。
在Fe-Fe3C相图,五种形态渗碳体以温度从高到低
为:
Fe3C I
(A+Fe3C)共晶
Fe3C II
(F +Fe3C)共
5.2 钢在加热时的转变 奥氏体形核+长大过程;取决于加热温度、原始
组织和化学成分。 用晶粒度评定加热质量。
5.3 钢在冷却时的转变
过冷奥氏体的等温转变曲线 称为C-曲线,或 TTT图。
热处理金相组织判定标准

热处理金相组织判定标准
热处理金相组织的判定标准包括以下几个方面:
1. 碳化物的颗粒大小:理想的退火组织中,碳化物颗粒应细小,呈点状或细粒状。
2. 碳化物的分布均匀性:碳化物应均匀分布在铁素体基体上,不应出现局部的密集或稀少。
3. 碳化物的球化程度或形态:碳化物应呈球状或粒状,球化完全,且分布较均匀。
根据这些标准,可以将退火金相组织分为不同的等级。
具体如下:
1. 1级:细点状+细粒状珠光体+局部细片状珠光体。
这是不合格的组织,形成原因是加热不足,部分锻造组织被保留下来。
2. 2级:点状珠光体+细粒状珠光体。
这是优良的合格组织,碳化物颗粒细小呈点状和细粒状,圆度好,分布较均匀。
3. 3级:球状珠光体。
这是良好的合格组织,碳化物颗粒大于2级,球化完全,分布较均匀。
4. 4级:球状珠光体。
这是合格组织,碳化物颗粒较粗,均匀性较差,碳化物分布不均,有的区域密集,有的区域稀少。
在实际应用中,可以根据具体标准和需求对热处理金相组织进行判定。
如有需要,建议咨询专业人士获取准确的信息。
热处理金相基础知识

热处理金相基础知识 RUSER redacted on the night of December 17,2020一、目的(1)观察碳钢经不同热处理后的基本组织。
(2)了解热处理工艺对钢组织和性能的影响。
(3)熟悉碳钢几种典型热处理组织的形态及特征。
二、概述碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。
因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。
铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C 曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。
C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。
在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。
1、共析钢等温冷却时的显微组织共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表4-1中。
2、共析钢连续冷却时的显微组织为了简便起见,不用CCT曲线,而用C曲线(图4-1)来分析。
例如共析钢奥氏体,在慢冷时(相当于炉冷,见图4-1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。
3、亚共析钢和过共析钢连续冷却时的显微组织亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,如图4-2所示。
当奥氏体缓慢冷却时(相当于炉冷,如图4-2中υ1),转变产物接近平衡组织,即珠光体和铁素体。
随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。
金相组织和热处理

Ac1 线又叫做共析线,是指含碳量在0.77%~2.11%的铁碳合金冷却到此线时,在727 度恒温下发生共析转变,即A0.77%→F0.0218%+Fe3C。
Ac3 是加热时铁素体转变为奥氏体的终了温度。
钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms(马氏转变温度)以下(或Ms 附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
工艺过程包括加热、保温、冷却3 个阶段。
回火是工件淬硬后加热到AC1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。
回火一般紧接着淬火进行,其目的是:(a)消除工件淬火时产生的残留应力,防止变形和开裂;(b)调整工件的硬度、强度、塑性和韧性,达到使用性能要求;(c)稳定组织与尺寸,保证精度;(d)改善和提高加工性能。
因此,回火是工件获得所需性能的最后一道重要工序。
按回火温度范围,回火可分为低温回火、中温回火和高温回火。
(1)低温回火(1) 低温回火工件在250℃以下进行的回火。
目的是保持淬火工件高的硬度和耐磨性,降低淬火残留应力和脆性回火后得到回火马氏体,指淬火马氏体低温回火时得到的组织。
力学性能:58~64HRC,高的硬度和耐磨性。
应用范围:刃具、量具、模具、滚动轴承、渗碳及表面淬火的零件等。
(2)中温回火(2) 中温回火工件在250~500 ℃之间进行的回火。
目的是得到较高的弹性和屈服点,适当的韧性。
1 预先热处理回火后得到回火托氏体,指马氏体回火时形成的铁素体基体内分布着极其细小球状碳化物(或渗碳体)的复相组织。
力学性能:35~50HRC,较高的弹性极限、屈服点和一定的韧性。
应用范围:弹簧、锻模、冲击工具等。
(3)高温回火(3) 高温回火工件在500℃以上进行的回火。
热处理后金相组织变化

热处理后金相组织变化
热处理是一种通过加热和冷却材料来改变其金相组织的过程。
通过热处理,可以改变材料的晶粒尺寸、晶粒形状和相组成,从而使材料具有不同的力学、物理和化学性质。
常见的热处理方法包括退火、正火、淬火和回火。
在退火过程中,材料会被加热至一定温度,然后缓慢冷却。
这种热处理方式可用于消除应力、提高材料的塑性和延展性,并使晶粒得到再结晶。
正火是将材料加热至一定温度后迅速冷却,以增加材料的硬度和强度。
淬火将材料加热至高温后迅速浸入冷却介质中,通过产生快速冷却速率来形成马氏体组织,从而获得高硬度和脆性。
回火是将淬火材料加热至较低温度,然后再缓慢冷却,以减轻淬火过程中的应力和脆性,提高材料的韧性。
热处理后,金相组织会发生变化。
在退火过程中,晶粒尺寸会增大,晶界和初生相会消失,同时晶粒内部会形成新的晶界。
在正火过程中,材料表面形成强化层,并出现马氏体组织。
淬火过程中,材料会形成马氏体组织,该组织具有高硬度和脆性。
在回火过程中,马氏体会分解为更稳定的相,从而减轻应力和改善材料的韧性。
总之,通过热处理可以改变材料的金相组织,从而使材料具有不同的力学和化学性质。
不同的热处理方法和工艺参数会产生不同的金相组织变化,这对材料的性能和应用有重要影响。
热处理及金相检验培训

目录
• 热处理基础知识 • 金相检验基础知识 • 热处理工艺 • 金相检验技术 • 热处理及金相检验的应用 • 实际操作与实验
01
热处理基础知识
热处理定义
热处理定义:热处理是将金属材料加热 到一定的温度,并保持一段时间,然后 以适当的速度冷却,以改变其内部结构, 从而达到改善其机械性能或耐腐蚀性能
形貌和成分信息。
透射电子显微镜(TEM)
02
利用高能电子束穿透样品,通过分析样品的衍射和干涉现象,
获得样品的晶体结构和相组成信息。
观察内容
03
观察金属材料的微观形貌、晶体结构和相组成等。
X射线衍射分析技术
X射线衍射仪
利用X射线照射样品,通过分析X射 线的衍射角度和强度,确定样品的晶 体结构和相组成。
金相样品的制备
学员应学会如何制备金相样品,包括切割、磨削、抛光和蚀刻等步骤, 以确保样品表面质量和观察效果。
金相组织观察与识别
学员应能够观察和识别不同金属材料的金相组织,了解其特征和变化 规律。
金相检验实验结果分析
学员应能够根据实验结果分析金属材料的组织形貌、相组成和晶体结 构等,并能够提出相应的工艺改进建议。
失效分析
在机械零件失效时,可以通过金相 检验分析其组织和结构,找出失效 原因,为改进和优化设计提供依据。
热处理及金相检验的未来发展
1 2 3
智能化发展
随着科技的不断进步,热处理和金相检验将逐渐 实现智能化,通过自动化和智能化的设备和技术, 提高检测效率和精度。
绿色环保
未来的热处理和金相检验将更加注重环保和可持 续发展,采用环保材料和工艺,降低能耗和减少 废弃物排放。
实验报告与总结
热处理铸件金相

热处理铸件金相
热处理是一种通过加热和冷却的过程来改变铸件的组织结构和性能的方法。
在热处理过程中,铸件的金相组织会发生变化,具体的变化取决于材料的化学成分、加热温度、保温时间和冷却方式等因素。
以下是一般情况下热处理铸件金相的变化:
1. 铸态组织:铸件刚铸造完毕时的金相组织通常呈现出粗大的晶粒和板状或柱状的铸态组织。
2. 固溶处理:固溶处理是一种常见的热处理方法,旨在溶解固溶体中的溶质并使其均匀分布。
在固溶处理过程中,铸件经过加热到一定温度保持一段时间,使溶质原子溶解在基体中。
这样可以提高铸件的塑性和韧性,并减少晶界的碳化物沉淀。
3. 相变:在热处理过程中,一些固溶体中的溶质会发生相变,形成新的相组织。
相变可以通过调整加热和冷却条件来实现,以控制金相组织的形成。
4. 冷却速率的影响:不同的冷却速率会导致不同的金相组织。
快速冷却会导致细小的晶粒和奥氏体或马氏体的形成,从而提高硬度和强度。
而缓慢冷却则有利于晶粒的生长和相变的发生,形成较大的晶粒和稳定的相组织。
需要注意的是,热处理的具体参数和过程会根据不同的铸件材料和要求而有所不同。
对于特定的铸件热处理金相分析,最好参考相关的热处理规范和金相测试方法,或咨询专业的材料工程师或金相实验室。
做热处理的人都要知道的金相组织图

做热处理的人都要知道的金相组织图搞热处理和材料这么多年,下面这15个金相组织搞不清楚,等于白混了!!1.奥氏体定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。
有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。
奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。
在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。
经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。
铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。
当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。
2.铁素体定义:碳与合金元素溶解在a-Fe中的固溶体特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3.渗碳体定义:碳与铁形成的一种化合物特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。
渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。
•在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状•过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状•铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状4.珠光体定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物特征:珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
•在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
•在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理与金相知识
钢结构组织与特性(No.1)
铁素体(F)
1.组织:碳在α铁中的固溶体
2.特性:
呈体心立方晶格.溶碳能力最小,最大为0.02%;硬度和强度很低,
HB=80-120,σb=250N/mm^2;而塑性和韧性很好,δ=50%,ψ=70-80%.
因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐
冲击震动的机件.这类钢有超低碳钢,如0Cr13,1Cr13、硅钢片等
奥氏体
1.组织:碳在γ铁中的固溶体
2.特性:
呈面心立方晶格.最高溶碳量为2.06%,在一般情况
下,具有高的塑性,但强度和硬度低,HB=170-220,奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等
渗碳体(C)
1.组织:铁和碳的化合物(Fe3C)
2.特性:
呈复杂的八面体晶格.
含碳量为6.67%,硬度很高,HRC70-75,耐磨,但脆性很大,因此,
渗碳体不能单独应用,而总是与铁素体混合在一起.
碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是
以渗碳体或其他碳化物形式出现
珠光体(P)
1.组织;铁素体片和渗碳体片交替排列的层状显微组织,是铁素体与
渗碳体祷旌衔?共析体)
2.特性:
是过冷奥氏体进行共析反应的直接产物.
其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织
越细性质也不同.
奥氏体在约600℃分解成的组织称为细珠光体(有的叫一次索氏体),
在500-600℃分解转变成用光学显微镜不能分辨其片层状的组织称为极
细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳
体低,其塑性较铁素体和奥氏体低而较渗碳体高.
正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性
能较好,但其片状渗碳体在钢材承受负荷时会引起应力集中,故不如索氏体莱氏体(L)
1.组织:奥氏体与渗碳体的共晶混合物
2.特性:
铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体.
当温度到达共析温度莱氏体中的奥氏转变为珠光体.
因此,在723℃以下莱氏体是珠光体与渗碳体机械混合物(共晶混合).
莱氏体硬而脆(>HB700),是一种较粗的组织,不能进行压力加工,如白口铁.在铸态含有莱氏体组织的钢有高速工具钢和Cr12型高合金工具钢等.
这类钢一般有较大有耐磨性和较好的切削性
淬火与马氏体
1.组织:碳在α-Fe中的过饱和固溶体,显微组织呈针叶状
2.特性:
淬火后获得的不稳定组织.
具有很高的硬度,而且随含碳量增加而提高,但含碳量超过0.6%后的硬
度值基本不变,如含C0.8%的马氏体,硬度约为HRC65,冲击韧性很低,脆性
很大,延伸率和断面收缩率几乎等于零.
奥氏体晶粒愈大,马氏体针叶愈粗大,则冲击韧性愈低;淬火温度愈低,
奥氏体晶粒愈细,得到的马氏体针叶非常细小,即无针状马氏组织,其韧性最高回火马氏体(S)
1.组织:与淬火马氏体硬度相近,而脆性略低的黑色针叶状组织
2.特性:
淬火钢重新加热到150-250℃回火获得的组织.
硬度一般只比淬火马氏体低HRC1-3格,但内应力比淬火马氏体小
索氏体(S)
1.组织:铁索体和较细的粒状渗碳体组成的组织
2.特性:
淬火钢重新加热到500-680℃回火后获得的组织.
与细珠光体相比,在强度相同情冲下塑性及韧性都高,随回火温度提高,
硬度和强度降低,冲击韧性提高.硬度约为HRC23-35.综合机械性能比较好.索氏体有的叫二次索氏体或回火索氏体
屈氏体
屈氏体(T)组织或特性
1.组织:铁索体和更细的粒状渗碳体组成的组织
2.特性:
淬火钢重新加热到350-450℃回火后获得的组织.
它的硬度和强度虽然比马氏体低,但因其组织很致密,仍具有较高的强
度和硬度,并有比马氏体好的韧性和塑性,硬度约为HRC35-45.
屈氏体有的叫二次屈氏体或回火屈氏体
下贝氏体(B)
1.组织:
显微组织呈黑色针状形态,其中的铁素体呈现针状,而碳化物呈现
极小的质点以弥散状分布在针状铁素体内
2.特性:
过冷奥氏体在400-240℃等温度转变后的产物.
具有较高的硬度,约为HRC40-55,良好的塑性和很高的冲击韧性,其综
合机械性能比索氏体更好;
因此,在要求较大的、韧性和高强度相配合时,常以含有适当合金元素
的中碳结构钢等温淬火,获得贝氏体以改善钢的机械性能,并减小内应力和变形
低碳马氏体
具有高强度与良好的塑性、韧性相结合的特点(σb=1200-1600N/mm^2,σ0.2=1000-1300N/mm^2,δ5≥10%,ψ≥40%αk≥60J/cm^2);同时还有
低的冷脆转化温度(≤-60℃);在静载荷、疲劳及多次冲击载荷下,其缺
口敏感度和过载敏感性都较低.
低碳马氏体状态的20SiMn2MoV A综合力学性能,比中碳合金钢等温淬火获得的下贝氏体更好.
保持了低碳钢的工艺性能,但切削加工较难.
铁-碳合金平衡图中特性点与线(搂冷却叙述,加热为可逆的)
符号说明
A纯铁的凝固点
E碳在γ-Fe中的最大溶解度
Gγ-Fe→α-Fe转变点
C共晶点
S共折点
ABCD液相线.液体开始结晶
AHJECF固相线,液体终止结晶
ES Acm线,渗碳体开始从奥氏体中析出
ECF共晶线,开始从液体结晶出奥氏体和渗碳体的共晶混合物GS As线,自奥氏体开始析出铁素体,
即γ-Fe→α-Fe的开始线
PSK共析线或称A1线,自奥氏体开始析出铁素体和
渗碳体的共析混合物
注:1.As线在加热时称为Ac3线,冷却时称Ar3线;
2.A1线在加热时称为Ac1线,冷却时称Ar1线
室温下铁-碳合金的平衡组织
名称含碳晶,%平衡组织
亚共析钢0.02-0.8铁素体+珠光体
共析钢0.8珠光体
过共析钢0.8-2.06珠光体+二次渗碳体
亚共晶的口铁 2.06-4.3树状珠光体+二次渗透体+共晶体
共晶白口铁 4.3共晶体(珠光体+渗碳体)
过共晶白口铁>4.3-6.67板状一次渗碳体+共晶体
铸造论坛:
铸造视频:。