【高考数学二轮复习提升微专题】第34讲 割补法与等积法-解析版

合集下载

2024年高考数学新增高频考点(解析版)

2024年高考数学新增高频考点(解析版)

(多拿20分)2024年高考数学新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项2023年高考数学新增高频考点专题突破一.复数的三角表示(共5小题)1已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6,则z 1z 2的代数形式是()A.6cosπ4+i sin π4B.6cos π12+i sin π12 C.3-3i D.3+3i2若复数z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π33已知复数z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数4复数z =cos -2π5+i sin -2π5 的辐角主值为()A.8π5B.-8π5C.2π5D.-2π55任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8 m (m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,17利用积化和差公式化简sin αsin π2-β 的结果为()A.-12[cos (α+β)-cos (α-β)]B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]8已知cos α+cos β=12,则cos α+β2cos α-β2的值为.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为.10已知α,β为锐角,且α-β=π6,那么sin αsin β的取值范围是.三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sin α•cos β=sin (α+β)+sin (α-β)B.2cos α•sin β=sin (α+β)+cos (α-β)C.cos α+cos β=2sin α+β2⋅sin α-β2D.cos α-cos β=2cos α+β2⋅cosα-β212在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,则tan A2•tan C 2的值为(参考公式:sin A +sin C =2sin A +C 2cos A -C2)()A.2B.12C.3D.1313已知sin α+sin β=2165,cos α+cos β=2765,则sin β-sin αcos β-cos α=.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为.15在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为三角形.四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CAB.-12CAC.32CAD.-32CA19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.22320已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.8023某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.1024某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为11025某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为.六.点、线、面间的距离(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.七.条件概率(共8小题)29已知事件A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥30已知P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )=,P (A|B )=.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )=.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.9533为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M上场的概率.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.61735人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.36某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.八.全概率公式(共2小题)37某铅笔工厂有甲、乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.3838假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15九.贝叶斯公式(共2小题)39对正在横行全球的“新冠病毒”,某科研团队研发了一款新药用于治疗,为检验药效,该团队从“新冠”感染者中随机抽取若干名患者,检测发现其中感染了“普通型毒株”、“奥密克戎型毒株”、“其他型毒株”的人数占比为5:3:2.对他们进行治疗后,统计出该药对“普通型毒株”、“奥密克戎毒株”、“其他型毒株”的有效率分别为78%、60%、75%,那么你预估这款新药对“新冠病毒”的总体有效率是;若已知这款新药对“新冠病毒”有效,求该药对“奥密克戎毒株”的有效率是.40英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.根据贝叶斯统计理论,事件A ,B ,A(A 的对立事件)存在如下关系:P (B )=P (B |A )•P (A )+P (B |A )•P (A).若某地区一种疾病的患病率是0.01,现有一种试剂可以检验被检者是否患病.已知该试剂的准确率为99%,即在被检验者患病的前提下用该试剂检测,有99%的可能呈现阳性;该试剂的误报率为10%,即在被检验者未患病的情况下用该试剂检测,有10%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为()A.0.01B.0.0099C.0.1089D.0.1十.二项分布中的最大项(共3小题)41若X ~B 100,13 ,则当k =0,1,2,⋯,100时()A.P (X =k )≤P (X =50)B.P (X =k )≤P (X =32)C.P (X =k )≤P (X =33)D.P (X =k )≤P (X =49)42已知随变量从二项分布B 1001,12,则()(多选)A.P (X =k )=C k100112 1001 B.P (X ≤301)=P (X ≥701)C.P (X >E (X ))>12D.P (X =k )最大时k =500或50143经检测有一批产品合格率为75%,现从这批产品中任取5件,设取得合格产品的件数为ξ,则P (ξ=k )取得最大值时k 的值为.(多拿20分)2023年高考新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项参考答案与试题解析一.复数的三角表示(共5小题)已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6 ,则z 1z 2的代数形式是()+i sin π4B.6cos π12+i sin π12 D.3+3i【解析】:∵z 1=2cosπ12+i sin π12 ,z 2=3cos π6+i sin π6 ,∴z 1z 2=6cos π12+i sin π12 cos π6+i sin π6=6cos π12cos π6-sin π12sin π6 +cos π12sin π6+sin π12cos π6 i=6cos π12+π6 +i sin π12+π6=6cos π4+i sin π4 =622+22i=3+3i ,故选:D .z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π3【解析】:z =32+12i 的模为1,辐角为π6,则复数z =32+12i 的三角形式为cos π6+i sin π6.故选:A .z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数【解析】:对于A ,|z |=cos 2θ+sin 2θ=1,故A 错误,对于B ,z 2=(cos θ+i sin θ)2=cos 2θ+2sin θcos θi +i 2sin 2θ=cos 2θ-sin 2θ+2cos θsin θi ,故B 错误,对于C ,z ⋅z=(cos θ+i sin θ)(cos θ-i sin θ)=cos 2θ+sin 2θ=1,故C 正确,对于D ,z +1z =cos θ+i sin θ+1cos θ+i sin θ=cos θ+i sin θ+cos θ-i sin θ(cos θ+i sin θ)(cos θ-i sin θ)=2cos θ,故D 错误.故选:C .=cos -2π5 +i sin -2π5的辐角主值为()B.-8π5C.2π5D.-2π5=cos -2π5 +i sin -2π5 ,∴复数z 的辐角为2k π-2π5,k ∈Z ,∴复数z 的辐角主值为2π-2π5=8π5.5任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8m(m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8【解析】:∵复数cosπ8+i sin π8 m =cos m π8+i sin m π8为纯虚数,∴cos m π8=0,sin m π8≠0,∴m π8=k π+π2,k ∈Z ,根据m ∈N *,可得正整数m 的最小值为4,此时,k =0,故选:B .二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,1【解析】:直角三角形中两锐角为A 和B ,A +B =C =π2,则cos A cos B =12[cos (A -B )+cos (A +B )]=12cos (A -B ),再结合A -B ∈-π2,π2,可得cos (A -B )∈(0,1],∴12cos (A -B )∈0,12 ,故选:A .7利用积化和差公式化简sin αsin π2-β的结果为()A.-12[cos (α+β)-cos (α-β)] B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]【解析】:sin αsin π2-β =sin αcos β=12[sin (α+β)+sin (α-β)]故选:D .8已知cos α+cos β=12,则cos α+β2cos α-β2的值为 14 .【解析】:∵cos α+cos β=12,∴cos α+β2cos α-β2=12cos α+β2-α-β2 +cos α+β2+α-β2 =12(cos α+cos β)=12×12=14.故答案为:14.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为 m .【解析】:由已知得:sin (α+β)•sin (β-α)=cos2α-cos2β2=(2cos 2α-1)-(2cos 2β-1)2=cos 2α-cos 2β=m10已知α,β为锐角,且α-β=π6,那么sinαsinβ的取值范围是 0,32 .【解析】:∵α-β=π6∴sinαsinβ=-12[cos(α+β)-cos(α-β)]=-12cos(α+β)-32=-12cos2β+π6-32∵β为锐角,即0<β<π3∴π6<2β+π6<5π6,∴-32<cos2β+π6<32∴0<-12cos2β+π6-32<32故答案为:0,3 2三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sinα•cosβ=sin(α+β)+sin(α-β)B.2cosα•sinβ=sin(α+β)+cos(α-β)C.cosα+cosβ=2sinα+β2⋅sinα-β2D.cosα-cosβ=2cosα+β2⋅cosα-β2【解析】:sin(α+β)+sin(α-β)=sinαcosβ+cosαsinβ+sinαcosβ-cosαsinβ=2sinαcosβ,故选:A.12在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,则tan A2•tan C2的值为(参考公式:sin A+sin C=2sin A+C2cos A-C2)()A.2B.12C.3 D.13【解析】:∵a+c=2b,∴由正弦定理得sin A+sin C=2sin B=2sin(A+C),即2sin A+C2cos A-C2=4sin A+C2cos A+C2,在三角形中sin A+C2≠0,∴cos A-C2=cos A+C2,即cosαA2cos C2+sin A2sin C2=2cos A2cos C2-2sin A2sin C2,即3sin A2sin C2=cos A2cos C2,即sin A2sin C2cos A2cos C2=13,即tan A2•tan C2=13,故选:D.13已知sinα+sinβ=2165,cosα+cosβ=2765,则sinβ-sinαcosβ-cosα= -97 .【解析】:sin α+sin β=2165,可得2sin α+β2cos α-β2=2165⋯①cos α+cos β=2765,2cos α+β2cos α-β2=2765⋯②.①②可得sin α+β2cosα+β2=2127=79.sin β-sin αcos β-cos α=-2cos α+β2sin α-β22sin α+β2sin α-β2=-cos α+β2sinα+β2=-97.故答案为:-97.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为 247 .【解析】:由sin α+sin β=14,得2sinα+β2cos α-β2=14,由cos α+cos β=13,得2cos α+β2cos α-β2=13,两式相除,得tanα+β2=34,则tan (α+β)=2tan α+β21-tan 2α+β2=2×341-34 2=247故答案为:24715在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为直角三角形.【解析】:由cos B +cos C =sin B +sin C 得到2cosB +C 2cos B -C 2=2sin B +C 2cos B -C2两边同除以2cos B -C 2得sin B +C 2=cos B +C 2即tan B +C2=1,由0<B <π,0<C <π,得到B +C 2∈(0,π),所以B +C 2=π4即B +C =π2,所以A =π2,则△ABC 为直角三角形.故答案为:直角四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b【解析】:因为两个单位向量a 和b的夹角为120°,所以a ⋅b =|a |⋅|b |cos120°=1×1×-12=-12,所以(a -b )⋅b =a ⋅b -b 2=-12-1=-32,故所求投影向量为(a-b )⋅b |b |⋅b =-32b.故选:D .17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)【解析】:已知a =(-2,λ),b =(1,1),由于a ⊥b ,所以a ⋅b=(-2)×1+λ×1=0,解得λ=2,所以a =(-2,2),b =(1,1),得a -b=(-3,1),则(a -b )⋅b=(-3)×1+1×1=-2,|b |=12+12=2,故a -b 在b 方向上的投影为(a -b )⋅b|b |=-22=-2,得a -b 在b方向上的投影向量为-2⋅b 2=(-1,-1).故选:D .18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CA B.-12CA C.32CA D.-32CA【解析】:AB 与CA 的夹角为2π3,则cos ‹AB ,CA ›=-12,根据投影向量的定义有:AB 在CA 上的投影向量为|AB |⋅cos ‹AB ,CA ›⋅CA|CA |=-12CA .故选:B .19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.223【解析】:∵a +b 在b 上的投影向量为23b,∴(a+b )⋅b |b |⋅b |b |=23b ,∴a ⋅b =-13,∵|a|=|b |=1,∴由向量的夹角公式可知,cos ‹a ,b ›=a ⋅b |a ||b |=-13.故选:A .20已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a【解析】:∵|a|=2|b |,a 与b 的夹角为120°,∴(2b -a )⋅a =2a ⋅b -a 2=2|a |⋅12|a | ⋅cos120°-a 2=-32a 2,∴2b -a 在a 上的投影向量为:(2b -a )⋅a |a |⋅a|a |=-32a .故选:B .五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是90分.【解析】:8名学生的成绩从小到大排列为:63,68,76,77,82,88,92,93,因为8×75%=6,所以75%分位数为第6个数和第7个数的平均数,即12×(88+92)=90(分).故答案为:90分.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.80【解析】:记构成的等差数列为{a n },则a n =70+2(n -1)=2n +68,∵10×40%=4,∴这10个班级的平均成绩的第40百分位数为a 4+a 52=76+782=77,故选:B .23某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.10【解析】;抽取的工人总数为20,20×75%=15,那么第75百分位数是所有数据从小到大排序的第15项与第16项数据的平均数,第15项与第16项数据分别为9,10,所以第75百分位数是9+102=9.5.故选:C .24某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为110【解析】:由频率分布直方图可得,(a +0.01+0.03+0.035+0.01)×10=1,解得a =0.015,故A 错误,设第60百分位数为x ,则0.1+0.015+(x -70)×0.035=0.6,解得x =80,故B 正确,估计这20名学生数学考试成绩的众数为75,故C 错误,估计总体中成绩落在[50,60)内的学生人数为1000×0.01×10=100,故D 错误.故选:B .25某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为10.8.【解析】:数据从小到大排序为:8.6、8.9、9.1、9.6、9.7、9.8、9.9、10.2、10.6、10.8、11.2、11.7,共有12个,所以12×80%=9.6,所以这组数据的第80百分位数是第10个数即:10.8.故答案为:10.8.六.点、线、面间的距离计算(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.【答案】(1)证明:取DE 中点G ,连接FG ,CG ,∵F ,G 分别为AE ,DE 中点,∴FG ∥AD ,FG =12AD ,又AD ∥BC ,BC =12AD ,∴BC ∥FG ,BC =FG ,∴四边形BCGF 为平行四边形,∴BF ∥CG ,又BF ⊄平面CDE ,CG ⊂平面CDE ,∴BF ∥平面CDE .(2)∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,AD ⊥AB ,AD ⊂平面ABCD ,∴AD ⊥平面ABE ,又∠BAE =π2,则以A 为坐标原点,AB ,AE ,AD正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则F (0,1,0),C (2,0,1),D (0,0,2),E (0,2,0),∴CD =(-2,0,1),DE =(0,2,-2),FE =(0,1,0),设平面CDE 的法向量n=(x ,y ,z ),则CD ⋅n=-2x +z =0DE ⋅n =2y -2z =0,令x =1,解得:y =2,z =2,∴n=(1,2,2),∴点F 到平面CDE 的距离d =|FE ⋅n||n |=23.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.【答案】(1)证明:取AE 的中点G ,连接GD ,GF ,因为BF ∥EA ,且BF =12AE ,所以AG ∥BF 且AG =BF ,所以四边形AGFB 是平行四边形,所以GF ∥AB ,又因为ABCD 是菱形,所以AB ∥DC ,且AB =DC ,所以GF ∥DC 且GF =DC ,所以四边形CFGD 是平行四边形,CF ∥DG ,又CF ⊄平面ADE ,DG ⊂平面ADE ,所以CF ∥平面ADE ;解:(2)连接BD 交AC 于N ,取CE 中点P ,∵PN ∥AE ,EA ⊥平面ABCD ,∴PN ⊥平面ABCD ,且CN ⊥BN ,∴以N 为原点,NC ,NB ,NP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设在棱EC 上存在点M 使得平面MBD 与平面BCF 的夹角余弦值为155,E (-1,0,2),B (0,3,0),C (1,0,0),F (0,3,1),A (-1,0,0),D (0,-3,0)则设CM =λCE=λ(-2,0,2)(0<λ<1),∴M (1-2λ,0,2λ),所以DM =(1-2λ,3,2λ),DB =(0,23,0),BC =(1,-3,0),FB=(0,0,-1)设平面DBM 的一个法向量为n=(x ,y ,z ),则n ⋅DM=0n ⋅DB =0,即(1-2λ)x +3y +2λz =023y =0 ,令y =0,x =-2λ,z =1-2λ,得n=(-2λ,0,1-2λ),设平面FBC 的一个法向量为m=(a ,b ,c ),则m ⋅BC =0m ⋅FB =0,即a -3b =0-c =0 ,取b =1,得m=(3,1,0),∴|cos ‹n ,m ›|=|m ⋅n ||m |⋅|n |=|-23λ|2(-2λ)2+(1-2i )2=155,解得λ=13或λ=1,又∵0<λ<1,∴λ=13,此时M 13,0,23 ,∴CM =-23,0,23 ,∴点M 到平面BCF 的距离d =|CM ⋅m||m |=2332=33.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.【解析】:(1)证明:因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC .因为ABCD 为正方形,所以AB ⊥BC ,又因为PA ∩AB =A ,PA ⊂平面PAB ,AB ⊂平面PAB ,所以BC ⊥平面PAB .因为AE ⊂平面PAB ,所以AE ⊥BC .因为PA =AB ,E 为线段PB 的中点,所以AE ⊥PB ,又因为PB ∩BC =B ,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC .又因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC .(2)因为PA ⊥底面ABCD ,AB ⊥AD ,以A 为坐标原点,以AB ,AD ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),P (0,0,2),E (1,0,1),易知u=(0,1,0)是平面PAB 的法向量,设BF =t (t ∈[0,2]),则F (2,t ,0),所以AE=(1,0,1),AF =(2,t ,0),所以|cos ‹AF ,u ›|=|AF ⋅u||AF ||u |=1-255 2,即t t 2+4=55,得t =1,所以AF =(2,1,0),设n=(x 1,y 1,z 1)为平面AEF 的法向量,则n ⋅AE=0,n ⋅AF =0,,所以平面AEF 的法向量n=(-1,2,1),又因为AP=(0,0,2),所以点P 到平面AEF 的距离为d =|AP ⋅n ||n |=26=63,所以点P 到平面AEF 的距离为63,由(1)可知,∠BAF 是直线AF 与平面PAB 所成的角,所以cos ∠BAF =AB AF =AB AB 2+BF 2=255,解得BF =12AB =12BC ,故F 是BC 的中点,所以AF =AB 2+BF 2=5,AE =12PB =2,EF =AF 2-AE 2=3,所以△AEF 的面积为S △AEF =12AE ⋅EF =62,因为PA =AB =2,△PAE 的面积为S △PAE =12S △PAB =14PA ⋅AB =1,设点P 到平面AEF 的距离为h ,则有V P -AEF =13S △AEF ⋅h =66h =V F -PAE =13S △PAE ⋅BF =13,解得h =63,所以点P 到平面AEF 的距离为63.七.条件概率(共8小题)A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥【解析】:根据题意,设P (B )=x ,由于P (A |B )=0.7,则P (AB )=P (B )P (A |B )=0.7x ,P (A )=1-P (A)=0.7,则P (A )P (B )=0.7x ,则有P (AB )=P (A )P (B ),事件A ,B 相互独立.不确定x 的值,P (A ∩B )=P (AB )=0.7x ,A 错误;P (B |A )=P (AB )P (A )=x ,B 错误;由于A 、B 相互独立,事件A 、B 可能同时发生,则事件A 、B 一定不互斥,D 错误.故选:C .P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )= 1936 ,P (A |B )= 319 .【解析】:P (A )=13,则P (A )=1-P (A )=23,故P (B )=P (AB )+P (A B )=P (A )P (B |A )+P (A )P B |A )=23×23+13×14=1936,P (A |B )=P (AB )P (B )=13×141936=319.故答案为:1936,319.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )= 38 .【解析】:由题意可知P (C )=P (A ∩B )=710,则P (A ∪B )=1-P (A ∩B )=1-710=310.又P (A ∪B )=P (A )+P (B )-P (AB ),所以P (AB )=P (A )+P (B )-P (A ∪B )=415+215-310=110,则P (B |A )=P (AB )P (A )=110415=38.故答案为:38.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.95【解析】:设买到的产品是甲厂产品为事件A ,买到的产品是乙厂产品为事件B ,则P (A )=0.8,P (B )=0.2,记事件C :从该地市场上买到一个合格产品,则P (C |A )=0.75,P (C |B )=0.8,所以P (C )=P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B )=0.8×0.75+0.2×0.8=0.76.故选:C .33为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M 对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M 在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M 上场的概率.【解析】:(Ⅰ)事件B =“甲乙两队比赛4局甲队最终获胜”,事件A j =“甲队第j 局获胜”,其中j =1,2,3,4,A j 相互独立.又甲队明星队员M 前四局不出场,故P (A j )=12,j =1,2,3,4,B =A 1 A 2A 3A 4+A 1A 2 A 3A 4+A 1A 2A 3 A 4,所以P (B )=C 13×124=316.(Ⅱ)设C 为甲3局获得最终胜利,D 为前3局甲队明星队员M 上场比赛,由全概率公式知,P (C )=P (C |D )P (D )+P (C |D )P (D),因为每名队员上场顺序随机,故P (D )=C 24A 33A 35=35,P (D )=1-35=25,P (C |D )=122×34=316,P C |D )=123=18, 所以P (C )=316×35+18×25=1380.(Ⅲ)由(2),P (D |C )=P (CD )P (C )=P (C |D )P (D )P (C )=316×351380=913.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.617【解析】:需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,设事件A 表示“选派3名男医生和2名女医生,有一名主任医生被选派”,B 表示“选派3名男医生和2名女医生,两名主任医师都被选派”,P (A )=C 23C 24+C 33C 14+C 23C 14C 34C 25=1720,P (AB )=C 23C 14C 34C 25=310,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为:P (B |A )=P (AB )P (A )=3101720=617.故选:D .35人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.【解析】:设试验一次,“取到甲袋”为事件A 1,“取到乙袋”为事件A 2,“试验结果为红球”为事件B 1,“试验结果为白球”为事件B 2,(1)P (B 1)=P (A 1)P (B 1|A 1)+P (A 2)P (B 1|A 2)=12×910+12×210=1120;所以试验一次结果为红球的概率为1120.(2)①因为B 1,B 2是对立事件,P (B 2)=1-P (B 1)=920,所以P A 1|B 2)=P (A 1B 2)P (B 2)=P (B 2|A 1)P (A 1)P (B 2)=110×12920=19,所以选到的袋子为甲袋的概率为19;②由①得P (A 2|B 2)=1-P A 1|B 2)=1-19=89,中取到红球的概率为:P 1=P (A 1|B2)P (B1|A1)+P (A2|B2)910+89×210=518,方案二中取到红球的概率为:P 2=P (A 2|B 2)P (B 1|A 1)+P (A 1|B 2)P B 1|A 2)=89×910+19×210=3745, 所以方案二中取到红球的概率更大.该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】:(1)该款芯片生产在进入第四道工序前的次品率P =1-1-110 ×1-19 ×1-18=310.(2)设该批次智能自动检测合格为事件A ,人工抽检合格为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.八.全概率公式(共2小题)乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.38【解析】:甲生产线的产量是乙生产线产量的1.5倍,则从这种铅笔中任取一件抽到甲生产线的概率为0.6,抽到乙生产线的概率为0.4,从这种铅笔产品中任取一件,则取到次品的概率为0.6×10%+0.4×5%=0.08,所以取到合格产品的概率为1-0.08=0.92.故选:A .第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15【解析】:设事件A i 表示从第i (i =1,2)箱中取一个零件,事件B 表示取出的零件是次品,则P (B )=P (A 1。

2024高考数学二轮专题复习——解三角形之三斜求积巧求面积

2024高考数学二轮专题复习——解三角形之三斜求积巧求面积

三斜求积巧求面积典例研究【例1】(2024·广东广州·铁一中学校考一模)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,在该书的第五卷“三斜求积”中,提出了由三角形的三边直接求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”把以上这段文字写成公式,就是2222221[()]42c a b S c a +--S 为三角形面积,a 为小斜,b 为中斜,c 为大斜).在ABC中,若2a =3b ,3c =,则ABC 的面积等于()A 24B .22C .34D .32【例2】(24高三上·内蒙古呼和浩特·期末)若向量()11a x y = ,,()22b x y = ,,则以a 、b为邻边的平行四边形的面积S 可以用a 、b的外积a b ⨯ 表示出来,即1221S a b x y x y =⨯=- .已知在平面直角坐标系xOy 中,(cos 3A α,、()sin 22cos B αα,,π02α⎡⎤∈⎢⎥⎣⎦,,则OAB 面积的最大值为()A .1B 2C .2D .3【例3】已知点()()()100122A B C --,,,,,,求:(1)2AB AC -的模;(2)ABC 的面积.上面三个问题虽然呈现的形式不一样,但都源于一个共同的背景:三角形面积的海伦—秦九韶公式.我国著名的数学家秦九韶(约1202—1261)在他所著的《数书九章》卷五“田域类”里给出了一道题目:问沙田一段,有三斜.其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何?问题的本质是已知三角形的三边长,求三角形的面积.《数书九章》中给出了这类问题的一般性结论,其求法是:以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.三斜求积术就是用小斜平方加大斜平方减中斜平方,取得数的一半,自乘而得一个数;小斜平方乘大斜平方,减上面所得到的那个数,相减后的数被4除,所得的数作为“实”;取1作为“隅”,开平方后即得面积.所谓“实”“隅”,即在方程2px qk =中,p 为“隅”,q 为“实”.(参见下面的④式)《普通高中教科书数学必修第三册B 版》(人民教育出版社2019年4月第1版)第88页拓展阅读“向量的数量积与二角形的面积”介绍了如下结论:如图,在ABC 中,()(),AB x y AC u v == ,,,求证:ABC 的面积为12S xv yu =-.该题的证法如下.1sin 2S AB AC A ====因为()()AB x y AC u v ==,,,,所以12S xv yu ===-②.注②式是三角形面积公式的向量形式,也是前面“经典题组”中问题1的结论.②式可作如下推广:在平面直角坐标系中,,,A B C 为不共线的三点,()()()112233A x y B x y C x y ,,,,,,则ABC 的面积为()()()()2131312112S x x y y x x y y =-----③.《普通高中教科书数学必修第二册A 版》(人民教育出版社2019年7月第1版)第55页阅读与思考中,介绍了三角形面积的三斜求积公式:△=ABCS 在ABC 中,根据数量积的定义,不难发现222cos 2AB AC BCAB AC AB AC A +-⋅==,这表明,④式等价于①式.将④式进行化简,可推出海伦公式:ABC S ==△==,这里,()12p a b c =++为ABC 的半周长.秦九韶提出的三斜求积术虽然与古希腊数学家提出的海伦公式在形式上有所不同,但完全与海伦公式等价,它填补了中国数学史上的空白,从中可以看出中国古代已经具有很高的数学水平.三斜求积术,是我国数学史上的一颗明珠.【庖丁解题例1】利用题中所给三角形的面积公式即可求解.在ABC 中,若a =b =3c =,则ABC 的面积S 故选:B .[庖丁解题例2]第一步:利用三角形面积的外积公式结合三角恒等变换化简;已知在平面直角坐标系xOy 中,(cos A α、()sin 22cos B αα,,π02α⎡⎤∈⎢⎣⎦,,因为22112cos 222cos 22OAB S OA OB αααα=⨯==- △()1π21cos 22cos 212sin 2126ααααα⎛⎫=-+=--=-- ⎪⎝⎭,第二步:结合正弦函数性质求解值域即可.因为π02α≤≤,则ππ5π2666α-≤-≤,则1πsin 2126α⎛⎫-≤-≤ ⎪⎝⎭,则π22sin 2116α⎛⎫-≤--≤ ⎪⎝⎭,则[]1π2sin 210126S α⎛⎫=--∈ ⎪⎝⎭,,当ππ266α-=-时,即当0α=时,OAB 面积取最大值1.故选:A.【庖丁解题例3】第一步:利用坐标运算及模的坐标运算求解;(1)因为()()()100122A B C --,,,,,,所以()()1132AB AC =-= ,,,,所以()214AB AC -=--,2AB AC ∴-= 第二步:利用夹角公式求得cos BAC ∠,进而得到sin BAC ∠;(2)因为()()1132AB AC =-= ,,,,所以cosAB AC BAC AB AC ∠⋅==[]0BAC ∠π∈ ,,所以sin BAC ∠==第三步:利用三角形面积公式求解.15sin 22ABCS AB AC BAC ∠∴== .题型归纳类型1由三角形的边长求面积例1《数书九章》中记载了三斜求积术:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以S a b c ,,,分别表示三角形的面积、大斜、中斜、小斜;a b c h h h ,,分别为对应的大斜、中斜、小斜上的高;111222a b c S ah bh ch ===.若在ABC 中,23a b c h h h ===,,根据上述公式,可以推出该三角形外接圆的半径为______.解析根据题意可知:::3:2a b c =,故设()320a b xc x x ===>,,.由111222a b c S ah bh ch ===,可得x =由余弦定理可得1cos 12A =,从而143sin 12A =,由正弦定理得ABC 的外接圆半径为2sin 2sin 143a A A ==.升华原则上,由海伦公式ABC S =求三角形的面积,需要知道三角形的三边长,但是,用三斜求积公式S =求三角形的面积,只需求得22c a 和222c a b +-即可.【举一反三1-1】1.我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设ABC 的三个内角,,A B C所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =,若2sin 2sin a C A =,()226a c b +=+,则用“三斜求积”公式求得ABC 的面积为()A2B C .12D .1【答案】A【分析】对于2sin 2sin a C A =,利用正弦定理角化边可得2ac =,继而化简()226a c b +=+可得2222a c b +-=,代入“三斜求积”公式即得答案.【详解】由2sin 2sin a C A =得22,2a c a ac =∴=,由()226a c b +=+得222622+-=-=a c b ac ,故=S ,股癣:A 【举一反三1-2】2.我国南宋著名数学家秦九韶(约1202-1261)被国外科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”.他独立推出了“三斜求积”公式,求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”把以上这段文字写成从三条边长求三角形面积的公式,就是S =现有ABC 满足sin :A sin :sin 2:3:BC =ABC的面积是ABC 的周长为,AB 边中线CD 的长为【答案】10+10【分析】由正弦定理得出三边关系,再由面积公式求出各边得出周长,再利用ACD S =△CD 的长.【详解】因为sin :sin :sin 2:3:A B C =::2:a b c =设2,3,a k b k c ===,则由题可得6S =2k =,则ABC的周长为(510a b c k ++=+=+因为CD 为中线,ACD中,6,ACAD ==CD x =,则ACD S ==,解得x =又在三角形中,BD BC CD +>,所以CD =故答案为:10+【举一反三1-3】3.《数书九章》是南宋时期杰出数学家秦九韶的著作,全书十八卷,共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积术”中提出了已知三角形三边a ,b ,c ,求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”若把以上这段文字写成公式,即S =.现有ABC满足sin :sin :sin 2:3:A B C =且ABC的面积S =)A .ABC的周长为10+B .ABC 三个内角A ,B ,C 满足2C A B =+C .ABC 外接圆的直径为4213D .ABC 的中线CD的长为【答案】ABC【分析】对于选项A ,由正弦定理得三角形三边之比,由面积求出三边,代入公式即可求出周长;对于选项B ,根据余弦定理可求得cos C 的值为12,可得3C π=,可得ABC 三个内角A ,C ,B 成等差数列;对于选项C ,由正弦定理可得,ABC 外接圆直径2sin cR C=可得2R 的值;对于选项D ,由题意利用中线定理即可计算得解.【详解】由正弦定理可得::2:a b c =设2,3,(0),a mb mc m ==>26S ∴==,解得2,m ABC =∴的周长为4610a b c ++=++=+,故A 正确;由余弦定理得2221636281cos 22462a b c C ab +-+-===⨯⨯,π2π.π,,233C A B C A B C A B ∴=++=∴+=∴=+ ,故B 正确;由正弦定理知,ABC外接圆的直径2sin sin 3c R C ===,故C 正确;由中线定理得2222122a b c CD +=+,即2111636281922CD ⎛⎫=⨯+-⨯= ⎪⎝⎭,CD ∴=,故D 错误.故选:ABC .类型2由三角形两边的向量坐标求面积例2已知()()cos22cos682cos522cos38AB AC ︒=︒︒=︒,,,,则ABC 的面积为()A .12B.2CD .1解析1cos222cos38cos682cos522ABC S =⨯︒⨯︒-︒⨯︒△1cos22cos38sin22sin38cos602=︒︒-︒︒=︒=.故选A .升华给定三角形两边的向量坐标或三顶点的坐标求面积,直接由②式计算.【举一反三1-1】4.已知)1,2AB BC ⎛==⎝⎭,则ABC 的面积为()A .12BC .1D【答案】A【分析】由三角形面积公式、向量数量积以及模的坐标运算即可得解.【详解】因为)1,2AB BC ⎛==⎝⎭,所以111sin ,222ABC S AB BC BA BC AB BC AB BC ==12=.故选:A .【举一反三1-2】5.在四边形ABCD 中,()()2,4,6,3AC BD ==-,则四边形ABCD 的面积为()A.B .C .2D .15【答案】D【分析】设,AC BD 相交于点O ,首先证明四边形ABCD 对角线互相垂直,从而由12ABCD A S C BD = 四边形即可得解.【详解】因为()()2,4,6,3AC BD ==- ,所以12120AC BD -⋅=+=,即四边形ABCD 对角线互相垂直,设,AC BD 相交于点O ,则1122ABD CBD ABCD AO BD CO BD S S S +=+=四边形△△()11122152AO CO BD AC BD =+===.故选:D .【举一反三1-3】6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP 面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB = 点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d =故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABP S AB d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.类型3已知三角形三边的关系式求面积的最大值例3我国南宋时期著名的数学家秦九韶在其著作《数书九章》中提出了已知三角形三边长求三角形面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”若把以上这段文字写成公式,即S =,其中a b c ,,分别为ABC 的内角,,A B C 12tan b C ==,,则ABC 的面积S 的最大值为()AB C .2D解析1tan C =,所以tan C =,又sin tan cos C C C =sin cos CC=,()cos sin 1sin cos B C C B C C B ==,所以)()sin sin cos cos sin C B C B C B C A =++,由正弦定理得c =.因为2b =,所以ABC 的面积S ==将2a 看成整体并利用二次函数性质知,当24a =,即2a =时,ABC 的面积SA .升华由三角形的一边的长度和另外两边的关系式求面积的最大值,都可运用例3的思路解决,即根据海伦公式,将三角形面积转化为关于一边的表达式,运用函数性质或基本不等式求面积的最大值.【举一反三1-1】7.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是S =其中,,a b c 是ABC 的内角,,A B C 的对边为.若sin 2sin cos C A B =,且222b c +=,则ABC 面积S 的最大值为.【分析】根据正弦定理和余弦定理,由sin 2sin cos C A B =可得a b =,再由S =及函数求最值的知识,即可求解.【详解】sin 2sin cos C A B = ,222222cos 22a c b c a B a a b a bac+-∴==⋅⇒=⇒=又222b c += ,222a c ∴=-,S ∴==245c ∴=时,ABC ∆面积S 故答案为:【点睛】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.【举一反三1-2】8.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,设ABC 的面积为S ,若22232a b c =+,则22S 2b c +的最大值为.【分析】根据题中条件利用余弦定理进行简化,运用均值不等式求cos A 的范围,然后由面积公式化简为三角函数,求最值即可.【详解】由题知22232a b c =+⇒2221(2)3a b c =+,则222222222co 22322s 6b c b c b c a b c cA bc bc b ++-+-+===63bc ≥=,当且仅当b =时取等号.22221sin 222bc A S b c b c=++ 22sin sin tan 2(2)12cos 12bc A bc A Ab c bc A ===+,而tan 2A =≤=,22tan 212S A b c ∴=≤+【举一反三1-3】9.已知ABC ∆的内角A 的平分线交BC 于点D ,ABD ∆与ADC ∆的面积之比为2:1,2BC =,则ABC ∆面积的最大值为.【答案】43【详解】根据题意ABD ∆与ADC ∆的面积之比为2:1,可得到AB 是AC 的二倍,设AB=2x,AC=x,由余弦定理得到2225494016cos ,sin 44x A A x x -=三角形面积为2194016940162··244S x x x =⨯=2242,439x x <<<<上式在2209x =出取得最大值,代入得到43.故答案为43.点睛:本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.。

备战2024高考数学二轮复习讲义第3讲-割补思想在立体几何中的应用

备战2024高考数学二轮复习讲义第3讲-割补思想在立体几何中的应用

第3讲割补思想在立体几何中的应用割补法是数学中最重要的思想方法之一,主要分为割形与补行,是将复杂的,不规则的不易认识的几何体或几何图形,分割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的。

割补法重在割与补,巧妙对几何体过几何图形实割与补,变整体的为局部,化不规则为规则,化陌生为熟悉,化抽象为直观。

割补法在立体几何中体现的主要的题型就是几何体的切等问题。

【应用一】割的思想在多面体的体积及几何体的内切球中的运用割的思想主要体现两种题型:一是求复杂几何体的体积、表面积等问题,此类问题通过割把复杂的几何体割成几个简单的几何体。

二是求几何体内切球的半径、体积等问题。

此类问题主要是通过球心与几何体的各点割成锥,然后运用等积法求半径。

【例1.1】已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为________.【例1.2】【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【思维提升】以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13△ABC ·r +13S△PAB·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ;第三步:解出r =3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC =3VS 表.秒杀公式(万能公式):r =3V S 表【例1.3】(2023·河北唐山·统考三模)(多选)《九章算术》是我国古代的数学名著,书中提到底面为长方形的屋状的楔体(图示的五面体)EF ABCD -.底面长方形ABCD 中3BC =,4AB =,上棱长2EF =,且EF 平面ABCD ,高(即EF 到平面ABCD 的距离)为1,O 是底面的中心,则()A .EO 平面BCF【变式1.1】(2023·辽宁·辽宁实验中学校考模拟预测)如图①,在平行四边形ABCD中,AB ===ABD △沿BD 折起,使得点A 到达点P 处(如图②),=PC P BCD -的内切球半径为______.【变式1.2】(2023·辽宁沈阳·东北育才学校校考模拟预测)已知一正四面体棱长为4,其内部放置有一正方体,且正方体可以在正四面体内部绕一点任意转动,则正方体在转动过程中占据的空间体积最大为__________.【变式1.3】(2022·江苏通州·高三期末)将正方形ABCD 沿对角线BD 折成直二面角A ′-BD -C ,设三棱锥A ′-BDC 的外接球和内切球的半径分别为r 1,r 2,球心分别为O 1,O 2.若正方形ABCD 的边长为1,则21r r =________;O 1O 2=__________.【应用二】补的思想在立体几何中几何体外接球中的应用解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.2.记住几个常用的结论:(1)正方体的棱长为a,球的半径为R.①对于正方体的外接球,2R;②对于正方体的内切球,2R=a;③对于球与正方体的各棱相切,2R.(2)在长方体的同一顶点的三条棱长分别为a,b,c,球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.3.构造法在定几何体外接球球心中的应用(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体【例2.1】(2022·广东潮州·高三期末)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A-BCD中,AB⊥平面BCD,CD⊥AD,AB=BD,已知动点E从C点出发,沿外表面经过棱AD上一点到点B,则该棱锥的外接球的表面积为_________.【思维提升】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例2.2】(2022·广东·铁一中学高三期末)已知四面体A BCD -中,5AB CD ==,10AC BD ==,13BC AD ==,则其外接球的体积为______.【思维提升】棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2222R a b c =++(长方体的长、宽、高分别为a、b、c).秒杀公式:R2=x2+y2+z28(三棱锥的三组对棱长分别为x、y、z).可求出球的半径从而解决问题.【变式2.1】(2023·湖南邵阳·统考三模)三棱锥-P ABC 中,PA ⊥平面ABC ,4,223,PA AC AB AC AB ===⊥,则三棱锥-P ABC 外接球的表面积为__________.【变式2.2】已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,3AD BC ==,若三棱锥A BCD -的外接球表面积为92π.则AC =________.【变式2.3】已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为()A .12πB .7πC .9πD .8π【变式2.4】(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为().A.62πD.6π8πB.64πC.6巩固练习1、【2019年新课标2卷理科】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.2、(2022·湖北江岸·高三期末)如图,该几何体是由正方体截去八个一样的四面体得到的,若被截的正方体棱长为2,则该几何体的表面积为()A.1233++D.63+C.633+B.12433、(2023·山西临汾·统考一模)《九章算术·商功》提及一种称之为“羡除”的几何体,刘徽对此几何体作注:“羡除,隧道也其所穿地,上平下邪.似两鳖臑夹一堑堵,即羡除之形.”羡除即为:三个面为梯形或平行四边形(至多一个侧面是平行四边形),其余两个面为三角形的五面几何体.现有羡除ABCDEF如图所示,底面ABCD为正方形,4EF=,其余棱长为2,则羡除外接球体积与羡除体积之比为()A.22πB.42πC.82πD.2π3A .18B .275、正四面体的各条棱长都为.6、在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.7、在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____.8、(2023·湖南郴州·统考三模)已知三棱锥-P ABC 的棱长均为4,先在三棱锥-P ABC 内放入一个内切球1O ,然后再放入一个球2O ,使得球2O 与球1O 及三棱锥-P ABC 的三个侧面都相切,则球2O 的表面积为__________.第3讲割补思想在立体几何中的应用割补法是数学中最重要的思想方法之一,主要分为割形与补行,是将复杂的,不规则的不易认识的几何体或几何图形,分割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的。

割补法与等体积法(教师版)

割补法与等体积法(教师版)

图1-1图1-2A'立体几何微专题二 割补法与等体积法一1 2 3 4 5 6 7例1 如图1-1,A A '⊥底面ABC ,////AA BB CC ''',且345AB BC AC ===,,,624AA BB CC '''===,,,求几何体C B A ABC '''-的体积.解:补上一个相同的几何体如图1-2所示,则新几何体的体积等于两个原几何体的体积.即=2V V 新原.因为A A '⊥底面ABC ,////AA BB CC ''',所以新几何体ABC DEF -为直三棱柱,且因为624AA BB CC '''===,,,所以新几何体底面ABC 的高8AD =.345AB BC AC ===,,, 222AB BC AC ∴+=,90ABC ︒∴∠=1=S 482ABC V AD AB BC AD ∆∴⋅=⋅⋅=新 所以原几何体的体积为24.图1-3图1-4解:(法二)在AA '上取一点D 使2AD BB '==,在CC '上取一点E 使2CE BB '==,连结DB ',B E ',DE 平面如图1-3所示,////AA BB CC ''',A A '⊥底面ABCABC DB E '∴-为直三棱柱345AB BC AC ===,,, 222AB BC AC ∴+=,90ABC ︒∴∠=1=S 122ABC DB E ABC V AD AB BC AD '-∆∴⋅=⋅⋅=, 过点B '作B F DE F '⊥于,如图1-4所示,A A '⊥底面ABC ,A A DB E ''∴⊥底面 A A B F ''∴⊥A A DE D '⋂=B F DEC A '''∴⊥平面所以四棱锥B DEC A '''-的体积为 111=S ()12332B DEC A DEC A VBF A D C E DE BF '''''-''⋅=⋅+⋅⋅= 所以几何体C B A ABC '''-的体积为24B DEC A ABC DB EVV''''--+=二.等体积法例2. 如图,在直三棱柱111ABC A B C -中,AB=AC=5,BB 1=BC=6,D ,E 分别是AA 1和B 1C的中点(1) 求证:DE ∥平面ABC ; (2) 求三棱锥E-BCD 的体积。

(完整版)用割补法求面积

(完整版)用割补法求面积

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

(山东专版)高考数学二轮专题复习与策略 第2部分 必考补充专题 技法篇 6招巧解客观题,省时、省力得

(山东专版)高考数学二轮专题复习与策略 第2部分 必考补充专题 技法篇 6招巧解客观题,省时、省力得

必考补充专题技法篇 6招巧解客观题,省时、省力得高分教师用书理必考补充专题中的4个突破点在高考考查中较为简单,题型为选择、填空题,属送分题型,通过一轮复习,大多数考生已能熟练掌握,为节省宝贵的二轮复习时间,迎合教师与考生的需求,本部分只简单提炼核心知识,构建知识体系,讲解客观题解法,其余以练为主.建知识网络明内在联系[高考点拨] 必考补充专题涉及的知识点比较集中,多为新增内容,在高考中常以“四小”的形式呈现.本专题的考查也是高考中当仁不让的高频考点,考查考生应用新知识解决问题的能力和转化与化归能力等.综合近年高考命题规律,本专题主要从“集合与常用逻辑用语”“不等式与线性规划”“算法初步、复数、推理与证明”“排列组合、二项式定理”四大角度进行精练,引领考生明确考情,高效备考.技法篇:6招巧解客观题,省时、省力得高分[技法概述] 选择题、填空题是高考必考的题型,共占有75分,因此,探讨选择题、填空题的特点及解法是非常重要和必要的.选择题的特点是灵活多变、覆盖面广,突出的特点是答案就在给出的选项中.而填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,不设中间分,所以要求所填的是最简最完整的结果.解答选择题、填空题时,对正确性的要求比解答题更高、更严格.它们自身的特点决定选择题及填空题会有一些独到的解法.解法1 直接法直接法是直接从题设出发,抓住命题的特征,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得出结果.直接法是求解填空题的常用方法.在用直接法求解选择题时,可利用选项的暗示性作出判断,同时应注意:在计算和论证时尽量简化步骤,合理跳步,还要尽可能地利用一些常用的性质、典型的结论,以提高解题速度.(1)(2016·高考)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3(2)(2015·某某高考)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为______.[解题指导] (1)先求点P 坐标,再求点P ′的坐标,最后将点P ′的坐标代入y =sin 2x 求s 的最小值.(2)可以利用向量的坐标运算,通过坐标相等,直接得出参量m ,n 的值. (1)A (2)-3 [(1)因为点P ⎝⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=sin π6=12.所以P ⎝ ⎛⎭⎪⎫π4,12.将点P 向左平移s (s >0)个单位长度得P ′⎝ ⎛⎭⎪⎫π4-s ,12.因为P ′在函数y =sin 2x 的图象上,所以sin 2⎝ ⎛⎭⎪⎫π4-s =12,即cos 2s =12,所以2s=2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z),所以s 的最小值为π6.(2)∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =-3.][变式训练1] (2015·某某高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元) 8.2 8.6 10.0 11.3 11.9 支出y (万元)6.27.58.08.59.8根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元B [由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元).] 解法2 等价转化法所谓等价转化法,就是通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果.(1)(2016·某某模拟)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( )A .20B .15C .9D .6(2)(2015·某某高考)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.[解题指导] (1)把向量AM →,NM →用AB →,BC →表示,再求数量积.(2)利用∠AOB =120°,得到圆心到直线的距离,最后用点到直线的距离公式求解.(1)C (2)2 [(1)依题意有AM →=AB →+BM →=AB →+34BC →,NM →=NC →+CM →=13DC →-14BC →=13AB →-14BC →,所以AM →·NM →=⎝⎛⎭⎪⎫AB →+34BC →·⎝ ⎛⎭⎪⎫13AB →-14BC →=13AB →2-316BC →2=9.故选C.(2)如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+-42=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB |=2|OD |=2,即r =2.][变式训练2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为( ) 【导学号:67722071】A .2B.32 C .1D.12(2)若直线y =kx +1(k ∈R)与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值X 围是________.(1)D (2)[-1,3] [(1)因为AC →=AD →+DC →,BE →=BC →+CE →=AD →-12DC →,所以AC →·BE →=(AD →+DC →)·⎝ ⎛⎭⎪⎫AD →-12DC →=AD →2+12AD →·DC →-12DC 2,所以1+12|DC →|·cos 60°-12|DC →|2=1,|DC →|=12,故AB 的长为12.(2)直线y =kx +1恒过定点(0,1),则直线与圆恒有交点等价于点(0,1)在圆内或圆上,即02+12-2a ×0+a 2-2a -4≤0,即a 2-2a -3≤0,解得-1≤a ≤3.]解法3 特殊值法在解决选择题和填空题时,可以取一个或一些特殊数值或特殊位置、特殊函数、特殊点、特殊方程、特殊数列、特殊图形等来确定其结果,这种方法称为特值法.特值法由于只需对特殊数值、特殊情形进行检验,省去了推理论证、繁琐演算的过程,提高了解题的速度.特值法是考试中解答选择题和填空题时经常用到的一种方法,应用得当可以起到“四两拨千斤”的功效.(1)(2015·某某高考)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r=12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q(2)(2015·某某高考)“对任意x ∈⎝⎛⎭⎪⎫0,π2,k sin x cos x <x ”是“k <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解题指导] (1)从条件看这应是涉及利用基本不等式比较函数值大小的问题,若不等式在常规条件下成立,则在特殊情况下更能成立,所以不妨对a ,b 取特殊值处理,如a =1,b =e.(2)正常来说分析不等式k sin x cos x <x 成立的条件很复杂,也没必要,所以可以尝试在满足条件的情况下对x 取特殊值进行分析,这样既快又准确.(1)C (2)B [(1)根据条件,不妨取a =1,b =e ,则p =f (e)=ln e =12,q =f ⎝ ⎛⎭⎪⎫1+e 2>f (e)=12,r =12(f (1)+f (e))=12,在这种特例情况下满足p =r <q ,所以选C.(2)若对任意x ∈⎝⎛⎭⎪⎫0,π2,k sin x cos x <x 成立,不妨取x =π4,代入可得k <π2,不能推出k <1,所以是非充分条件;因为x ∈⎝⎛⎭⎪⎫0,π2,恒有sin x <x ,若k <1,则k cos x <1,一定有k sin x cos x <x ,所以选B.][变式训练3] (1)如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,那么( ) A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5(2)(2016·某某模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c成等差数列,则cos A +cos C1+cos A cos C=________.(1)B (2)45 [(1)取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立.(2)令a =b =c ,则A =C =60°,cos A =cos C =12.从而cos A +cos C 1+cos A cos C =45.]解法4 数形结合法数形结合法是指在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思考,促使抽象思维和形象思维有机结合,通过对规X 图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决的方法.(1)(2016·某某模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x+y 的最大值是( )【导学号:67722072】A .-1B .-2C .-5D .1(2)(2015·某某高考)函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为______.[解题指导] (1)要确定目标函数的最大值,需知道相应的x ,y 的值,从约束条件中不可能解出对应的x ,y 的值,所以只有通过图解法作出约束条件的可行域,据可行域数形结合得出目标函数的最大值.(2)函数的零点即对应方程的根,但求对应方程的根也比较困难,所以进一步转化为求两函数的图象的交点,所以作出两函数的图象确定交点个数即可.(1)A (2)2 [(1)二元一次不等式组表示的平面区域为如图所示的△ABC 内部及其边界,当直线y =2x +z 过A 点时z 最大,又A (1,1),因此z 的最大值为-1.(2)f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)| =2(1+cos x )sin x -2sin x -|ln(x +1)| =2sin x cos x -|ln(x +1)|=sin 2x -|ln(x +1)|. 由f (x )=0,得sin 2x =|ln(x +1)|.设y 1=sin 2x ,y 2=|ln(x +1)|,在同一平面直角坐标系中画出二者的图象,如图所示.由图象知,两个函数图象有两个交点,故函数f (x )有两个零点.] [变式训练4] (1)(2016·某某模拟)方程x lg(x +2)=1的实数根的个数为( )A .1B .2C .0D .不确定(2)已知偶函数y =f (x )(x ∈R)在区间[0,2]上单调递增,在区间(2,+∞)上单调递减,且满足f (-3)=f (1)=0,则不等式x 3f (x )<0的解集为________.(1)B (2)(-3,-1)∪(0,1)∪(3,+∞) [(1)方程x lg(x +2)=1⇔lg(x +2)=1x,在同一坐标系中画出函数y =lg(x +2)与y =1x的图象,可得两函数图象有两个交点,故所求方程有两个不同的实数根.(2)由题意可画出y =f (x )的草图,如图.①x >0,f (x )<0时,x ∈(0,1)∪(3,+∞); ②x <0,f (x )>0时,x ∈(-3,-1).故不等式x 3f (x )<0的解集为(-3,-1)∪(0,1)∪(3,+∞).] 解法5 构造法用构造法解客观题的关键是利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到解决,它需要对基础知识和基本方法进行积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化.(1)(2016·某某一模)已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)(2)如图1,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.图1[解题指导] (1)构造函数g (x )=f xx,可证明函数g (x )在(0,+∞)上是减函数,再利用 x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x )求解. (2)以DA ,AB ,BC 为棱长构造正方体,则球O 是此正方体的外接球,从而球O 的直径是正方体的体对角线长.(1)C (2)6π [(1)设g (x )=f x x ,则g ′(x )=xf ′x -f xx 2,又因为f (x )>xf ′(x ),所以g ′(x )=xf ′x -f xx 2<0在(0,+∞)上恒成立,所以函数g (x )=f x x 为(0,+∞)上的减函数,又因为x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x ),则有1x<x ,解得x >1,故选C.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.][变式训练5] (1)(2016·某某高三诊断)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)(2)已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________(写出所有正确结论的序号). (1)B (2)①②④ [(1)因为f (x +2)为偶函数, 所以f (x +2)的图象关于x =0对称, 所以f (x )的图象关于x =2对称, 所以f (4)=f (0)=1, 设g (x )=f xex(x ∈R),则g ′(x )=f ′x e x -f x e xex2=f ′x -f xex,又因为f ′(x )<f (x ), 所以g ′(x )<0(x ∈R),所以函数g (x )在定义域上单调递减, 因为f (x )<e x⇔g (x )=f xex<1,而g (0)=f 0e=1,所以f (x )<e x⇔g (x )<g (0),所以x >0,故选B.(2)用正方体ABCD ­A 1B 1C 1D 1实例说明A 1D 与BC 1在平面ABCD 上的射影互相平行,AB 1与BC 1在平面ABCD 上的射影互相垂直,BC 1与DD 1在平面ABCD 上的射影是一条直线及其外一点.故正确的结论为①②④.]解法6 排除法排除法就是充分运用选择题中单选题的特征,即有且只有一个正确选项这一信息,从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确结论的方法.使用该法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.排除法适用于定性型或不宜直接求解的选择题,当题目中的条件多于一个时,先根据某些条件,在选项中找到明显与之矛盾的予以否定,再根据另一些条件,在剩余的选项内找出矛盾,这样逐步筛选,直至得出正确的答案.(1)(2016·北师大附中模拟)函数y =cos 6x2x -2-x 的图象大致为( )【导学号:67722073】A BC D(2)(2015·某某高考)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x [解题指导] (1)根据函数的奇偶性和x →+∞时函数值的正负,以及x →0且x >0时函数值的正负,排除可得答案.(2)可验证当x <0时,等式成立的情况.(1)D (2)D [(1)函数y =cos 6x 为偶函数,函数y =2x -2-x为奇函数,故原函数为奇函数,排除A.又函数y =2x -2-x 为增函数,当x →+∞时,2x -2-x →+∞且|cos 6x |≤1,∴y =cos 6x 2x -2-x →0(x →+∞),排除C.∵y =cos 6x 2x -2-x =2x ·cos 6x 4x -1为奇函数,不妨考虑x >0时函数值的情况,当x →0时,4x →1,4x -1→0,2x →1,cos 6x →1,∴y →+∞,故排除B ,综上知选D.(2)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.] [变式训练6] (1)(2015·某某高考)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )(2)(2015·高考)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0(1)D (2)C [(1)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D. (2)设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,∴a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,∴a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.]客观题常用的6种解法已初步掌握,在突破点19~22的训练中一展身手吧!。

几何证题方法探讲——割补法

几何证题方法探讲——割补法

几何证题方法探讲——割补法作者:余熳炜张勇超来源:《中学生数理化·教研版》2009年第07期在求解平面几何问题时,根据问题的题设和结论,合理适当地将原来的图形割去一部分,或补上一部分,变成一个特殊的、简单的、整体的、熟悉的图形,使原来问题的本质得到充分显示,通过对新图形的分析,探索原来问题的答案,我们把这种方法称之为割补法.一、补出直角三角形如果图形中有直角或者相邻两角互余的情况,可考虑通过整形,补出或补成直角三角形来解题.二、补出等腰三角形如果图形涉及三角形或四边形某角的平分线,或三角形一边上的中线(或高)与角平分线联系,可考虑补出等腰三角形来.例1 如图1,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,且AE=12BD,求证:BD平分∠ABC.三、补出正三角形如果多边形有一个内角为60°或120°,涉及到等线段,可考虑将图形补成一个正三角形.例2如图2,AA′、BB′、CC′交于点O,且AA′=BB′=CC′=1,∠AOC′=∠BOA′=∠COB′=60°.(1)求证:△△△COB′<34;(2)求证:△AOC′、△BOA′、△COB′ 中至少有一个不大于316. 证明:(1)延长AA′至E,使A′E=OA.延长B′B至D,使BD=BO′,连DE.在DE上截取F,使EF=OC′.易证△ODE为正三角形,DF=OC.则△AOC′≌△A′EF,△B′OC≌△BDF.∵△A'EF+△BOA'+△BDF<正△ODE,∴△AOC'+△BOA'+△COB'<正△ODE.又△ODE=34,则△AOC'+△BOA'+△COB'<34.(2)设OA=a,OB=b,OC=c,则OA'=1-a,OB'=1-b,OC'=1-c.∵△AOC'=34a(1-c),△BOA'=34b(1-a),△B'OC=34c(1-b). ∴△AOC'-△BOA'-△∵-a+14≥0 ,∴a(1-a)≤14.同理b(1-b)≤14,c(1-c)≤14.则△AOC'-△BOA'-△∴△AOC'、△BOA'、△COB'中至少有一个不大于316.四、补出平行四边形例3 如图3,凸六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA -CD=3,求BC+DE.解:由题意知,AF∥CD,BC∥EF,则可将六边形补成平行四边形MCNF.△ABM、△DEN均为等边三角形.MC=AB+BC=11. ①FA=MF-AM=CN-AB=CD+DE-AB.于是FA-CD=DE-AB=3.则DE-AB=3. ②①+②得DE+BC=14.五、补出正方形例4 如图4,在△ABC中,AD⊥BC于D,∠CAB=45°,BC=3,CD=2,求△ABC.解:将△ACD沿直线AC翻折得△ACF.将△ABD沿直线AB翻折得△ABE.分别延长FC、EB交于G,可证出AEGF为正方形.设AF=AD=AE=x,则CG=x-2,BG=x-3.在Rt△BCG中,=+∴(2+=(x-+(x-解得x=6(舍去负值).则△ABC=15.五、补出圆已知共顶点的两条相等线段、角之间的关系,可以公共顶点为圆心补圆,以较方便转化角、转化线段之间的关系.例5 如图5,若PA=PB,∠APB=2∠ACBAC与PB交于点D,且PB=4,PD=3,则AD•DC=.A.6B.7C.12D.16解:以P为圆心,PB长为半径作圆.∵PA=PB,∠APB=2∠ACB.∴点A、点C都在圆上,延长BP交⊙P于点E,则BE=8.∵PD=3∴BD=1,DE=7,由相交弦定理知:AD•DC=7.。

高考数学复习考点知识与解题方法专题讲解34---空间几何体的表面积和体积

高考数学复习考点知识与解题方法专题讲解34---空间几何体的表面积和体积

高考数学复习考点知识与解题方法专题讲解 专题34 空间几何体的表面积和体积【考纲要求】1.会计算柱、锥、台、球的表面积和体积.【知识清单】知识点1.几何体的表面积圆柱的侧面积 rl S π2=圆柱的表面积 )(2l r r S +=π圆锥的侧面积 rl S π=圆锥的表面积 )(l r r S +=π圆台的侧面积 l r r S )(+'=π圆台的表面积 )(22rl l r r r S +'++'=π球体的表面积 24R S π=柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积. 知识点2.几何体的体积圆柱的体积 h r V 2π=圆锥的体积 h r V 231π=圆台的体积 )(3122r r r r h V '++'=π 球体的体积 334R V π= 正方体的体积 3a V =正方体的体积 abc V =【考点梳理】考点一 :几何体的面积【典例1】(2020·天津高考真题)若棱长为则该球的表面积为( )A .12πB .24πC .36πD .144π 【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【典例2】(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514-B .512-C .514+D .512+ 【答案】C【解析】如图,设,CD a PE b ==,则PO ==, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去). 故选:C.【规律方法】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.【变式探究】1.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB ∆的面积为__________.【答案】【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB ,因为SAB 的面积为,l 所以221802l l ⨯==,因为SA 与圆锥底面所成角为45°,所以底面半径为πcos,4l =因此圆锥的侧面积为2ππ.2rl l ==2.(2019·福建高三月考)已知四面体ABCD 内接于球O ,且2AB BC AC ===,若四面体ABCD ,球心O 恰好在棱DA 上,则球O 的表面积是_____. 【答案】16π【解析】如图:在三角形ABC 中,因为222AB BC AC +=,所以△ABC 为直角三角形,所以三角形ABC 的外接圆的圆心为AC 的中点1O ,连1OO ,根据垂径定理,可得1OO ⊥平面ABC ,因为1,O O 为,AD AC 的中点可知DC ⊥平面ABC ,所以DC 为四面体ABCD 的高.所以11323DC ⨯=,解得DC =所以4AD ==. 所以四面体ABCD 的外接球的半径为2,表面积为24R π=24216ππ⨯=.【总结提升】计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法. 高频考点二 :几何体的体积【典例3】(2019·北京高考真题(文))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,几何体的体积()3142424402V =-+⨯⨯=. 【典例4】(2020·江苏省高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π【总结提升】 (1)已知几何体的三视图求其体积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表体积公式求其体积.(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.(3)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(4)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(5)三视图形式:若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解提醒:处理高线问题时,经常利用的方法就是“等积法”.【变式探究】1.(2020·全国高一课时练习)已知ABC ∆的三边长分别是3AC =,4BC =,5AB =.下列说法正确的是( )A .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为36π C .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为16π【答案】AD【解析】以BC 所在直线为轴旋转时,所得旋转体是底面半径为3,母线长为5,高为4的圆锥,其侧面积为3515ππ⨯⨯=,体积为2134123ππ⨯⨯⨯=,故A 正确,B 错误; 以AC 所在直线为轴旋转时,所得旋转体是底面半径为4,母线长为5,高为3的圆锥,侧面积为4520ππ⨯⨯=,体积为2143163ππ⨯⨯⨯=,故C 错误,D 正确. 故选:AD.2.(2019·湖南高三月考(理))正方体1111ABCD A B C D -的棱长为2,点E 、F 、G 分别是AB 、AD 、1AA 的中点,以EFG ∆为底面作直三棱柱(侧棱垂直底面的棱柱),若此直三棱柱另一底面的三个顶点也都在该正方体的表面上,则该直三棱柱的体积为( )B.2C.32D.34【答案】C【解析】如图,连接11A C ,1C D ,1AC , 1BC ,分别取11A C 、1BC 、1C D 中点M 、N 、Q ,连接MQ ,MN ,NQ ,FQ ,EN ,GM由中位线定理可得111111111//,,//,,//,222GM AC GM AC FQ AC FQ AC EN AC EN AC === 又1AC EFG ⊥平面,∴三棱柱EFG NQM —是正三棱柱2EFG S ∆==112h GM AC ===,∴三棱柱32EFG NQM V =— 答案选C【方法总结】求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.高频考点三 : 几何体的展开、折叠、切、截问题【典例5】(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】A【解析】 设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【典例6】(2019·天津高考真题(理))已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.【答案】4π. 【解析】2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 【规律方法】几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1.【典例7】(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( ) A .86π B .46πC .26πD 6π【答案】D 【解析】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点, //EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,22226R =++= 364466633R V R =∴=π==ππ,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,344338V R ∴=π=π⨯=,故选D.【典例8】(2019·四川高三月考(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为在圆锥底部挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为,高为10cm .打印所用部料密度为30.9g/cm .不考虑打印损耗.制作该模型所需原料的质量为________g .(π取3.14)【答案】358.5 【解析】设被挖去的正方体的棱长为xcm ,圆锥底面半径为r ,取过正方体上下底面面对角线的轴截面,由相似三角形得则10210x xh x x r h --=⇒=,解得5x =.模型的体积为(223311500105125333V r h x πππ=-=⨯⨯-=-, 因此,制作该模型所需材料质量约为5000.91251500.9125358.5g 3ππ⎛⎫⨯-=-⨯≈⎪⎝⎭. 故答案为:358.5. 【总结提升】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【典例9】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形ABCD中,,现沿AC折起,使得平面ABC⊥平面ADC,连接BD,得到三棱锥-,则其外接球的体积为()B ACD【答案】D【解析】结合几何体的特征可得,外接球的球心为AC的中点,则外接球半径:本题选择D选项.【总结提升】解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:【变式探究】1.(2018届河南省洛阳市高三期中)在三棱锥S ABC -中,底面ABC ∆是直角三角形,其斜边4AB =, SC ⊥平面ABC ,且3SC =,则三棱锥的外接球的表面积为( ) A. 25π B. 20π C. 16π D. 13π 【答案】A【解析】根据已知,可将三棱锥补成一个长方体,如下图:则三棱锥的外接球就是这个长方体的外接球,由于43AB SC ==,,且ABC ∆是直角三角形, SC ⊥平面ABC , ∴长方体的对角线长为∴三棱锥的外接球的半径 ∴三A.2.(2018·天津高考真题(文))如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且111122A O A C ===,1111BDD B S BD DD =⨯==四边形,结合四棱锥体积公式可得其体积为1113323V Sh ===,故答案为13.3.(2018届河北省衡水市武邑中学高三上第三次调研)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑M ABC-中, MA⊥平面ABC, 2MA AB BC===,则该鳖臑的外接球与内切球的表面积之和为____.【解析】由题意,MC为球O的直径,O∴球O的表面积为4π•3=12π,内切球的半径设为r,【典例10】(2017课标1,理16)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】【解析】【规律方法】有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【变式探究】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形中,,现沿折起,使得平面平面,连接,得到三棱锥,则其外接球的体积为( )ABCD AC ABC ⊥ADC BD B ACD -【答案】D【解析】结合几何体的特征可得,外接球的球心为AC的中点,则外接球半径:本题选择D选项.【典例11】(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正,所以该多面体的体积为21421.33⨯⨯⨯=【变式探究】(2020·山东省滨州市三模)已知P,A,B,C是球O的球面上的四个点,平面,则球O的表面积为__________.PA⊥,26,ABC PA BC==AB AC⊥【答案】 【解析】由于平面,所以,而,故可将补形为长方体,如图所示,长方体的外接球,也即三棱锥的外接球,也即球. 由于,设,则,所以长方体的对角设球的半径为,则所以球的表面积为. 故答案为:【典例12】(2020·山东省泰安市6月三模)已知球O是正三棱锥的外接球,,E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是_______. 【答案】45πPA ⊥ABC ,PA AB PA AC ⊥⊥AB AC ⊥P ABC -P ABC -O 26,3PA BC BC ===,AB a AC b ==2229a b BC +===O R 2R =O 2445R ππ=45πP ABC -3AB =PA =94π【解析】如图,设三棱锥的外接球半径为R ,正三角形的外接圆圆心为,因为,三角形是正三角形,为正三角形的外接圆圆心, 所以因为所以,解得,,因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值,在中,故,截面面积, 故答案为:. 【总结提升】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【变式探究】1.(2020·安徽马鞍山�高三三模(文))已知正方体1111ABCD A B C D -,直线1AC ⊥平面α,平面α截此正方体所得截面中,正确的说法是( )ABC D 3AB =ABC D ABC DA =PA =3PD =()223R R +-=2R =1OD =E O OE OE Rt EDO ∆OE ==32r ==294S r ππ==94πA .截面形状可能为四边形B .截面形状可能为五边形C .截面面积最大值为D 【答案】D【解析】如图在正方体中1AC ⊥平面1A BD ,所以平面α与平面1A BD 平行平面α与正方体的截面可以是三角形、六边形但不会是五边形和四边形 当截面为正六边形EFNMGH 时,截面面积有最大,由题可知:21sin 45==NM ,则133611sin 6022=⨯⨯⨯⨯=EFNMGH S 故选:D2.(2020·江苏苏州�高一期末)已知在球O 的内接长方体1111ABCD A B C D -中,12AB AA ==,3AD =,则球O 的表面积为________,若P 为线段AD 的中点,则过点P 的平面截球O 所得截面面积的最小值为______.【答案】17π9π4【解析】如图,因为球O 的内接长方体1111ABCD A B C D -中,12AB AA ==,3AD =,所以12=DB R = 所以球的表面积2=417S R ππ=, 当OP ⊥球的截面,即P 为截面圆圆心时,球心到截面圆的距离d OP =时最大, 此时截面圆的半径22d R r -=最小,此时截面圆的面积最小,而OP ===所以32r ==, 所以截面圆面积294S r ππ==. 故答案为:17π;94π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第34讲 割补法与等积法一、知识与方法1 割补法割补法包括分割法和补体法,求一个几何体的体积可以将这个几何体分割成几个柱 体,锥体,分别求出雉体和柱体的体积, 从而得出几何体的体积,这种方法称为分割法. 用 于直接解题较困难,分割后化繁为简,使问题较易获得解快,但有时候,所给的几何体并不 复杂,却很难直接计算求解,这类几何体实际上是一个常规几何体的一部分. 通过添补适当 的几何体,将其扩展为新的、其特征为我们比较熟悉的几何体,以便于从整体上宏观把握,处 理局部问题的一种方法称为补体法,体现了拓展空间, 从更广阁的范围内处理局部问题的整 体思想.分割法与补体法合在一起称为割袳法.2 等积法(又称等积变换法)(1)利用三棱锥的“等积性”,即体积计算时可以任一个面作为三棱雉的底面. (1)求体 积时,可选择“容易计算”的方式来计算; (2)利用“等积法”可求“点到面的吟离”,关键是在 面中选取 3 个点,与已知点构成三棱锥.(2) 等积变换法充分体现了转化的数学思想,在运用过程中要充分注意距离之间的等 价转换.二、典型例题【例1 】(1) 如图 384- 所示,已知多面体 ABC DEFG - 中, ,AB AC ,AD 两两互相垂直,平面 //ABC 平面 DEFG , 平面 //BEF 平面 ,2,1ADGC AB AD DG AC EF =====, 则该多面体的体积为 ( ).A. 2B. 4C. 6D. 8(2) 如图 385- 所示,在多面体 ABCDEF 中, 已知 ABCD 是边长为 1 的正方形, 且 ,ADE BCF 均为正三角形. //,2EF AB EF =, 则该多面体的体积为( ).A. B. C. 43 D. 32【分析 】本例两小题给出的都是不规则几何体,直接求体积比较困难,可以将 这个几何体分割成若干规则的几何体,从而得出几何体的体积(求规则几何体的体积再合 成),也可认运用补体法补成一个规则几何体再求解,如第(1) 问,可把题中给出的几何体 分割成两个三棱柱或补成一个正方体;第(2)问,不同的分割可以引发一题多解与发散思 维,这种解法体现了割补思想和等积变换思想.【解析】 (1) 【解法 一 】(割)如图 386- 所示,过点 C 作 CH DG ⊥ 于 H , 联结EH ,把多面体分割成一个直三棱柱 DEH ABC - 和一个斜三棱柱 BEF CHG -.于是所求几何体的体积为 112122122DEH BEF V S AD S DE ⎛⎫⎛⎫=⋅+⋅=⨯⨯⨯+⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭2 4.=【解法 二 】(补)如图 387- 所示. 将多面体补成棱长为 2 的正方体. 显然所求的多面体的体积为该正方体体积的一半.于是所求几何体的体积 31242V =⨯=.(2) 【解法 一】 (分割法一)如图 388- 所示,分别过 ,A B 作 EF 的垂线, 垂足分别为点 ,G H , 联结 ,DG CH .则原几何体分割为两个三棱雉和一个直三棱柱,锥高12, 柱高 1. 2AG ==, 取 AD 中点 M , 则2MG =11112224434AGD S V =⨯⨯=∴=+⨯⨯123=【解法 二】 (分割法二)如图 389- 所示,取 EF 中点P , 则原几何体分割为两个三棱雉和一个四棱雉,易 知三棱雉 P AED - 和三棱雉 P BCF - 都是棱长为 1 的正四面体,四棱雉 P ABCD - 为棱长为 1 的正四 棱雉.2111233V =⨯+⨯= 【例 2】 已知直三棱柱 111ABC A B C - 中, 222A B C 是用一平面截得的截面,且 21AA h =, 2223,BB h CC h == , 若 ABC 的面积为 .S 求证:介于截面与下底面之间的几何体的体积为 ()12313V S h h h =++. 【分析】由于几何体 222A B C ABC - 是一个不规则的几何体,为求得其体积不 妨采用分割或补体的方法来求解和证明.【解析】【证法 一】 (分割)为了讨论方便, 不妨设 123h h h , 可将几何 体 222ABC A B C - 分割成一个小直三棱柱与两个三棱雉. 如图 390- 所示,过 2A 作 23//A B AB 交 2B B于 3B , 过 3B 作 33//B C BC 交 2C C 于 3.C 联结 23A C ,23B C , 则几何体 222ABC A B C - 被分割成直三棱柱 233ABC A B C - 、三棱雉 2233B A B C - 、二棱锥 2A 232B C C -设 ,BC x A = 到 BC 的距离为 d , 则 12S xd =. 由于 ()23322331211,3ABC A B C B A B C V Sh V S h h --==-, ()()223223231311111.3323A B C c B C C V S d h h x d S h h -=⋅=⋅-⋅⋅=- 故 ()2222332233223212313ABC A B C ABC A B C B A B C A B C C V V V V S h h h ----=++=++. 【证法二】(补体)将几何体 222ABC A B C - 以 ABC 为底面进行两次等几何体补形,使侧 棱的长均为 123h h h ++, 这样就将不规则的几何体补形为新的直三棱柱.而原几何体的体积等于这个新直三棱柱体积的 13, 故 ()222123 1133ABC A B C V V S h h h -==++新直三榬柱.【例 3】 如图 391- 所示,三棱锥 A BCD - 中, AB ⊥ 平面 BCD ,CD BD ⊥(1) 求证: CD ⊥ 平面 ABD ;(2) 若 1,AB BD CD M === 为 AD 中点,求三棱雉A MBC - 的体积.【分析】 利用三棱锥的“等积法”,即体积计算时,可以任一个面作为三棱锥 的底面,利用“等积法”可求“点到面的距离”,关键是在面中选取三个点,与已知,点构成 三棱锥.等积变换法充分体现了转化的数学思想,在运用过程中要充分注意距离之间的 等价转换.【解析】(1) 证明: :AB ⊥ 平面 ,,BCD CD BD CD ⊥⊂ 平面 ,ABD BD ⊂ 平面 ABD , CD ∴⊥ 平面 .ABD(2)【 解法一】 由 AB ⊥ 平面 BCD ,得 AB BD ⊥,11,.2ABD AB BD S ==∴= M 为 AD 中点, ABM 11.24ABD S S ∴== 由 ()1 知,CD ⊥ 平面 ABD ,∴ 三棱锥 C ABM - 的高 1h CD ==.因此三棱雉 A MBC - 的体积 B 13A MBC C ABM A M V V S h --==⋅1.12=【解法二 】由 AB ⊥ 平面 BCD 知,平面 ABD ⊥ 平面 BCD .又平面 ABD ⋂ 平面 BCD BD = , 过点 M 作 MN BD ⊥ 交 BD 于点 N ,如图 392-所示,则 MN ⊥ 平面 BCD , 且 1122MN AB ==. 又 1,1,2BCD CD BD BD CD S ⊥==∴=. ∴ 三棱倠 A MBC - 的体积 1133A MBC A BCD M BCD BCD V V V AB S MN ---=-=⋅-. 112BCD S =. 三、易错警示【例 】 正方体容器 1AC 中盛满水, ,,E F G 分别是 1111,,A B BB B C 的中点,若 3 个小孔 分别位于 ,,E F G 三点处,则正方体中的水最多会剩下原体积的( ). A. 78 B. 1112 C. 56 D. 2324【错解】剩下的水的最大容积是截面 EFG 以下几何体的体积,如图 393- 所示,设 1CC 的中点为 11,M C D 的中点为 N ,则截面 EFG 在正方体 1AC 的截面是 EFMN , 设正方体 1AC 的棱长为 1, 则三棱柱 11B EF C MN - 的体积 1111111.2228B EFC MN V =⨯⨯⨯= 于是, 正方体的水最多会剩下原体积的 17188-=, 故 选 A.【评析及正解】上迌解法是否正确,我们可认考查另一种情形.考虑由 1,,B E C 确定的截面,如图 394- 所示.此时,另一个小孔在截面 1BEC的上方, 此 时 三 棱 锥 11B BEC - 的体积为 1113B BEC V -=⨯ 111111.22128⎛⎫⨯⨯⨯=< ⎪⎝⎭ 于是, 正方体中的水最多会剩下原体积的 11111212-=, 故应选 B . 1. 从选项看,还有 2324, 那么,会不会是这个结果呢? 我们可以 考虑一般的情形.【正确的解法】如下:【解析】:我们注意到, 当正方体中剩下的水最多时,这时的水平面必定经过其中的两个小孔, 不妨设经过小孔 ,E G , 如图 395- 所示,另一个小孔 F 在该平面的上方. 设过 ,E G 的平面与棱 1111,,BB CC C D 的交点分别为 ,,H P Q , 则流出的水的最小体 积是台体 11B EH C QP - 的体积.设正方体 1AC 的棱长为 2 , 则 11B E =, 设 ()112B H x x =, 则 12C P x =-. 由 11B EH C QP , 得 12x C Q x-=. 于是, 台体 11B EH C QP - 的体积为112231(2) 31(2)14 2233121222,3312B EHC QP x V x x x x x x x ⎡⎤-=+⎢⎥⎢⎥⎣⎦⎡⎤-⎛⎫=+=+-⎢⎥ ⎪⎝⎭⎣⎦⎛⎫⋅==⨯ ⎪ ⎪⎝⎭当且仅当 4x x =, 即 2x = 时,台体 11B EH C QP - 的体积最小, 为正方体体积的 112. 此 时,点 H 与点 B 重合, 即截面为 1BEC , 故选 B.四,难题攻略【例】 在三棱台 111ABC A B C - 中, 111,2A B G AB = 为 1CC 的中点,截面 1A BG 将棱台分 成上、下两部分,求这两部分体积之比.【分析】 由于合成的两部分都是不规则的几何体,故需将其分割成几个锥体 (特别是三棱锥)的组合体才便于计算体积之比,需要提醒的是这里有等面积、等高,等体 积的运用,使问题的解答别开生面.【解析】 如图 396- 所示, 联结 11,BC A C , 则棱台被分割成 4 个三棱 锥的组合体, 注意到 3 个三棱锥 11111,A BC G A BC B --,1A BCG - 都等高, 因而其体积之比为底面面积之比.又在梯形 11BCC B 中, 由 111112B C A B BC AB ==, 且 G 为 1C C 的 中点, 有 11.BCC BOG BC B S S S ==即 111111ΛBCC A BCC A BC B V V V V ---===,从而 111112A BCC A BC B V V V V --=+=上,在三棱雉 111B A B C - 与三棱雉 1A ABC - 中, 它们的高相等, 且 1114ABCA B C S S=,则 1111111444A ABC B A B c A BC B V V V V ---===.从而 1155A ABC A BCC V V V V --=+=下, 故 t :2:5V V =下 为所求.五、强化训练1.如图397-所示,在直三棱柱111ABC A B C -中,12,,2AB BC AA ABC M π∠===是BC中点.(1)求证:1//A B 平面1AMC ;(2)求直线1CC 与平面AMC 所成角的正弦值;(3)试问在棱11A B 上是否存在点N ,使得AN 与1MC 所成角为?3π若存在,确定点N 位置;若不存在,请说明理由.【解析】(1)如图①所示,联结,设与相交于点,则为中点,联结,则为的中位线,依据线面平行判定定理可得.(2)将图①补体为图②,设直线与平面所成角为,则 .由题意,不妨设,依据等体积法可得1A C 1AC O O 1A C OM OM 1A BC 11111AB OM A B AMC A B AMC OM AMC //⎫⎪⊄⇒//⎬⎪⊂⎭平面平面平面1CC 1AMC α11sin C AMC h CC α-=122AB BC AA ===. (3)假设在棱上存在点,使得与成角,不妨设在棱上取点,使得,易得,如图③所示,故与成角.在中,由余弦定理可得.故在棱上存在点,且为棱的中点,使得与成角.111111133C AMC C AMC AMC C AMC AMCC AMC V V Sh Sh ----=⇒=11122sin 33C AMC C AMC h h CC α--⇒=⇒==11A B N AN 1MC 3π1(02)A N t t =≤≤CD Q CQ t =1AN C Q//1C Q 1MC 3π1MQC 22222211112cos3MQ MC QC MC QC π=+-⇒=+1[0,2]t -=∈11A B N N 11A B AN 1MC 3π。

相关文档
最新文档