四年级奥数:还原问题

合集下载

四年级奥数:还原问题

四年级奥数:还原问题

四年级奥数:还原问题还原问题是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题.解答这一类的问题时,要根据题意,从所给的结果出发,抓住逆运算关系,由后向前一步步逆推(倒推法、还原法),做相反的运算,逐步靠拢已知条件,直到问题得到解决.在解答还原问题时,如果列综合算式,要注意括号的正确使用.典型例题例【1】三(1)班小图书箱第一天借出了存书的一半,第2天又借出43本,还剩32本.小图书箱原有图书多少本?分析经过两天借出图书,小图书最后还剩32本书.由此可以往前推算:第2天没借出43本前(也就是第1天借出图书后),应有(32+43)本书,再根据“第1天借出了存书的一半”,可推算出这75本书也就是第1天借出后的另一半,即相当于第1天借出的本数.这样,小图书箱原有的图书本数可求得.解第1天借书后还剩的本数:32+43=75(本)原有图书的本数:75×2=150(本)综合算式:(32+43)×2=150(本)答:小图书箱原有图书150本.例【2】某数加上5,乘以5,减去5,除以5,其结果等于5.求这个数.分析从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法.从最后一步推起,“除以5,其结果等于5”可以求出被除数:5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数:25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数:30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1.解 5×5=2525+5=3030÷5=66-5=1答:所求的数为1.例【3】小明在做一道加法算式题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的结果应是多少?分析要求正确的和,就要知道两个正确的加数.看错的加数是39,因此得到错误的和是123.根据逆运算可得到一个没看错的加数是123-89=84,题中已知一个正确的加数是85,所以正确的和是85+84=169把个位上的5看作9,相当于把正确的和多算了4,求正确的和应把4减去;把视为上的8看作3,相当于把正确的和少算了50,求正确的和应把50加上去.这样,正确的答案123+50-4=169.解一 123-39+85=84+85=169解二 9-5=480-30=50123+50-4=169答:正确的答案是169.例【4】仓库里有一批大米.第一天售出的重量比总数的一半少12吨.第二天售出的重量比剩下的一半少12吨,结果还剩下19吨.这个仓库原有大米多少吨?分析如果第二天刚好售出剩下的一半,就应是(19+12)吨.第一天售出以后剩下的吨数是(19+12)×2吨.以下类推.解(19+12)×2=62(吨)(62-12)×2=100(吨)答:这个仓库原有大米100吨.小结还原问题是逆解应用题.一般根据加减法或乘除法的互逆运算关系,由题目所叙述的顺序倒过来思考,从最后一个已知条件出发,逆推而上,求得结果.。

四年级奥数——还原问题

四年级奥数——还原问题

四年级上教师:胡老师学生:还原问题一个数量经过若干次变化成了另一种结果;我们从结果出发根据每一次变化情况;一步步地倒着想;把结果还原成开始状态;这类问题叫还原问题;又叫逆运算问题..对于简单的;每一次变化不太复杂的还原问题;可直接列式一步步倒着推算;对于变化较复杂的;可借助列表和画图来帮助解决问题..例1、一个数减24加上15;再乘以8得432;求这个数..思路分析我们可以从最后结果432出发倒着推理..最后是乘以8得432;如果不乘以8;那应该是432÷8=54;如果不加上15;那应该是54-15=39;如果不减去24;那应该是39+24=63..小试身手一个数加上3;乘以3;再减去3;最后除以3;结果还是3;这个数是几例2、甲、乙、丙三人各有一些连环画;甲给乙3本;乙给丙5本后;三个人书的本数同样多;乙原来比丙多多少本思路分析因为乙给丙5本后;两人同样多;可知乙比丙多5×2=10本;而这10本中又有3本是甲给的;所以原来乙比丙多10-3=7本..小试身手小松、小明、小航各有玻璃球若干个;如果小松给小明10个;小明给小航6个后;三人的个数同样多;小明原来比小航多几个例3、李奶奶卖鸡蛋;她上午卖出总数的一半多10个;下午又卖出剩下的一半多10个;最后还剩65个鸡蛋没有卖出..李奶奶原来有多少个鸡蛋思路分析根据题意;画出线段图:从图上可以看出;最后剩下的65个鸡蛋加上10个正好是余下的一半;余下的一半为65+10=75个;那么上午卖出后共剩下鸡蛋75×2=150个;150个鸡蛋再加上10个就是总数的一半;所以总数的一半为150+10=160个;李妈妈原有160×2=320个鸡蛋..小试身手竹篮内有若干个李子;取它的一半又一枚给第一人;再取余直的一半又两枚给第二人..竹篮内原有李子多少枚例4、小红、小青、小宁都喜欢画片..如果小红给小青11张画片;小青给小宁20张画片;小宁给小红5张画片;那么他们三人的画片张数同样多..已知他们三人共有画片150张;他们三人原来各有画片多少张思路分析三人画片进行交换;其总张数是不会改变的..交换以后三人张数相等;那每人应有150÷3=50张..再对照题中条件;把各人的画片还原;便可得到他们三人原来画片的张数..总数的一多10多10剩下65余下的一小试身手三筐苹果共90千克;如果从甲筐取出15千克放入乙筐;从乙筐取出20千克放入丙筐;从丙筐取出17千克放入甲筐;这时三筐苹果就同样重..甲、乙、丙原来各有苹果多少千克例5、两人一起搬运图书60本;李明抢先拿了一些;王平看他拿得太多;就抢走了一半;李明不肯;王平就给了他10本;这时李明比王平多4本;问李明最初拿了多少本思路分析由条件“两人一起搬运图书60本”和“这是李明比王平多4本”;可以求出李明最后拿了60+4÷2=32本;王平最后拿了60-32=28本;然后开始往前推;如果王平不给李明;这时李明有32-10=22本;李明最初拿了22×2=44本..小试身手兄弟俩争着挑26块砖;弟弟抢着装了一些;哥哥看弟弟挑得太多;就抢去一半;弟弟不服;哥哥就还给弟弟5块;这时两人一样多..问弟弟最初准备挑多少块例6、甲乙两桶油各有若干千克;如果要从甲桶中倒出和乙桶同样多油倒入乙桶;再从乙桶倒出和甲桶同样多的油放入甲桶;这时两桶油恰好都是36千克;问两桶油原来各有多少千克思路分析如果后来乙桶不倒出和甲桶同样的油放入甲桶;甲桶内就有油36÷2=18千克;乙桶应有油36+18=54千克;如果开始不从甲桶倒出和乙桶同样多的油倒入乙桶;乙桶原有油应为54÷2=27千克..甲桶原有油18+27=45千克..小试身手王明和李强各有画片若干张;如果王明拿出和李强同样多的画片送给李强;李强再拿出和王明同样多的画片给王明;这时两个人都有24张;问王明和李强原来各有画片多少张A级1、一个数缩小2倍;再缩小2倍得80;求这个数..2、一个数的4倍加上6减去10;乘以2得88;求这个数..3、三年级三个班共有学生156人;若从一班调5人到二班;从二班调8人到三班;再从三班调4人到一班;这时每个班的人数正好相同..三个班原来各有学生多少人4、小林、小方、军军和小敏四个好朋友都爱看书..如果小林给小方10本;小方给军军12本;军军给小敏20本;小敏再给小林14本;四个人书的本数同样多..已知他们共有112本书;他们四人原来各有多少本5、小红问王老师今年有多大年纪;王老师说:“把我的年纪加上9;除以4;减去2;再乘上3;恰好是30岁;”问王老师今年多少岁B级6、王叔叔拿工资若干元;从工资中拿出一半多10元存入银行;又拿出余下的一半多5元买米、油;剩下80元买菜..王叔叔拿工资多少元7、一筐苹果连筐122千克;卖出一半苹果后;再卖出剩下的苹果的一半;这时连筐35千克..原来筐和苹果各多少千克C级智力冲浪8、两棵树上共有麻雀28只;从第一棵树上飞到一半到第二棵树上;又从第二棵树上飞走3只到第一棵;这时第二棵比第一棵多6只..问最初第一棵树上有多少只麻雀9、书架上分上中下三层;共放192本书;现从上层取出与中层同样多的书放到中层;再从中层取出与下层同样多的书放到下层;最后;从下层取出上层剩下的同样多的书放到上层;这时三层书架所放的书本数相等;这个书架上中下各层原来各放多少本书自我总结今天学得轻松快乐吗学会了什么知识哪些知识掌握得好哪些知识较困难;是怎样解决的家校共育学生在校表现认真听讲□积极思考□大胆发言□有独特的见解□还需要努力□有进步□家长留言栏。

四年级奥数 还原问1

四年级奥数 还原问1

四年级奥数还原问题思维聚焦一个数通过一系列的运算后得到一个答案,求这个数。

也就是已知一个数的变化过程和最后结果,求原来的数,通常称此类问题叫“还原问题”解答“还原问题”一般采用倒推法,简单地说:就是倒过来想。

解答还原问题,我们可以采用从结果出发,按它变化的相反方向一步步倒着想,直到解决问题。

同时也可以利用线段图、表格、示意图等方式来帮助理解题意。

3、典型例题某数加上5,乘以5,减去5,除以5,其结果等于5,这个数是多少?思路点拨:从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法。

从最后一步推起,“除以5,其结果等于5”可以求出被除数:5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数:25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数:30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1。

解答5 × 5 = 3025 + 5 = 3030 ÷ 5 = 66 - 5 = 1答:这个数是1。

4、触类旁通小明在做一道加法算式题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123。

正确的结果应是多少?思路点拨:要求正确的和,就要知道两个正确的加数。

看错的加数是39,因此得到错误的和是123。

根据逆运算可得到一个没看错的加数是123-39=84,题中已知一个正确的加数是85。

解答123-39=8484+85=169答正确的结果是169。

5、熟能生巧1、一个数减59加上15,再乘以8得432。

求这个数。

2、一个数加上3,乘以3,再减去3,最后除以4,结果还是9。

求这个数。

3、一个数缩小8倍,再缩小4倍得80。

求这个数。

4、一个减24加上15,再乘12得1440,求这个数。

5、小明在做一道减法题时,把被减数十位上的3写成了8,结果得到的差是284,正确的差是多少?6、小马虎在做一道减法题时,把减数十位上的2看着了5,结果得到的差是342,正确的差是多少?6、小王在做一道减法题时,把减数个位上的3写成了5,结果得到的差是254,正确的差是多少?8、一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米。

四年级奥数——还原问题

四年级奥数——还原问题

四年级(上) 教师:胡老师学生:还原问题方法点拨一个数量经过若干次变化成了另一种结果,我们从结果出发根据每一次变化情况,一步步地倒着想,把结果还原成开始状态,这类问题叫还原问题,又叫逆运算问题。

对于简单的,每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。

快乐学习例1、一个数减24加上15,再乘以8得432,求这个数。

【思路分析】我们可以从最后结果432出发倒着推理。

最后是乘以8得432,如果不乘以8,那应该是432÷8=54;如果不加上15,那应该是54-15=39;如果不减去24,那应该是39+24=63。

【小试身手】一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几?例2、甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?【思路分析】因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7(本)。

【小试身手】小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?例3、李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。

李奶奶原来有多少个鸡蛋?【思路分析】根据题意,画出线段图:从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75(个),那么上午卖出后共剩下鸡蛋75×2=150(个),150个鸡蛋再加上10个就是总数的一半,所以总数的一半为150+10=160(个),李妈妈原有160×2=320(个)鸡蛋。

【小试身手】竹篮内有若干个李子,取它的一半又一枚给第一人,再取余直的一半又两枚给第二人。

竹篮内原有李子多少枚?例4、小红、小青、小宁都喜欢画片。

(完整版)四年级奥数-还原问题讲义(附答案)

(完整版)四年级奥数-还原问题讲义(附答案)

还原问题【知识梳理】还原问题是逆解应用题,一般特点是:已知对某个数按照一定的顺序进行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。

【例题精讲】【例1】某数加上3,乘以5,再减去8,等于12,求某数。

( 1 )【例2】有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。

”这位老人今年多少岁?( 76 )【例3】马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111,问正确答案是多少?( 57 )【例4】某数加上5,再增加7,结果等于61,这个数是?( 49 )1、某数减去4,再减少6,结果为2,这个数是?( 12 )2、小明把某数减去5,再增加6,结果是12,这个数是多少?( 11 )【例5】某数扩大3倍,再缩小4倍,正好是6,这个数是?( 8 )【试一试】1、一捆电线,第一次用了一半,第二次又用了剩下的一半,还有6米,这捆电线长多少米?( 24 )2、小红对小明说:“你的年龄是11岁,你的年龄是我的2倍少9岁,你知道我的年龄吗?”( 10 )【例6】小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁,小刚的奶奶今年多少岁?( 79 )1、在□里填上适当的数。

20×□÷8+16=26 ( 4 )2、一个数的3倍加上6,再减去9,最后乘以2,结果得60,求这个数。

( 11 )【例7】某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?( 480 )【试一试】1、粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?( 42 )2、爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃了剩下的一半多1个,还剩下1个,问爸爸买了多少个橘子?( 22 )【例8】小明、小强和小勇三个人共有故事书60本。

还原问题四年级奥数题及答案参考

还原问题四年级奥数题及答案参考

还原问题四年级奥数题及答案参考
还原问题四年级奥数题及答案参考
还原问题
妈妈从副食店买回几个鸡蛋。

第一天吃了全部的一半又半个,第二天吃了余下的一半又半个,第三天又吃了余下的一半又半个,恰好吃完。

妈妈从副食店买回多少个鸡蛋?
余数问题
某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少?
解答:[(0.5×2+0.5)×2+0.5]×2
=(1.5×2+0.5)×2
=3.5×2=7(个)
【小结】有的同学一看每次都吃"一半又半个",认为这不符合实际,于是就不去进行仔细认真地分析,被"半个"这一假象所迷惑。

其实,只要采用倒推法,就很容易知道第三天吃了0.5×2=1(个),于是问题就可以迎刃而解了。

四年级奥数还原问题

四年级奥数还原问题

四年级奥数还原问题 How long is forever? Who can tell me第十二讲还原问题还原问题是指条件中只说明了中间的发展过程和最后结果;要求最初状态的一类问题..解答这类问题逆向思维很重要;通常要运用倒推法还原法;即从最后一步出发;一步一步倒着往前推算;逐步倒着往前推算;逐步靠拢已知条件;直到问题解决..例题与方法例1某商场出售洗衣机;上午售出总数的一半多10台;下午售出剩下的一半多20台;还剩95台;这个商场原来有洗衣机多少台试一试:粮库有一批大米;第一次运出总数的一半多3吨;第二次运出剩下的一半多5吨;还剩下4吨;问粮库原有大米多少吨例2小明、小强和小勇三个人共有故事书60本;如果小强向小明借3本后;又借给小勇5本;结果三个人有的故事书的本数正好相等..这三个人原来各有故事书多少本试一试:甲、乙、丙三个小朋友共有贺年片90张;如果甲给乙3张后;乙又给丙5张;那么三个人的贺年片张数刚好相同..问甲乙丙三个小朋友原来各有贺年片多少张例3甲乙两桶油各有若干千克;如果要从甲桶中倒出和乙桶同样多的油放入乙桶;再从乙桶倒出和甲桶同样多的油放入甲桶;这时两桶油恰好都是36千克;问两桶油原来各有多少千克试一试:王亮和李强各有画片若干张..如果王亮拿出和李强同样多的画片送给李强;李强再拿出和王亮同样多的画片给王亮..这时两个人都有24张;问王亮和李强原来各有画片多少张例4两只猴子拿26个桃;甲猴眼急手快;抢先得到..乙猴看甲猴拿得太多;就去抢一半;甲猴不服;又从乙猴那儿抢走一半;乙猴不肯;甲猴就还给乙猴5个;这时乙猴比甲猴多2个;问甲猴最初准备拿几个试一试:学校运来36棵树苗;小强和小萍两人争着去栽;小强先拿了树苗若干棵;小萍看到小强拿太多了就抢了10棵;小强不肯;又从小萍那里抢了6棵..这时小强拿的棵数是小萍的2倍;问最初小强准备拿多少棵例5袋里有若干个球;小明每次拿出其中的一半再放回一个球;这样共操作了5次;袋中还有3个球..问:袋中原有多少个球试一试:有一堆棋子;把它四等分后剩下一枚;取走三份又一枚;剩下的再四等分又剩一枚;再取走三份又一枚;剩下的再四等分又剩一枚..问:原来至少有多少枚棋子练习与思考1、爸爸买了一些橘子;全家人第一天吃了这些橘子的一半多1个;第二天吃了剩下的一半多1个;第三天又吃掉了剩下的一半多1个;还剩下1个;问爸爸买了多少个橘子2、小红、小丽、小敏三个人各有年历片若干张..如果小红给小丽13张;小丽给小敏23张;小敏给小红3张;那么她们每人各有40张..原来三个人各有年历片多少张3、甲、乙、丙三个小朋友各有玻璃球若干个;如果甲按乙现有的玻璃球个数给乙;再按丙现有的个数给丙之后..乙也按甲、丙现有的个数分别给甲、丙..最后;丙也按同样的方法给甲和乙..这时..他们三个人都有32个玻璃球;问原来每个人各有多少个4、李辉和张新各搬60本图书;李辉抢先拿了若干本;张新看李辉拿得太多;就抢了一半;李辉不肯;张新就给了他10本;这是李辉比张新多4本;问最初李辉拿了多少本5、有甲、乙、丙三个数;从甲数中拿出12加到乙数;再从乙数中拿出18加到丙数..最后从丙数中拿出12加到甲数;这时三个数都是180..问甲、乙、丙三个数原来各是多少6、有甲、乙、丙三个油桶;各盛油若干千克..先将甲桶油倒入乙、丙两桶;使它们各增加原有油的一倍;再将乙桶油倒入丙、甲两桶;使它们的油各增加一倍;最后按同样的规律将丙桶油倒入甲、乙两桶..这时;。

小学四年级上册还原问题奥数数学题

小学四年级上册还原问题奥数数学题

1、某数加上8,乘以8,减去8,除以8,结果还是8,问这个数是多少?2、一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。

”这位老人今年多少岁?3、有一个数,把它加上37,再乘以18,减去323,得到的结果用23去除,商是16,余数是11,那么原来的那个数是多少?4、做一道整数加法题时,小马虎把个位上的6看做了9,把十位上的8看做了3,结果得出和为123,问正确的答案应该是多少?5、小马虎在做一道整数减法时,把减数个位上的1看成了7,把减数十位上7看成了1,结果得出的差是444。

正确的差应该是多少?6、两个数的和是128,一位学生在计算时将其中一个加数个位上的0漏掉了,结果算出的和是56,这两个加数各是多少?7、甲、乙、丙三个共有邮票180张,乙向甲借3张后,又送给丙5张,结果三人的邮票数相等。

问:甲、乙、丙三人原来各有多少张邮票?8、书架有上、中、下三层,书架上一共放120本书,如果从上层取出13本放到中层,从中层又取出25本放到下层,结果上、中、下三层存放的书刚好相等。

问书架上、中、下三层原来各有多少本书?9、图书角上、下两层书架上一共有100本书,从上层借走14本后,再从下层中拿出10本放入上层,这时两层书的本数同样多。

上、下两层书架原来各有多少本书?10、工人们修一条路,第一天修的公路比全长的一半还多2千米,第二天修的比余下的一半还多1千米,还剩20千米没有修。

公路的全长是多少千米?11、百货商店出售彩色电视机,上午售出总数的一半多20台,下午售出剩下的一半多15台,还剩75台。

店里原有彩色电视机多少台、12、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。

这捆电线原有多少米?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数:还原问题
还原问题是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题.解答这一类的问题时,要根据题意,从所给的结果出发,抓住逆运算关系,由后向前一步步逆推(倒推法、还原法),做相反的运算,逐步靠拢已知条件,直到问题得到解决.在解答还原问题时,如果列综合算式,要注意括号的正确使用.
典型例题
例【1】三(1)班小图书箱第一天借出了存书的一半,第2天又借出43本,还剩32本.小图书箱原有图书多少本?
分析经过两天借出图书,小图书最后还剩32本书.由此可以往前推算:第2天没借出43本前(也就是第1天借出图书后),应有(32+43)本书,再根据“第1天借出了存书的一半”,可推算出这75本书也就是第1天借出后的另一半,即相当于第1天借出的本数.这样,小图书箱原有的图书本数可求得.
解第1天借书后还剩的本数:32+43=75(本)
原有图书的本数:75×2=150(本)
综合算式:(32+43)×2=150(本)
答:小图书箱原有图书150本.
例【2】某数加上5,乘以5,减去5,除以5,其结果等于5.求这个数.
分析从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法.从最后一步推起,“除以5,其结果等于5”可以求出被除数:5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数:25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数:30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1.
解 5×5=25
25+5=30
30÷5=6
6-5=1
答:所求的数为1.
例【3】小明在做一道加法算式题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的结果应是多少?
分析要求正确的和,就要知道两个正确的加数.看错的加数是39,因此得到错误的和是123.根据逆运算可得到一个没看错的加数是123-89=84,题中已知一个正确的加数是85,所以正确的和是85+84=169
把个位上的5看作9,相当于把正确的和多算了4,求正确的和应把4减去;把视为上的8看作3,相当于把正确的和少算了50,求正确的和应把50加上去.这样,正确的答案123+50-4=169.
解一 123-39+85
=84+85
=169
解二 9-5=4
80-30=50
123+50-4=169
答:正确的答案是169.
例【4】仓库里有一批大米.第一天售出的重量比总数的一半少12吨.第二天售出的重量比剩下的一半少12吨,结果还剩下19吨.这个仓库原有大米多少吨?
分析如果第二天刚好售出剩下的一半,就应是(19+12)吨.第一天售出以后剩下的吨数是(19+12)×2吨.以下类推.
解(19+12)×2=62(吨)
(62-12)×2=100(吨)
答:这个仓库原有大米100吨.
小结还原问题是逆解应用题.一般根据加减法或乘除法的互逆运算关系,由题目所叙述
的顺序倒过来思考,从最后一个已知条件出发,逆推而上,求得结果.。

相关文档
最新文档