EN498-CE安规测试报告
ce认证中安规测试标准

CE认证中的安规测试标准有很多,具体标准取决于产品类型。
对于家电产品,其安规测试一般按照欧盟指令的要求进行,测试内容包括:
1. 电气强度测试:测试产品在高压下的电气强度,以确定产品是否符合安全标准。
2. 泄漏电流测试:测试产品在正常工作条件下的泄漏电流,以确定产品是否符合安全标准。
3. 绝缘电阻测试:测试产品在正常工作条件下的绝缘电阻,以确定产品是否符合安全标准。
4. 耐压测试:测试产品在过电压条件下的耐压性能,以确定产品是否符合安全标准。
5. 接地电阻测试:测试产品的接地电阻,以确定产品是否符合安全标准。
6. 机械强度测试:测试产品的机械强度,以确定产品是否符合安全标准。
7. 防爆测试:针对具有爆炸危险性的产品进行测试,以确定产品是否符合安全标准。
8. 防电击测试:测试产品的防电击性能,以确定产品是否符合安全标准。
9. 防火测试:测试产品的防火性能,以确定产品是否符合安全标准。
10. 防辐射测试:测试产品的防辐射性能,以确定产品是否符合安全标准。
以上就是家电产品的安规测试标准,不同国家和地区的标准和要求可能会有所不同,需要根据具体情况进行判断和调整。
en498-98_.欧洲燃气烤炉中文版

BS EN 498 : 1997
-7-
紧。每个部件都有一个刚性外框,外框内安装上金属丝形成有弹性的网格,网格变形可将食 物包住夹紧。 3.24 玻璃片 透过透明的玻璃片可看到炉具内部的情况。 3.25 Wobbe 指数 燃气的热值(单位体积计算)与其密度的平方根的比。当热值用毛热值时,wobbe 指数也可 以说是毛的,(见 3.32)单位是兆焦每立方米。符号:毛 wobbe 指数:Ws 3.26 射嘴 引导燃气进入供气式炉头的部件,有两类: ――标准射嘴,其出气孔部分是固定的; ――可调式射嘴,其出气孔部分是可变的。 3.27 控制旋钮 用以手工操作以实现炉具控制动作(如旋塞等)的部件, 3.28 密封手段 任何静态或动态的装置,用以确保安全可靠性,例如:垫片,O 型圈,绑带等。 3.29 主空气调节器 用以根据供应状况而设定炉头的供气率的装置,调整该装置的过程称为“主空气调整”。 3.30 气率调节器 用以根据供应状况而调节和设定供给炉头的燃气率的装置。调节可以是连续性的(如使用调 整螺钉),也可以是非连续性的(更换不同规格的出气孔)。调节该装置的过程称为“气率调 整“ 3.31 厨具的有用部分 厨具在烧烤时接触食物的部分。特别地,旋转烤叉的有用长度就是其最大长度。 3.32 热值 在恒定压力 1013.25mbar 下,单位体积或质量的气体完全燃烧后产生的热量,(燃气各混合 组成物在 15℃,1013.25mbar 条件之下;燃烧产物之后也在相同条件之下) 热值有两种: ――毛热值(符号:Hs)燃烧产生的水处于凝结状态; ――净热值(符号:Hi)燃烧产生的水处于蒸汽状态;(EN 437) 本标准只使用毛热值。 热值单位有两种:
a) I 3P/B(30) 本类炉具可以使用第三族气体(丙烷、丁烷及其混合物),在 28mbar~30mbar 的名义操作压 力下不需要调整。
整机柜安规测试报告

整机柜安规测试报告一、引言整机柜是计算机系统的重要组成部分,它不仅提供了计算机硬件的安装空间,还承载着电力和数据接口的传输功能。
为了保证整机柜的正常使用,必须进行安规测试,以确保其符合相关的安全规范和标准。
二、测试目的本次整机柜安规测试的目的是评估整机柜的安全性能,确保其满足以下要求:1. 电气安全性:测试整机柜的电气接地、绝缘电阻、漏电流等参数,确保电气安全性符合标准要求;2. 机械结构安全性:测试整机柜的结构强度、固定装置、防护罩等,确保机械结构安全性良好;3. 环境适应性:测试整机柜在不同环境条件下的工作稳定性和可靠性,确保其适应不同的工作环境;4. 防护性能:测试整机柜的防尘、防水、防电磁干扰等能力,确保其能有效保护内部设备免受外界干扰;5. 标签和警告标识:测试整机柜的标签和警告标识的准确性和清晰度,确保用户能够正确使用和维护整机柜。
三、测试过程及结果1. 电气安全性测试通过对整机柜的电气接地、绝缘电阻和漏电流进行测试,结果显示整机柜的电气安全性符合相关标准要求,不存在漏电、接地不良等问题。
2. 机械结构安全性测试通过对整机柜的结构强度、固定装置和防护罩进行测试,结果显示整机柜的机械结构安全性良好,能够承受一定的冲击和振动,固定装置稳固可靠,防护罩完好无损。
3. 环境适应性测试将整机柜放置在不同的环境条件下进行测试,包括温度、湿度、气压等参数的变化。
结果显示整机柜在不同环境条件下都能够正常工作,没有出现异常情况。
4. 防护性能测试通过对整机柜的防尘、防水和防电磁干扰能力进行测试,结果显示整机柜的防护性能良好,能够有效防止尘埃、水分和电磁干扰对内部设备的影响。
5. 标签和警告标识测试对整机柜的标签和警告标识进行检查,确保其准确性和清晰度。
测试结果显示整机柜的标签和警告标识清晰可见,能够正确指导用户使用和维护整机柜。
四、结论与建议根据对整机柜的安规测试结果进行分析,整机柜的电气安全性、机械结构安全性、环境适应性、防护性能以及标签和警告标识的准确性和清晰度均符合相关的安全规范和标准要求。
世界各国安规认证标志、简介及常见标识

世界各国安规认证标志一览表及简介序号国家及地区安规标志安规简介产品验証适用范围备注1 全球60多个国家及地区IEC国际电工委员会范围:组织起草、制定,电子电气器材等国际化标准及法规。
评估和协调各国标准可行性。
是由各国电工委员会组成的世界性标准化组织,其目的是为了促进世界电工电子领域的标准化。
2 全球54个国家及地区全球性相互认証标志(CB体系的正式名称是“Scheme of the IECEE for MutualRecognition of Test Certificates forElectrical Equipment”–“IECEE电工产品测试证书互认体系”。
CB体系的缩写名称意思是“Certification Bodies’ Scheme”–“认证机构体系”。
)CB体系覆盖的产品是IECEE系统所承认的IEC标准范围内的产品。
IECEE是国际电工委员会电工产品合格测试与认证组织3 欧盟CE系欧洲通用安规认証标志认証范围针对:工业设备、机械设备、通讯设备、电气产品、个人防护用品、玩具等产品。
4 欧洲ENEC (European Norms Electrical Certification,欧洲标准电器认证)。
ENEC标志是欧洲安全认证通用标志,该标志是欧洲厂商基于调和欧洲安全标准进行测试的基础之上所采用的。
认証范围针对IT(信息)、设备(EN60950、变压器(EN60742,EN61558)、照明灯饰(EN60598)和相关档(EN60920,EN60440)、电器开关01 西班牙 02 比利时03 意大利 04 葡萄牙05 荷兰06 爱尔兰07 卢森堡08法国09 希腊 10 德国11 奥5 欧盟RoHS是由欧盟立法制定的一项强制性标准,它的全称是《关于限制在电子电器设备中使用某些有害成分的指令》主要用于规范电子电气产品的材料及工艺标准,使之更加有利于人体健康及环境保护。
该标准的目的在于消除电机电子产品中的铅、汞、镉、六价铬、多溴联苯和多溴联苯醚共6项物质,并重点规定了铅的含量不能超过0.1%。
ASTM E498-95示踪探头式残余气体分析仪或质谱检漏仪泄漏检测方法

components which are structurally capable of being evacuated to pressures of0.1Pa(approximately10−3torr).Testing of small components can be correlated to calibrated leaks,and the actual leak rate can be measured or acceptance can be based on a maximum allowable leak.For most production needs accep-tance is based on acceptance of parts leaking less than an established standard which will ensure safe performance over the projected life of the component.Care must be exercised to ensure that large systems are calibrated with reference leak at a representative place on the test volume.Leak rates are determined by calculating the net gain or loss through a leak in the test part that would cause failure during the expected life of the device.6.2Test Method B is used for testing vacuum systems either as a step in thefinal test of a new system or as a maintenance practice on equipment used for manufacturing,environmental test or for conditioning parts.As the volume tends to be large, a check of the response time as well as system sensitivity should be made.V olume of the system in liters divided by the speed of the vacuum pump in L/s will give the response time to reach63%of the total signal.Response times in excess ofa few seconds makes leak detection difficult.6.3Test Method C is to be used only when there is no convenient method of connecting the leak detector to the outlet of the high vacuum pump.If a helium leak detector is used and the high vacuum pump is an ion pump or cryopump,leak testing is best accomplished during the roughing cycle as these pumps leave a relatively high percentage of helium in the high vacuum chamber.This will obscure all but large leaks,and the trace gas will quickly saturate the pumps.7.Interferences7.1Series leaks with an unpumped volume between them present a difficult if not impossible problem in helium leak testing.Although the trace gas enters thefirst leak readily enough since the pressure difference of helium across thefirst leak is approximately one atmosphere,it may take many hours to build up the partial pressure of helium in the volume between the two leaks so that enough helium enters the vacuum system to be detected by the MSLD.This type of leak occurs frequently under the following conditions:7.1.1Double-welded joints and lap welds.7.1.2Double O-rings.7.1.3Threaded joints.7.1.4Ferrule andflange-type tubingfittings.7.1.5Casings with internal voids.7.1.6Flat polymer gaskets.7.1.7Unvented O-ring grooves.7.2In general,the solution is in proper design to eliminate these conditions;however,when double seals must be used,an access port between them should be provided for attachment to the MSLD.Leaks may then be located from each side of the seal and after repair,the access port can be sealed or pumped continuously by a“holding”pump(large vacuum systems).7.3Temporarily plugged leaks often occur because of poor manufacturing techniques.Water,cleaning solvent,plating,flux,grease,paint,etc.,are common problems.To a large extent,these problems can be eliminated by proper preparation of the parts before leak testing.Proper degreasing,vacuum baking,and testing before plating or painting are desirable.7.4In a device being tested,capillary tubing located be-tween the leak and the leak detector can make leak testing extremely difficult as test sensitivity is drastically reduced and response time increased.If there is a volume at each end of the capillary,each such volume should be attached to the leak detector during testing.If this is impossible,the device should be surrounded with a helium atmosphere while attached to the leak detector for a long time to assure leak tightness.When unusually long pumping times are necessary,the connections to the leak detector(and all other auxiliary connections)that are exposed to the helium should be double-sealed and the space between the seals evacuated constantly by a small auxiliary roughing pump to avoid allowing helium to enter the system through seals that are not a part of the device to be tested.TEST METHOD A—HELIUM LEAK TESTING OF SMALL DEVICES USING THE MSLD8.Apparatus8.1Helium Mass Spectrometer Leak Detector,having a minimum detectable leak rate as required by the test sensitivity.8.2Auxiliary Pumps,capable of evacuating the object to be tested to a low enough pressure so that the MSLD may be connected.N OTE1—If the object under test is small and clean and the MSLD hasa built-in roughing pump,the auxiliary pumps are not required.8.3Suitable Connectors and Valves,to connect to the MSLD test pressionfittings and metal tubing should be used in preference to vacuum hose.8.4Standard Leaks of Both Capsule Type(Containing its own Helium Supply)and Capillary Type(an Actual Leak which is Used to Simulate the Reaction of the Test System to Helium Spray)—The leak rate from the capsule-type leak should be adequate to demonstrate the minimum allowable sensitivity of the MSLD.The capillary type should be slightly smaller than the test requirement.8.5Vacuum Gage,to read the pressure before the MSLD is connected.8.6Helium Tank and Regulator,with attached helium probe hose and jet.9.Calibration of MSLD9.1Attach the capsule leak to the MSLD and tune the MSLD to achieve maximum sensitivity in accordance with the manufacturer’s instruction.Allow sufficient time for theflow rate from the capsule leak to equilibrate.The capsule leak should be stored with the shutoff valve(if present)open,and the leak should be allowed to equilibrate to ambient tempera-ture for several hours.10.Procedure10.1Evacuate the device to be tested until near equilibrium pressure is reached on the rough vacuum gage.Open the valve to the leak detector and close the valve to the roughing pumps. N OTE2—This procedure will be automatic where the device is rela-tively small and clean and where an automatic MSLD is usedwithoutexternal pumps.Do not allow the pressure in the spectrometer tube to exceed the manufacturer’s recommendation.This means in some cases that the MSLD inlet valve can only be partially opened.Maximum test sensitivity will be achieved with the inlet valve completely open and the auxiliary pump valve completely closed.However,testing at reduced sensitivity levels can be done as long as the inlet valve can be opened at all.10.2Adjust the helium probe jet so that a smallflow of helium is coming from the tip.10.3Set the leak detector on the appropriate lowest range.10.4Pass the tip of the helium probe by the end of the standard capillary leak at a rate similar to the scan rate at which the object under test will subsequently be tested.Note the deflection of the leak detector output meter.If the probing rate is increased,the test sensitivity will be decreased,and if the probing rate is decreased,the test sensitivity will be increased. Consequently,when a leak is indicated during leak testing,it will be necessary to move the probe slowly backward until a maximum signal occurs.The approximate leak size can be determined by multiplying the size of the standard leak by the maximum reading obtained from the located leak and dividing by the maximum reading obtained when the helium was applied directly to the standard leak.10.5Starting at the most suspect part of the object to be tested,spray the smallest amount of helium on the part that will give a signal when sprayed on the capillary leak.If there are drafts,work up opposite to the direction of airflow.10.6When a leak is pinpointed,it should befirst evaluated if desired,then sealed either permanently(preferable)or temporarily in such a manner as to allow repair at a later time, before proceeding to look for additional leaks.If the leak is so large that the MSLD output saturates(that is,goes to the top of the highest range),it can be evaluated by reducing the sensitivity of the test until the signal from the standard leak is barely readable.This can be done by opening the roughing valve and partially closing the MSLD inlet valve or by reducing the sensitivity of the leak detector itself if more convenient.If the unknown leak still produces an off-scale signal,it will be necessary to use a larger standard leak and far less test sensitivity or to use a reduced percentage of helium in the probe.(For instance,a probe gas concentration of1% helium and99%nitrogen would reduce the apparent sensitiv-ity by a factor of100.)10.7After thefirst leak has been found and sealed,the same technique is continued until all leaks have been similarly treated.10.8After all leaks have been found and repaired,it is desirable to enclose the entire device in a helium envelope (which can be a plastic bag or a large bell jar)to determine the total device integrity.10.9This step could also be donefirst and would eliminate the necessity for probing if no leakage is shown.However,if there are any materials in the device that are pervious to helium,doing this stepfirst may build up the helium back-ground to such a degree that subsequent probing would be insufficiently sensitive.10.10Write a test report or otherwise indicate the test results as required.TEST METHOD B—HELIUM LEAK TESTING OF V ACUUM EQUIPMENT AND SYSTEMS THAT HA VE INTEGRAL PUMPING SYSTEMS OF THEIR OWN 11.Apparatus11.1Helium MSLD—Same apparatus as Section8.12.Calibration of MSLD12.1See Section9.13.Preparation of Apparatus13.1Connect inlet valve of MSLD to foreline of object to be tested.If possible,insert a valve in the foreline between the mechanical pump and the MSLD connection.All connections should have as high a conductance as is practical.13.2Attach the standard capillary leak to the vacuum chamber of the object to be tested and as far as practical from the inlet to the pumping system.13.3Operate the equipment until equilibrium vacuum is reached in the vacuum chamber.13.4Slowly open inlet valve to MSLD.Do not allow the MSLD pressure to exceed manufacturer’s recommendations.13.5If inlet valve can be fully opened without exceeding the safe MSLD operating pressure,slowly close the equipment roughing pump valve.If this valve can be completely closed, maximum sensitivity of the test will be achieved.14.Test Procedure14.1See Section10.TEST METHOD C—USE OF RGA OR OF HELIUM MSLD SPECTROMETER TUBE AND CONTROL IN LEAK TESTING(NO V ACUUM SYSTEM IN THEMSLD)15.Apparatus15.1RGA or MSLD and controls tuneable to the trace gas.15.2Standard Capillary Leak,of approximately the size of the minimum leak to be located.15.3Suitable Fittings and Isolating Valve,for attachment to the high vacuum chamber.15.4Liquid Nitrogen Traps,to be used if the system contains vapors harmful to the RGA or the MSLD.16.Preparation of Apparatus16.1Attach the RGA or the MSLD tube to the high-vacuum section of the test object to be leak tested.The connection should be located near the pumped end of the system and attached with as short and as large a diameter tube as practical. Minimum test sensitivity is obtained when the high-vacuum pumps are throttled,by means of the highvacuum valve,so as to maintain as high a pressure in the volume under test as is safe for the MSLD.If two diffusion pumps are used in series on the system and the intermediate pressure is less than1310−2 Pa(approximately1310−4Torr),the detector should be attached between the two pumps for maximum sensitivity.An isolation valve may be used between the detector and the system to allow servicing the detector without loss of vacuum in the system and to protect the detector fromcontaminationwhen not in use.A liquid nitrogen trap should be used betweenthe detector and the system if vapors harmful to the detector arepresent in the system.16.2Attach the standard capillary leak to the system as faraway from the pumps as possible.A small high-vacuum valveshould be used between the standard leak and the system anda dust cap should be provided for the standard leak if it is to beleft in place.17.Calibration17.1See Section 9.18.Test Procedure18.1Evacuate the object to be tested and the MSLD untilequilibrium pressure is reached.18.2Turn on the MSLD and allow it to stabilize inaccordance with the manufacturer’s instructions.18.3Apply trace gas to the leak.Surround the leak withtrace gas at small constant flow,but do not pressurize.18.4When equilibrium pressure of the trace gas is reachedas shown by the MSLD output reading becoming stable afterrising when trace gas was first applied,use the tuning adjust-ments of the MSLD to peak the signal in accordance with themanufacturer’s instructions.18.5If trace gas is undetectable,and there is a valvebetween the pumps and the object to be tested,gradually closethe valve until a reasonable signal is observed.Check byremoving the trace gas from the leak.If the output drops whentrace gas is removed and rises when trace gas is applied,leaksof the size of the standard leak and larger can be detected byapplying trace gas to suspect joints in the system for a similarlength of time.If a very substantial signal is obtained from thestandard leak,smaller leaks may also be detected.(Forexample,if an output reading of 1000divisions is obtainedfrom a 4.5310−11mol/s (1310−6Std cm 3/s)3calibrated leakin 10s,then a reading of 10divisions will be obtained from a4.5310−13mol/s (1310−8Std cm 3/s).318.6Starting at the top of the system and working down (ifthe trace gas is lighter than air)probe all suspect areas with trace gas,dwelling as long at each point as it took to obtain unambiguous results from the standard leak.Repair or isolate each leak as it is located to prevent spurious indications from trace gas drifting away from the area being probed.18.7When the high-vacuum section of the system has been tested,the diffusion pump,foreline hardware,and the mechani-cal pumps can be tested by probing,although the response time will be greater and the test sensitivity will be lower.Do not probe the exhaust of the mechanical pump since the trace gas will become entrapped in the pump,causing long-lasting background problems.18.8Write a test report or otherwise indicate test results as required.19.Precision and Bias 19.1Precision —Replicate tests by the same operator for Test Method A should not be considered suspect if no more than 0.1%of the previously accepted devices are found to be rejects.If leak rates are recorded,test results should be considered suspect if leaks of 4.5310−12to 4.5310−9mol/s (10−7to 10−4Std cm 3/s)3vary by more than 610%.Leak rates smaller than 4.5310−12mol/s (1310−7Std cm 3/s)3should be considered suspect if they vary by more than 625%.19.2Bias —Bias for measurement of leaks are typically 625%for leaks in the range of 4.5310−12to 4.5310−9mol/s (10−7to 10−4Std cm 3/s).3Bias will increase for smaller leaks unless the test permits enclosing the device being tested with a known concentration of helium.Replicate tests made by another facility for Test Method A should not be considered suspect if less than 1%of the previously accepted parts are found to be rejects.(Caution :Spraying helium from a valved tube will dilute the helium entering the leak with air causing a substantial change in bias).20.Keywords 20.1bell jar leak test;bomb mass spectrometer leak test;helium lead testing;helium leak test;leak testing;mass spectrometer leak testing;sealed object mass spectrometer leak testThe American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,100Barr Harbor Drive,West Conshohocken,PA 19428.This standard is copyrighted by ASTM,100Barr Harbor Drive,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website().。
4943安规测试报告

4943安规测试报告
摘要:
一、测试项目
1.绝缘电阻测试
2.耐压测试
3.接地电阻测试
4.漏电流测试
5.温度测试
6.外观检查
二、测试标准
1.GB/T 16927.1-2011
2.GB/T 16927.2-2014
3.GB/T 50150-2016
三、测试结果
1.绝缘电阻
2.耐压测试
3.接地电阻
4.漏电流
5.温度测试
6.外观检查
四、结论
2.可以正常使用
正文:
尊敬的客户:
您好!我司已收到您提交的4943 安规测试报告请求,经过实验室检测,现将测试结果报告如下:
一、测试项目
为了确保您设备的正常运行和使用安全,我司对设备进行了多项安规测试。
测试项目包括:绝缘电阻测试、耐压测试、接地电阻测试、漏电流测试、温度测试以及外观检查。
二、测试标准
本次测试严格遵循我国相关标准进行,具体包括:GB/T 16927.1-2011《高压试验技术第1 部分:通用规定》、GB/T 16927.2-2014《高压试验技术第2 部分:电气设备》以及GB/T 50150-2016《电气装置安装工程电气设备交接试验标准》。
三、测试结果
经过严格测试,您的设备在各项测试中的表现均符合标准要求。
具体测试结果如下:
1.绝缘电阻:符合标准要求
2.耐压测试:符合标准要求
3.接地电阻:符合标准要求
4.漏电流:符合标准要求
6.外观检查:合格
四、结论
根据上述测试结果,4943 安规测试报告中所列设备各项指标均符合我国相关标准要求,可以正常使用。
请您查收,如有任何问题,请随时与我司联系。
ce认证 能效要求 -回复

ce认证能效要求-回复什么是CE认证能效要求?CE认证能效要求是指在欧洲市场销售的产品需要符合的能效标准和要求。
CE认证是指符合欧洲经济区(European Economic Area,EEA)法律规定的产品安全和保健要求。
这些要求适用于多种领域的产品,包括电子设备、机械设备、工业设备、家电等。
能源效率是指在正常操作条件下,产品所使用的能源与所提供的功能、性能和服务的密切相关性。
通过提高能源效率,不仅可以减少能源的消耗,还可以降低对环境的不良影响,节约成本并增加产品竞争力。
在欧洲市场上销售某种产品时,需要满足CE认证的能效要求。
这些要求通过一系列的指令和标准来规定,其中最重要和最常用的是欧盟的能源相关产品(ErP)指令和欧洲标准EN 50581。
ErP指令(Energy-related Products Directive)旨在确保产品在生命周期内的能效性能,并规定了特定产品的最低能效要求。
而EN 50581标准定义了对产品的能效要求的测试方法和程序。
能效评估是确定产品能效性能的过程。
它包括能源消耗的测量、分析和报告。
能效评估的结果可以用来评估产品符合CE认证能效要求的能力。
为了获得CE认证,产品必须通过能效评估,并在符合要求的情况下进行测试。
能效测试是对产品进行检测和测量以确定其能源消耗的过程。
测试通常由专门的测试实验室进行,根据相应的欧洲标准进行。
测试包括对产品在不同操作模式下的能效性能进行测量,如待机能耗、工作模式中的能效效率等。
测试结果与规定的能效要求进行比较,以确定产品是否符合CE认证能效要求。
如果产品通过了能效测试,并符合能效要求,就可以获得CE认证。
CE认证标志将被授予该产品,并可以在产品上进行标识。
这证明该产品符合欧洲法律法规的安全和健康要求,并满足了欧洲市场的CE认证能效要求。
CE认证能效要求对制造商和进口商来说是强制性的。
它们必须确保产品符合CE认证的能效要求,并提供相应的文档和证明。
世界各国安规认证标志简介及常见标识

世界各国安规认证标志一览表及简介序号国家及地区安规标志安规简介产品验証适用范围备注1 全球60多个国家及地区IEC国际电工委员会范围:组织起草、制定,电子电气器材等国际化标准及法规。
评估和协调各国标准可行性。
是由各国电工委员会组成的世界性标准化组织,其目的是为了促进世界电工电子领域的标准化。
2 全球54个国家及地区全球性相互认証标志(CB体系的正式名称是“Scheme of the IECEE for MutualRecognition of Test Certificates forElectrical Equipment”–“IECEE电工产品测试证书互认体系”。
CB体系的缩写名称意思是“Certification Bodies’Scheme”–“认证机构体系”。
)CB体系覆盖的产品是IECEE系统所承认的IEC标准范围内的产品。
IECEE是国际电工委员会电工产品合格测试与认证组织3 欧盟CE系欧洲通用安规认証标志认証范围针对:工业设备、机械设备、通讯设备、电气产品、个人防护用品、玩具等产品。
4欧洲ENEC (European Norms Electrical Certification,欧洲标准电器认证)。
ENEC标志是欧洲安全认证通用标志,该标志是欧洲厂商基于调和欧洲安全标准进行测试的基础之上所采用的。
认証范围针对IT(信息)、设备(EN60950、变压器(EN60742,EN61558)、照明灯饰(EN60598)和相关档(EN60920,EN60440)、电器开关01 西班牙02 比利时03 意大利04 葡萄牙05荷兰06 爱尔兰07 卢森堡08法国09 希腊10 德国11 奥地利12 英国13 瑞士14 瑞5 欧盟RoHS是由欧盟立法制定的一项强制性标准,它的全称是《关于限制在电子电器设备中使用某些有害成分的指令》主要用于规范电子电气产品的材料及工艺标准,使之更加有利于人体健康及环境保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(在炉具所规定的标准热值±8%内为合格,如果炉具的阀嘴<0.05mm,可允许误差±10%
2.3炉具应有手工点火孔,且应能观察到炉头点火情况.
2.4点火测试,测试前,炉具应处于室温状态.
〔在增压(118%常压),常压,减压(73%常压)三种条件下进行点火,要求5S内点火成功.
2.4.1待点火炉头处于大火位点火;
每次测试的结果CO含量均要求<0.20%
2.9所有测试完毕后,BBQ不得有明显的积炭.
2.10防风测试:在3M/S的风速下,炉具上盖打开或关闭的状态下,炉头应能点燃且不熄火不回火.
2.11主要部件限制温度测试(于室温)
2.11.1瓦斯软管不与(温度=室温+70℃)的部件接触
2.11.2炉具脚支撑:+70℃
2.6钢瓶加热测试,钢瓶充4/5标准容量燃气,常压下燃烧1小时后熄火0.5小时,每隔5分钟测一次钢瓶气压应符合“EN498”标准6.6款.
2.7耐热测试:炉具用回火极限气体,在保持回火的最大流量和压力下燃烧15分钟,炉头应不损坏影响使用.
2.8 CO含量测试:测试气体丙烷,增压(45mbar)条件下燃烧15分钟,抽取一次气体样本,然后在常压(37mbar)以全流量的一半燃烧5分钟抽取一次气体样本,(上盖在关闭和打开的条件下分别测试)
2.4.2待点火炉头处于小火位点火;
2.4.3炉具至少燃烧60S后再次点火;
2.4.5炉具在上盖打开及关闭状态点火.
2.5在点火测试后燃烧60S内火焰应稳定.
2.5.1炉具在稳定测试中,处于小火位,大火位时不回火,不熄火.
2.5.2在任何一种情况下,炉头阀在正常压力下以正常速度转动到全流量的一半位置时,炉具不可有浮火,熄火现象.
2.11.3把手和正常操作时可能会与手接触的部件:
金属: +35℃
玻璃或陶瓷: +45℃
塑料或木材: +60℃
注:测量烤叉把手时,取最外部向内50MM处的温度
3.适用气体类型及相应压力:
3.1 I3B/P(30):丙烷,丁烷及其混盒气体均适用,使用压力:28~30mbar
3.2 I3B/P(50):丙烷,丁烷及其混合气体均适用,使用压力:50mbar
1.13炉头在正常使用中不会移位,易于拆卸和清洁.同一炉具相同规格的炉头标示应一致.
1.14烤网线距不大于2cm,均匀承载0.5kg/dm2压力后应保持在原本的装配位置,不变形或损坏.
1.15如配有烤叉,烤叉应有手柄,手柄有效长度不可小于80mm,烤叉有效长度内承载0.5KG/100MM时仍稳定在支撑杆上.
1.16钢瓶支撑架承受钢瓶全重时不变形,钢瓶装拆方便,瓦斯管装好后须保证不会与尖角,锐边接触的可能.
1.17炉具标示应明显,易读和持久,标示中应有制造商的名称或识别符号,炉具名称,型号,炉具的总热值(KW/Hr)以及使用气体的类型和供给压力.
2炉具性能
2.1气密测试
(室温20℃,大气压1013.25mbar的条件下以150mbar的空气压力测试,炉具的泄漏量应<0.07L/Hr)
1.9供气管路不可使用软焊接.
1.10供气管路系统在日常维护中需拆卸的零部件应在5次拆卸组装后,(包括更换垫片)仍能保证气密安全,使用安全.
1.11阀组合操作方便,且须保证不出现偶然转动,不出现卡死现象,经“温度测试”后仍保持操作方便,安全.
1.12炉具阀的开关,火势大小位置应标示清晰,标示须保证用户不出现误操作,阀组合顺时针旋转为关闭状.
安规测试日期
依据标准
EN498
认证机构
CE
page
1.炉具结构
1.1 BBQ无锐角,尖角,毛刺,BBQ操作
方便,使用安全
1.2金属材料(火山石架,烤板,烤网,烤叉除外)应采用防锈材料或有其它防锈措施,其熔点不得低于450℃
1.3炉具不允许使用石棉材料
1.4在正常操作,清洁及搬运过程中,炉具上的部件及材料不应受到各种因素(温度,湿度,机械,化学)的影响而改变结构和性能.
3.3 I3+(28~30/37):丙烷气体,使用压力37mbar,丁烷气体使用压力:28~30mbar
3.4 I3P+(37):丙烷气体,使用压力:37mbar
3.5 I3P+(50):丙烷气体,使用压力:50mbar
丁烷气体,使用压力:28~30mbar
1.5与食物接触或可能会接触的表面处理对食物必须无污染,或其它影响.
1.6用户组装方便,在组装时不需使用非生产商配备的工具,且供气管路应由厂商预组.
1.7炉具水平状态操作稳定可靠,带有四个车轮的炉具需有锁定装置,自锁装置必须保证不造成用户误操作.
1.8炉具10度斜坡稳定性测试
(烤板网的使用面积0.5KG/DM2的承载,烤叉上0.5KG/10CM的承载,炉具在带或不带钢瓶的情况下任何位置均不应跌倒为合格,且大上盖炉具的上盖不应意外关闭)