x2检验练习题

合集下载

卡方练习题2

卡方练习题2

合计
3040
1060
1980
34.87
• H0: 不同文化程度60岁及以上老人白内障的患病率相同,即1 = 2 = 3 = 4 = 5; H1:不同文化程度60岁及以上老人白内障的患病率不等或不全相 等。 • =0.05
A2 n 1 nR nC 267 2 4222 3040 ( 1) 455 1060 555 1980 223.3538
国籍
O
A
B
AB
合计
美国
挪威 中国 合计
450(45.0)
190(38.0) 300(30.0) 940(37.6)
410(41.0)
250(50.0) 250(25.0) 910(36.4)
100(10.0)
40( 8.0) 350(35.0) 490(19.6)
40( 4.0)
20( 4.0) 100(10.Байду номын сангаас) 160( 6.4)
合计 12 29 41
缓解率(%) 16.67 48.28 39.02
• H0: 两种方法治疗后患者的完全缓解率相等,即1 = 2; • H1: 两种方法治疗后患者的完全缓解率不等,即1≠2 , • =0.05 • 本例的a格的理论频数最小,T11=12x16/41=4.68<5, n>40,故考虑用校正公式计算
• 2、表中资料是单用甘磷酰芥(单存化疗组)与复 合使用争光霉素、环磷酰胺等药(复合化疗组) 对淋巴系统肿瘤的疗效,问两组患者总体的完全 缓解率有无差别?
表 两组化疗的缓解率比较
治疗组 单纯化疗 复合化疗 合计
缓解 2(4.68) 14(11.32) 16

独立性检验练习含答案

独立性检验练习含答案

§1.1 独立性检验一、基础过关1.当χ2>2.706时,就有________的把握认为“x 与y 有关系”.2.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶,则χ2≈__________.(结果保留3位小数)3.分类变量X 和Y 的列表如下,则下列说法判断正确的是________.(填序号)y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +da +b +c +d①ad -bc 越小,说明X 与Y 的关系越弱; ②ad -bc 越大,说明X 与Y 的关系越强; ③(ad -bc )2越大,说明X 与Y 的关系越强; ④(ad -bc )2越接近于0,说明X 与Y 的关系越强.4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,χ2=110×(40×30-20×20)260×50×60×50≈7.8.附表:P (χ2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是________.①在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”; ②在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”; ③有99%以上的把握认为“爱好该项运动与性别有关”; ④有99%以上的把握认为“爱好该项运动与性别无关”.5.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:年龄合计 不超过40岁 超过40岁吸烟量不多于20支/天 50 15 65 吸烟量多于20支/天10 25 35 合计6040100则有________的把握确定吸烟量与年龄有关. 二、能力提升6.某高校“统计初步”课程的教师随机调查了选该课的一些情况,具体数据如下表:专业 性别非统计专业统计专业 合计 男 13 10 23 女 7 20 27 合计203050为了判断主修统计专业是否与性别有关,根据表中的数据,得χ2=50×(13×20-10×7)223×27×20×30≈4.844.因为χ2≈4.844>3.841,所以判断主修统计专业与性别有关系,那么这种判断出错的可能性为________.7.在2×2列联表中,若每个数据变为原来的2倍,则卡方值变为原来的________倍. 8.下列说法正确的是________.(填序号)①对事件A 与B 的检验无关,即两个事件互不影响; ②事件A 与B 关系越密切,χ2就越大;③χ2的大小是判断事件A 与B 是否相关的惟一数据; ④若判定两事件A 与B 有关,则A 发生B 一定发生.9.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:无效 有效 总计 男性患者 15 35 50 女性患者 6 44 50 总计2179100设H 0:服用此药的效果与患者的性别无关,则χ2的值约为________,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:支持新教材支持旧教材合计 教龄在15年以上的教师122537教龄在15年以下的教师102434合计224971根据此资料,你是否认为教龄的长短与支持新的数学教材有关?11.下表是某地区的一种传染病与饮用水的调查表:得病不得病总计干净水52466518不干净水94218312总计146684830(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;(2)若饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水的卫生程度有关,并比较两种样本在反映总体时的差异.三、探究与拓展12.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:分组[29.86,29.90) [29.90,29.94) [29.94,29.98)[29.98,30.02)频数126386182分组[30.02,30.06) [30.06,30.10) [30.10,30.14)频数9261 4乙厂:分组[29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02)频数297185159分组[30.02,30.06) [30.06,30.10) [30.10,30.14)频数766218(1)分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.答案1.90% 2.16.373 3.③ 4.③ 5.99.9% 6.5% 7.2 8.② 9.4.882 5%10.解 由公式得χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=71×(12×24-25×10)237×34×22×49≈0.08.∵χ2<2.706.∴我们没有理由说教龄的长短与支持新的数学教材有关. 11.解 (1)假设:传染病与饮用水的卫生程度无关. 由公式得χ2=830×(52×218-466×94)2146×684×518×312≈54.21.因为54.21>10.828.因此我们有99.9%的把握认为该地区这种传染病与饮用水的卫生程度有关. (2)依题意得2×2列联表:得病 不得病 总计 干净水 5 50 55 不干净水 9 22 31 总计147286此时,χ2=86×(5×22-50×9)255×31×14×72≈5.785.由于5.785>5.024,所以我们有97.5%的把握认为该种传染病与饮用水的卫生程度有关. 两个样本都能统计得到传染病与饮用水的卫生程度有关这一相同结论,但(1)问中我们有99.9%的把握肯定结论的正确性,(2)问中我们只有97.5%的把握肯定结论的正确性. 12.解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500×100%=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500×100%=64%. (2)甲厂 乙厂 总计 优质品 360 320 680 非优质品 140 180 320 总计5005001 000由列联表中的数据,得χ2=1 000×(360×180-320×140)2680×320×500×500≈7.353>6.635.所以有99%的把握认为“两个分厂生产的零件的质量有差异”.Welcome To Download !!!欢迎您的下载,资料仅供参考!。

卫生统计学 自考 练习题-1

卫生统计学 自考 练习题-1

复习资料《卫生统计学》(课程代码02867)第一大题:单项选择题(总分:60分)1、实验设计应遵循的基本原则是:• A.随机化、对照、盲法• B.随机化、盲法、配对• C.随机化、重复、配对• D.随机化、对照、重复标准答案:D2、以下资料类型不宜用秩和检验的是:()• A.等级资料• B.二项分布• C.极度偏态分布资料• D.数据一端不确定资料标准答案:B3、某研究检测了男性和女性红细胞数,经检验该资料总体方差相等,欲比较男性和女性的红细胞数有无差异,取双侧a=0.05,经成组t检验得P <0.01,则:()• A.可认为男性和女性的红细胞均数差异有统计学意义• B.可认为男性和女性的红细胞均数无差异• C.可认为男性和女性的红细胞均数差异很大• D.尚不能认为男性和女性的红细胞均数有差异标准答案:A4、宜用均数和标准差进行统计描述的资料分布类型是:( )• A.正态分布• B.对数正态分布• C.正偏态分布• D.两端无确切值的分布标准答案:A5、随机抽取某市100名10岁女孩,测得其体重均数为35kg,若以一定的概率估计该市10岁女孩体重的总体均数,宜采用:()• A.点估计• B.区间估计• C.假设检验• D.医学参考值范围标准答案:B6、方差分析的应用条件:()• A.样本小,来自正态总体,样本间相互独立• B.样本来自正态总体,样本例数足够小• C.样本例数小,样本相互独立• D.样本来自正态总体,方差齐,样本数据独立标准答案:D7、用最小二乘法建立直线回归方程的原则是各实测点距回归直线的:()• A.纵向距离平方和最小• B.垂直距离的和最小• C.垂直距离的平方和最小• D.纵向距离之和最小标准答案:A8、对两个地区恶性肿瘤发病率进行比较时,应该:( )• A.排除两地人口年龄构成不同的影晌• B.排除两地总人口数不同的影响• C.排除各年龄组死亡人数不同的影响• D.排除抽样误差标准答案:A9、用某疗法治疗急性腰扭伤病人30例,两周后25例患者痊愈,由此可认为:( )• A.该疗法疗效好• B.该疗法疗效一般• C.因无对照,尚不能说明该疗法的疗效如何• D.因冶疗例数少,尚不能说明该疗法的疗效如何标准答案:C10、不受年龄构成的影响,能够反映整个人群死亡水平的指标是:()• A.死因别死亡率• B.粗死亡率• C.标准化死亡率• D.年龄别死亡率标准答案:C11、完全随机设计的方差分析组间变异源于:()• A.个体变异• B.随机变异• C.处理因素• D.随机变异和处理因素标准答案:D12、已知男性的钩虫感染率高于女性,今欲比较甲,乙两乡居民的钩虫感染率,最合适的方法是:( )• A.分性别进行比较• B.两个率比较的X2检验• C.不具可比性,不能比较• D.对性别进行标准化后再比较标准答案:D13、正态性检验,按α=0.10水准,认为总体不服从正态分布,此时若推断的错,其错误的概率为:()• A.等于0.10• B.β,而β未知• C.等于0.90• D.1-β,且β未知标准答案:B14、某研究欲比较正常人(n1=10)与单纯肥胖者(n2=8)血浆总皮质醇是否有差异,采用秩和检验。

第八章假设检验练习题1设总体为来自该总体的一个样本记则检验

第八章假设检验练习题1设总体为来自该总体的一个样本记则检验

第八章 假设检验练习题1.设总体都未知其中22,),,(~σμσμN X .n x x x ,,,21 为来自该总体的一个样本.记∑∑==-==n i i n i i x x Q x n x 1221)(,1.则检验假设 00:μμ=H 01:μμ≠H 所使用的统计量=t (用Q x ,表示);其拒绝域=C .2.设总体都未知其中22,),,(~σμσμN X .n x x x ,,,21 为来自该总体的一个样本.记∑∑==--==n i i n i i x x n s x n x 1221)(11,1.则 (1)检验假设 2:0≤μH 2:1>μH 所使用的统计量=t (用s x ,表示);其拒绝域=C .(2)检验假设 2:0≥μH 2:1<μH 所使用的统计量=t (用s x ,表示);其拒绝域=C .3.设总体都未知其中22,),,(~σμσμN X .n x x x ,,,21 为来自该总体的一个样本.记∑=--=n i i x x n s 122)(11为其样本方差.则检验假设 16:20≥σH 16:21<σH 所使用的统计量=2χ ;其拒绝域=C .4.设21,,,,,,2121n n y y y x x x 和分别为来自正态总体),(21σμN 和),(22σμN 的两个独立样本,2221,s s 分别为这两个样本的样本方差.则检验假设 1:210≥-μμH 1:211<-μμH 所使用的统计量=t ;其拒绝域=C .5.设21,,,,,,2121n n y y y x x x 和分别为来自正态总体),(211σμN 和),(222σμN 的两个独立样本,2221,s s 分别为这两个样本的样本方差.则检验假设 1:22210=σσH 1:22211≠σσH 所使用的统计量=F ;其拒绝域=C .6.设总体都未知其中22,),,(~σμσμN X .n x x x ,,,21 为来自该总体的一个样本.其样本均值为x ,样本方差为2s ,显著性水平为α.则检验问题00:μμ=H 01:μμ≠H 的拒绝域C 应为 ( ).(A)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≥-)1()(20n t n s x αμ; (B)⎭⎬⎫⎩⎨⎧-≥-)1()(0n t n s x αμ; (C)⎭⎬⎫⎩⎨⎧--≤-)1()(0n t n s x αμ; (D)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-)1()(20n t n s x αμ. 7.设总体都未知其中22,),,(~σμσμN X .n x x x ,,,21 为来自该总体的一个样本.其样本方差为2s ,显著性水平为α.则检验问题5:20≤σH 5:21>σH检验统计量应为( ). (A)5)1(2s n -; (B)5)1(2s n +; (C)5)1(2s n -; (D)5)1(2s n +. 8.设一台机床加工轴的椭圆度服从正态分布):)(02.0,09.0(2mm N 单位.机床经调整后随机取16根轴测量其椭圆度,经计算得mm x 08.0=.问调整后机床加工轴的平均椭圆度是否有显著变化)05.0(=α?对此检验问题应提出的假设为( ).(A)09.0:0=μH 09.0:1<μH ; (B)09.0:0≥μH 09.0:1<μH ;(C)09.0:0≤μH 09.0:1>μH ; (D)09.0:0=μH 09.0:1≠μH .9.在假设检验中,设0H 为原假设,则犯第一类错误的情况为( ).(A)0H 不真,接受0H ;(B)0H 真,拒绝0H ;(C)0H 不真,拒绝0H ;(D)0H 真,接受0H .10.某厂生产的某种型号的电机,其寿命长期以来服从方差2250=σ的正态分布.现有一批这种电机,从它的生产情况来看,寿命的波动性有所变化.现随机地取26只电机,测出其寿命的样本方差28002=s .问能否认为这批电机的寿命的波动性较以往显著地偏大)05.0(=α对此检验问题应提出的假设为( ).(A)22050:=σH 22150:≠σH (B)22050:≥σH 22150:<σH ;(C)22050:≤σH 22150:>σH ; (D)22050:=σH 22150:<σH .11.在假设检验中,显著性水平α表示 ( ).(A)0H 为真,但接受0H 的概率; (B)0H 为真,但拒绝0H 的概率;(C)0H 不真,但接受0H 的概率; (D)假设0H 的可信度.12.下列论断正确的是( ).(A)第一类错误的概率是{}0H P 拒绝;(B)第一类错误与第二类错误的概率之和为1;(C)给定显著性水平α,当样本容量n 增大时,两类错误的概率都减小;(D)样本容量n 固定,增大显著性水平α,则第二类错误的概率减小.13.设总体),(~211σμN X ,总体),(~222σμN Y ,检验假设22210:σσ=H 22211:σσ≠H ,05.0=α.今分别从X 中抽取容量为13的样本, 从Y 中抽取容量为10的样本,求得样本方差93.31,4.1182221==s s ,则正确的检验方法和结论是( ).(A)用2χ检验法,临界值283.10)21(,479.35)21(2975.02025.0==χχ,拒绝0H ; (B)用F 检验法,临界值291.0)9,12(,87.3)9,12(975.0025.0==F F ,拒绝0H ;(C)用F 检验法,临界值291.0)9,12(,87.3)9,12(975.0025.0==F F ,接受0H ;(D)用F 检验法,临界值357.0)9,12(,07.3)9,12(95.005.0==F F ,接受0H .14.对正态总体的数学期望μ进行假设检验,如果在显著性水平05.0下接受00:μμ=H ,那么在在显著性水平0.01下,下列结论正确的是 ( ).(A)必接受0H ;(B)可能接受,可能拒绝0H ;(C)必拒绝0H ;(D)不接受,也不拒绝0H .15.自动装袋机装出的每袋重量服从正态分布,规定每袋重量的方差不超过a ,为了检验自动装袋机的生产是否准确,对它生产的产品进行抽样检查,取零假设a H ≤20:σ,显著性水平05.0=α,则下列命题正确的是 ( ).(A)如果生产正常,则检验结果也认为生产正常的概率等于95%;(B)如果生产不正常,则检验结果也认为生产不正常的概率等于95%;(C)如果检验的结果认为生产正常,则生产确实正常的概率等于95%;(D) 如果检验的结果认为生产不正常,则生产确实不正常的概率等于95%.16.设某种药品中有效成分的含量服从正态分布),(2σμN ,原工艺生产的产品中有效成分的平均含量为a ,现在用新工艺试制了一批产品,测其有效成分的含量,以检验新工艺是否真的提高了有效成分的含量.要求当新工艺没有提高有效成分含量时,误认为新工艺提高了有效成分的含量的概率不超过5%,那么应取零假设0H 及显著性水平α是 ( ).(A)01.0,:0=≤αμa H ; (B)05.0,:0=≥αμa H ;(C)05.0,:0=≤αμa H ; (D)01.0,:0=≥αμa H .。

医学统计学练习题

医学统计学练习题

第一部分计量资料的统计学分析处理一.多项选择题〔每道题只有一个最正确答案〕1.各观察值均加〔或减〕同一数值后,。

a.均数不变,标准差改变b.均数改变,标准差不变c.两者均不变d.两者均改变2.用均数与标准差可全面地描述何种资料的特征?a.正偏态分布b.负偏态分布c.正态分布和近似正态分布d.对称分布3.比较身高和体重两组数据变异度大小宜采用:a.变异系数〔CV〕b.方差〔s2〕c.极差〔R〕d.标准差〔s〕4.描述一组偏态分布资料的变异度,以何种指标较好。

a.全距〔R〕b.标准差〔s〕c.变异系数〔CV〕d.四分位数间距〔Q u-Q L〕5.正态分布曲线下,横轴上,从均数μ到μ倍标准差的面积为:a.95%b.45%c.%d.%6.标准正态分布曲线下中间90%的面积所对应的横轴尺度u的范围是:a.到+1.645 b.-∞到c.-∞到+1.282 d.到7.假设正常成人血铅含量近似对数正态分布,拟用300名正常成人血铅值确定99%参考值范围,最好采用哪个公式计算?a.X±2.56s b.lg-1(X1gX+2.58 s lgx)c.P99=L+i/f99(300×0.99 -∑fL) d.lg-1(X1gX+2.33 s lgx)8.何种指标小,表示用样本均数估计总体均数的可靠性大?a.CV b.s c.σX d.R9.统计推断的内容:a.是用样本指标估计相应的总体指标b.是检验统计上的“假设”c.a、b均不是d.a、b均是10.两样本均数比较,经t检验,差异有显著性时,P越小,说明。

a.两样本均数差异越大b.两总体均数差异越大c.越有理由认为两总体均数不同d.越有理由认为两样本均数不同11.成组设计的方差分析中,必然有:。

a.SS组内<SS组间b.MS组间<MS组内c.MS总=MS组间+MS组内d.SS总=SS组间+SS组内12.两样本均数比较时,所取以下何种检验水准时,第二类错误最小?a.α=0.05 b.α=0.01 c.α=0.10 d.α=0.2013.正态性检验,按α=水准,认为总体服从正态分布,此时假设推断有错,其错误的概率为:a.大于0.10 b.β,而β未知c.小于0.10 d.1-β,而β未知14.下式哪一种可出现负值?a.∑(X-X)2b.∑Y2-(∑Y)2/nc.∑(Y-Y)2d.∑(X-X)(Y-Y)15.Y=14+4X是1~7岁儿童以年龄〔岁〕估计体重〔市斤〕的回归方程,假设将体重换成国际单位kg,则此方程:a.截距改变b.回归系数改变c.两者都改变d.两者都不改变16.直线回归分析中,X的影响被扣除后,Y 方面的变异可用何指标表示?a.s=√∑(X-X)2/(n-2) b.s r=√∑(Y-Y)2/(n-1)c.s=√∑(Y-Y)2/(n-2) d.s b=s/√∑(X-X)217.r>r0.05(n-2)时,可认为两变量X与Y间:a.有一定关系b.有正相关关系c.一定有直线关系d.有直线关系18.已知r=1,则一定有:a.b=1 b.a=1 c.S=0 d.S=S Y19.已知两样本,r1=r2,那么:a.b1=b2b.t b1=t b2c.t r1=t r2d.两样本的决定系数相等20.用最小二乘法确定直线回归方程的原则是各观察点:a.距直线的纵向距离相等b.距直线的纵向距离的平方和最小c.与直线的垂直距离相等d.与直线的垂直距离的平方和最小21.回归系数的假设检验:a.只能用r的检验代替b。

第12章 假设检验典型例题与综合练习

第12章 假设检验典型例题与综合练习

经济数学基础 第12章 假设检验第12章 假设检验典型例题与综合练习一、典型例题1.U 检验例1某切割机在正常工作时,切割的每段金属棒长度服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm.今从一批产品中随机抽取15段进行测量,其结果为(单位:cm )10.5 10.6 10.1 10.4 10.5 10.3 10.3 10.9 10.2 10.6 10.8 10.5 10.7 10.2 10.7假设方差不变,问该切割机工作是否正常?(α=0.05)这是已知方差2σ,对正态总体的均值μ进行检验的问题,用U 检验法解:,5.10:0=μH 5.10:1≠μH选统计量n x U /0σμ-=计算得x =10.48,已知15.0=σ,n =15,计算检验量516.015/15.05.1048.10=-=U查正态分布数值表求临界值λ,因为05.0=αλ,975.021)(=-=Φαλ,得经济数学基础 第12章 假设检验λ=975.0U =1.96,因为975.0U U <,故0H 相容,即在显著水平05.0=α下可以认为该切割机工作正常.2. T 检验例1 随机抽取某班28名学生的英语考试成绩,得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,试问在显著水平05.0=α下,能否认为该班的英语成绩与全年级学生的英语平均成绩没有本质的差别这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法.解85:0=μH ,85:1≠μH选统计量n s x T /0μ-=已知80=x ,8=s ,n =28,850=μ,计算得ns x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值λ=052.2)27(975.0=t .经济数学基础 第12章 假设检验由于>T 052.2)27(975.0=t ,故拒绝H ,即在显著水平05.0=α下不能认为该班的英语成绩为85分.3. x 2检验例 1 检验某电子元件可靠性指标15次,计算得指标平均值为95.0=x ,样本标准差为03.0=s ,该元件的订货合同规定其可靠性指标的标准差为0.05,假设元件可靠性指标服从正态分布.问在10.0=α下,该电子元件可靠性指标的方差是否符合合同标准?取10.0=α.这是单个正态总体),(~2σμN X ,关于方差2σ的假设检验问题,用2χ检验法.解22005.0:=σH ,22105.0:≠σH当H 为真时,统计量222)1(σχs n -=~)1(2-χn拒绝域是>2χ)1(205.0-n χ或<2χ)1(295.0-χn n =15,03.0=s ,05.00=σ,检验值22205.003.0)15(-=χ=5.04因为10.0=α,自由度14,查2χ分布表571.6)14(295.0=χ,知571.61=λ ,)14(295.012χλχ=<,所以拒绝H ,即该电子元件可靠性指标的方差不符合合同标准.经济数学基础 第12章 假设检验由于2χ分布的图形是不对称的,所以左右两个临界值是不同的.比较检验值2χ与临界值21,λλ的大小:只要满足2χ>1λ或2χ<2λ之一,就可以H ;否则接受0H .二、综合练习1.填空题1. 对总体);(~θx f X 的未知参数θ的有关命题进行检验,属于 ________问题.2. 小概率原理是指 .3.设),(~2σμN X ,当2σ已知时,检验00:μμ=H ,用 检验法,选用统计量U = ,当H 成立时,统计量服从 分布.2.单选题1.对正态总体方差的假设检验用的是( ).(A) U 检验法 (B) T 检验法 (C) 2χ检验法 (D) F 检验法2.设nx x x ,,,21Λ是来自正态总体),(2σμN (2σ已知)的样本,按给定的显著性水平α检验00:μμ=H (已知);1:μμ≠H 时,判断是否接受H 与( )有关.经济数学基础 第12章 假设检验(A) 样本值,显著水平α (B) 样本值,样本容量n (C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α3.在假设检验中,显著水平α表示( ). (A)P {接受00H H 假}=α (B)P {拒绝00H H 真}=α (C)P {接受0H H 真}=α (D)P {拒绝0H H 假}=α1. C 2.D 3.B3.计算题1.某手表厂生产的圆形女表表壳,在正常条件下,直径服从均值为20mm ,方差为1mm 2的正态分布,某天抽查10只表壳,测得直径为(单位:mm ):19 19.5 19.8 20 20.220.5 18.7 19.6 20 20.1问生产情况是否正常?第二天测了5只,测得直径为(单位:mm ):20.2 21.3 22.4 23.5 24.6 结论是什么?取02.0=α.2.洗衣粉包装机包出的洗衣粉重量是一个随机变量),(2σμN ,机器正常工作时,5000=μ克,有一天开机后,随机地抽取9袋洗衣粉,称得重量为(单位:g ):497 506 528 524 498经济数学基础 第12章 假设检验511 520 515 512问以05.0=α显著水平检验这天机器的工作是否正常.3.已知某化纤厂生产的纤度平日服从正态分布)048.0,405.1(2N ,某日抽取5根化纤,测得其纤度为1.32 1.55 1.36 1.40 1.44问该日生产的化纤纤度总体方差2σ是否正常?取05.0=α.三、本章作业1.由经验知某产品重量)05.0,15(~N X ,现抽取6个样品,测得重量为(单位:kg ):14.7 15.1 14.8 15.0 15.2 14.6设方差不变,问平均重量是否仍为15kg ?取05.0=α.2.某机器在正常工作时,生产的产品平均每个应为50克重,从该机器生产的一批产品中抽取9个,分别称得重量为(单位:g ):经济数学基础 第12章 假设检验52.1 50.5 51.2 49.7 49.550.5 58.7 50.5 48.3 设产品重量服从正态分布,问这批产品质量是否正常?取05.0=α3.正常人的脉搏平均72次/分,某医生测得10例慢性中毒者的脉搏为(单位:次/分)54 67 68 70 6667 70 65 69 78 设中毒者的脉搏服从正态分布,问中毒者和正常人的脉搏有无显著性差异?取05.0=α.1.可以认为平均重量仍为15kg ; 2.这批产品的质量正常; 3.没有显著差异.。

医学统计学9 χ2检验

医学统计学9 χ2检验
1)有效者应为26(41/70)=15.2; 2) 无效者为26(29/70)=10.8; 同理,对照组的44例颅内压增高症患者中 1)有效者应为44(41/70)=25.8; 2)无效者为44(29/70)=18.2。
卡方检验的基本原理
反映实际频数与理论频数的吻合程度可用统计量
A
T T
2
来表示
案例分析
某医院采用甲乙两种方法测定60例结核杆菌阳性率, 如下图。试问这两种检测方法阳性率是否相同。
测定方法 阳性数 阴性数 合计
阳性率
甲法
42
18
60
70.0%
乙法
23
37
60
38.3%
合计
65
55
120
54.2%
错误的方法
根据2*2四格表卡方检验方法进行 可求得 2 =12.62, p<0.001;
2
(ad bc)2n
(a b)(a c)(bd )(c d )
c2
(
29 26 5 2 42
2 5 )( 26 9 )( 2 26 )( 5
9
)
5.49
x2,1 3.84
P 0.05
结论与之相反。
配对四格表资料的 χ2 检验
与计量资料推断两总体均数是否有差别有成组设 计和配对设计一样,计数资料推断两个总体率(构 成比)是否有差别也有成组设计和配对设计,即四 格表资料和配对四格表资料。
若检验假设H0:π1=π2成立,四个格子的实际频 数A与理论频数T 相差不应该很大,即统计量不
应该很大。如果上述统计量值很大,从而怀疑H0 的正确性,继而拒绝H0,接受其对立假设H1,即 π1≠π2 。
这个统计量就称为卡方统计量。

统计练习题

统计练习题
C.0.12 D.0.53
19、现有8位面试官对25名求职者的面试作等级评定,为了解这8位面试官评定的一致性程度,最适宜的统计方法是计算( )。
A、 斯皮尔曼相关系数 B、 积差相关
C、 肯德尔和谐系数 D、点二列相关系数
20、AB两变量线性相关,变量A为符合正态分布的等距变量,变量B也符合正态分布且被人为划分为两个类别,计算它们的相关系数应采用( )。
C、三个及其以上相关样本平均数差异的显著性检验
D、两个样本平均数差异的显著性检验
34、随机化区组实验设计对区组划分的基本要求是( )。
A、区组内和区组间均要有同质性
B、区组内可以有异质性,区组间要有同质性
C、区组内要有同质性,区组间可以有异质性
D、区组内和区组间均可以有异质性
A.95% B.50% C.97.5% D.不能确定(与标准差大小有关)
24、当总体比较大但无中间层次结构,而所抽样本较小时,适宜的抽样方法是( )
A.整群抽样 B.分层抽样
C.分阶段抽样 D.等距抽样
25、样本容量均影响分布曲线形态的是( )。
9、有哪些抽样方法?
10、为什么要做区间估计?怎样对平均数作区间估计?
3、在6、8、10、12、26这一组数据的集中趋势宜用( )
A.平均数 B中数 C众数 D平均数或中数
4、( )分布的资料,均数等于中位数。
A.对称 B.正偏态 C.负偏态 D.偏态
5、数列8、-3、5、0、1、4、-1的中位数是( )。
A. 2 B. 1 C. 2.5 D. 0.5
32、方差分析的前提条件之一是( )
A.总体正态且相关 B.总体正态且相互独立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2χ检验
练 习 题
一、单项选择题
1. 利用2χ检验公式不适合解决的实际问题是
A. 比较两种药物的有效率
B. 检验某种疾病与基因多态性的关系
C. 两组有序试验结果的药物疗效
D. 药物三种不同剂量显效率有无差别
E. 两组病情“轻、中、重”的构成比例
2.欲比较两组阳性反应率, 在样本量非常小的情况下(如1210,10n n <<), 应采用
A. 四格表2χ检验
B. 校正四格表2χ检验
C. Fisher 确切概率法
D. 配对2χ检验
E. 校正配对2χ检验
3.进行四组样本率比较的2χ检验,如22
0.01,3χχ>,可认为
A. 四组样本率均不相同
B. 四组总体率均不相同
C. 四组样本率相差较大
D. 至少有两组样本率不相同
E. 至少有两组总体率不相同
4. 从甲、乙两文中,查到同类研究的两个率比较的2χ检验,甲文22
0.01,1χχ>,乙文22
0.05,1χχ>,可认为
A. 两文结果有矛盾
B. 两文结果完全相同
C. 甲文结果更为可信
D. 乙文结果更为可信
E. 甲文说明总体的差异较大
5. 两组有效率比较检验功效的相关因素是
A. 检验水准和样本率
B. 总体率差别和样本含量
C. 样本含量和样本率
D. 总体率差别和理论频数
E. 容许误差和检验水准
答案:C C E C B
二、计算与分析
1.某神经内科医师观察291例脑梗塞病人,其中102例病人用西医疗法,其它189 例病人采用西医疗法加中医疗法,观察一年后,单纯用西医疗法组的病人死亡13例,采用中西医疗法组的病人死亡9例,请分析两组病人的死亡率差异是否有统计学意义?
2.某医院研究中药治疗急性心肌梗死的疗效,临床观察结果见下表。

问接受两种不同疗法的患者病死率是否不同?
两种药治疗急性心肌梗死的疗效
组别存活死亡合计病死率(%)
中药组65 3 68 4.41
非中药组12 2 14 14.29
合计77 5 82 6.10
3.某医师观察三种降血脂药A,B,C的临床疗效,观察3个月后,按照患者的血脂下降程度分为有效与无效,结果如下表,问三种药物的降血脂效果是否不同?
三种药物降血脂的疗效
药物有效无效合计
A 120 25 145
B 60 27 87
C 40 22 62
4.为研究某补钙制剂的临床效果,观察56例儿童,其中一组给与这种新药,另一组给与钙片,观察结果如表,问两种药物预防儿童的佝偻病患病率是否不同?
表两组儿童的佝偻病患病情况
组别病例数非病例数合计患病率(%)
新药组 8 32 40 20.0 钙片组 6 10 16 37.5 合计
14
42
56
25.0
[参考答案]
本题是两组二分类频数分布的比较,用四个表2χ检验。

表中n =56>40,且有一个格子的理论频数小于5,须采用四个表2χ检验的校正公式进行计算。

(1)建立检验假设并确定检验水准
0H :21ππ=,即新药组与钙片组儿童佝偻病患病概率相同
1H :21ππ≠,即新药组与钙片组儿童佝偻病患病概率不同
α=0.05
(2)用四个表2χ检验的校正公式,计算检验统计量2χ值:
2
2(/2)()()()()c |ad -bc|-n n =a+b c+d a+c b+d χ=050.152141640562566321082
=⨯⨯⨯⨯⎪⎭⎫ ⎝⎛
-⨯-⨯
ν=1
3. 确定P 值,作出推断结论
以ν=1查附表7的2χ界值表得()32.12125.0=χ,2χ<()2
125.0χ, P > 0.05。


05.0=α水准,不拒绝0H ,无统计学意义,还不能认为新药组与钙片组儿童佝偻病患病概率不同。

5.某医院147例大肠杆菌标本分别在A ,B 两种培养基上培养,然后进行检验,资料见下表,试分析两种培养基的检验结果是否有显著性差别? 表 A 、B 两种培养基上培养大肠杆菌标本结果
A 培养基
B 培养基
合 计

- + 59 36 95 -
15
37
52
合 计 74 73 147
[参考答案]
本题是一个配对设计的二分类资料,采用配对四个表资料的2χ检验。

(1)建立检验假设并确定检验水准
0H :C B =,即两种培养基的阳性培养率相等 1H :C B ≠,即两种培养基的阳性培养率不相等
05.0=α
(2)计算检验统计量
本例b +c =36+15=51> 40 ,用配对四个表2χ检验公式,计算检验统计量2χ值
c b c b +-=22
)(χ=()65.815
3615362
=+-, 1=ν
3. 确定P 值,作出推断结论
查2χ界值表得P < 0.05。

按0.05α=水准,拒绝0H 。

认为两种培养基的阳性培养率不同。

相关文档
最新文档