操作系统复习总结

合集下载

操作系统总结

操作系统总结

程序将把它送往就绪队列的末尾。 5、优先级调度算法—非抢占式优先级调度算法,抢占式优先调度算法(用于实时性要求高 的系统) 【1】优先级类型:静态优先级(创建进程时确定,整个运行期间不变) ,动态优先级(创 建时先赋予一个,其值岁进程的推进或等待时间的增加而改变) 6、多队列调度算法 7、多级反馈队列调度算法—目前公认的一种较好的调度算法 按优先级将就绪队列分成多个队列,优先级高的时间片小,每个队列采用 FCFS 算法,按 队列优先级调度 8、基于公平原则的调度算法:保证调度算法(每个进程都获得相同的处理机时间) 、公平 分享调度算法(多个用户共享相同的处理机时间,不考虑进程数目)
关系:一对一,一对多,多对一,多对多 【5】 直接消息传递系统实例 1、 消息缓冲队列通信机制中的数据结构 消息缓冲区 PCB 中有关通信的数据项 2、 发送原语-send() 3、 接受原语-receive(b) 17、线程 1、作为调度和分配的基本单位 2、运行时的三种状态:执行状态、就绪状态、阻塞状态 3、线程控制块-TCB 4、线程是进程的一部分,一个进程可以还有多个线程,是 CPU 调度的基本单位,可以并 发执行, 5、缺点:一个线程崩溃,所有线程都要崩溃
【1】定义:代表共享资源的数据结构、对该数据结构实施操作的一组过程所组成的资源管 理程序共同构成了一个操作系统的资源管理模块,称之为管程 【2】组成:①管程的名称②局部于管程的共享数据结构说明③对该数据结构进行操作的一
组过程④对局部于管程的共享数据设置初始值的语句 【3】特性:模块化,抽象数据类型,信息掩蔽 【4】与进程的区别: (P54) 【5】条件变量:利用管程实现同步时,必须设置同步工具 16、进程通信 【1】进程间的信息互换 【2】进程互斥与同步—低级进程通信 【3】进程通信类型:共享存储器系统(基于数据结构的通信方式(低级) ,基于共享存储 区的通信方式(高级) ) 、管道通信系统(管道链接一个读进程、一个写进程,必须提供三方 面协调能力:互斥、同步、确定对方是否存在) 、消息传递系统(高级、分成:直接通信方 式、间接通信方式) 、客户机-服务器系统(三种实现方法:套接字、远程过程调用和远程方 法调用) 【4】 消息传递的实现方式; 1、直接消息传递系统 1) 直接通信原语:对称寻址方式、非对称寻址方式 2) 消息的格式 3) 进程的同步方式 4) 通信链路 2、信箱通信—间接通信方式-进程间的通信 1)信箱的结构-信箱头+信箱尾 2)信箱的通信原语—创建、撤销、发送(send()) ,接收(receive() ) 3)类型:私有、公有、共享

我的操作系统原理笔记和总结

我的操作系统原理笔记和总结

1、操作系统的分类依照操作系统提供的效劳,大致能够把操作系统分为有单道和多道之分的批处置系统,有同时性和独立性的分时系统,有严格时刻规定的实时系统,可实现资源共享的网络系统,可和谐多个运算机以完成一个一起任务的散布式系统。

咱们使有的windows是网络式系统。

2、操作系统的结构操作系统具有层次结构……层次结构最大特点是整体问题局部化来优化系统,提高系统的正确性、高效性使系统可保护、可移植。

要紧优势是有利于系统设计和调试;要紧困难在于层次的划分和安排。

3、操作系统与用户(1)作业执行步骤操作系统提供给用户表示作业执行步骤的手腕有两种:作业操纵语言和操作操纵命令。

作业操纵语言形成批处置作业。

操作操纵命令进行交互处置。

(2)系统挪用操作系统提供的系统挪用要紧有:文件操作类,资源申请类,操纵类,信息保护类系统挪用往往在管态下执行。

当操作系统完成了用户请求的“系统挪用”功能后,应使中央处置器从管态转换到目态工作。

4、移动技术移动技术是把某个作业移到另一处主存空间去(在磁盘整理中咱们应用的也是类似的移动技术)。

最大益处是能够归并一些空闲区。

处置器治理一、多道程序设计系统“多道程序设计系统” 简称“多道系统”,即多个作业可同时装入主存储器进行运行的系统。

在多道系统中一点必需的是系统须能进行程序浮动。

所谓程序浮动是指程序能够随机地从主存的一个区域移动到另一个区域,程序被移动后仍不阻碍它的执行。

多道系统的益处在于提高了处置器的利用率;充分利用外围设备资源;发挥了处置器与外围设备和外围设备之间的并行工作能力。

能够有效地提高系统中资源的利用率,增加单位时刻内的算题量,从而提高了吞吐率。

(关键词:处置器,外围设备,资源利用率,单位算题量,吞吐率),但要注意对每一个计算问题来讲所需要的时刻可能延长,另外由于系统的资源有限,会产生饱和,因此并行工作道数与系统效率不成正比。

二、进程1、概念进程是一个程序在一个数据集上的一次执行。

操作系统复习总结

操作系统复习总结

第一章操作系统概述1.操作系统主要特征是什么?操作系统是控制和管理计算机的软、硬件资源,合理地组织计算机的工作流程,以方便用户使用的程序集合。

2.“操作系统是控制硬件的软件”这一说法确切吗?为什么?不正确,因为操作系统不仅仅是控制硬件,同时它还控制计算机的软件。

第二章进程与线程1.操作系统中为什么要引入进程的概念?为了实现并发进程之间的合作和协调,以及保证系统的安全,操作系统在进程管理方面要做哪些工作?①为了从变化角度动态地分析研究可以并发执行的程序,真实的反应系统的独立性、并发性、动态性和相互制约,操作系统中不得不引入进程的概念。

②为了防止操作系统及其关键的数据结构受到用户程序破坏,将处理机分为核心态和用户态。

对进程进行创建、撤销以及在某些进程状态之间的转换控制。

2.假设系统就绪队列中有10个进程,这10个进程轮换执行,每隔300ms轮换一次,CPU在进程切换时所花费的时间是10ms,试问系统化在进程切换上的开销占系统整个时间的比例是多少?就绪队列中有10个进程,这10个进程轮换执行,每隔进程的运行时间是300ms,切换另一个进程所花费的总时间是10ms,隐刺系统化在进程切换上的时间开销占系统整个时间的比例是:10//(300+10)=3.2%.3.试述线程的特点及其与进程之间的关系。

答:线程是进程内的一个相对独立的运行单元,是操作系统调度和分派的单位。

线程只拥有一点必不可少的资源(一组寄存器和栈),但可以和铜属于一个进程的其他线程共享进程拥有的资源。

关系:1>线程是进程的一部分,是进程内的一个实体;一个进程可以有多个线程,但至少必须有一个线程。

一个线程只能在一个进程的地址空间内活动;2>进程资源的拥有者,同一个进程的多个线程共享该进程占有的所有资源;3>处理机分配给进程,线程是系统的调度单位。

1.这种策略一方面照顾了短进程,一个进程如果在100ms运行完毕它将退出系统,更主要的是照顾了I/O量大的进程,进程因I/O进入阻塞队列,当I/O完成后它就进入了高优先级就绪队列,在高优先级就绪队列等待的进程总是优于低优先级就绪队列的进程。

操作系统重点知识总结

操作系统重点知识总结

操作系统重点知识总结操作系统》重点知识总结第一章引论1、操作系统定义:是一组控制和管理计算机硬件和软件资源,合理的对各类作业进行调度以及方便用户使用的程序的集合。

2、操作系统的作用1. os作为用户与计算机硬件系统之间的接口。

2. 作为计算机资源的管理者3. 实现了对计算机资源的抽象。

3、分时系统原理和特征原理:人机交互、共享主机特征:多路性、独立性、及时性、交互性4、脱机I/O 原理:程序和数据的输入和输出都是在外围机的控制下完成。

优点:减少了CPU 空闲时间、提高了I/O 速度。

5、操作系统四个基本特征;其中最重要特征是什么?(并发)并发、共享、虚拟、异步第二章进程管理1 、进程定义、进程特征(结构特征、动态性、并发性、独立性和异步性)1. 进程是程序的一次执行。

2. 进程是一个程序及其数据在处理机上顺序执行时所发生的活动。

3. 进程是具有独立功能的程序在一个数据集合上运行的过程,他是系统进行资源分配和调度的一个独立单位。

动态性、并发性、独立性、异步性。

2、进程的基本状态、相互转换原因及转换图(三态)就绪、阻塞、执行3、具有挂起状态的进程状态、相互转换原因及其转换图(五态)活动就绪、静止就绪、活动阻塞、静止阻塞、执行4、什么是进程控制块?进程控制块的作用进程控制块是用于描述进程当前情况以及管理进程运行的全部信息。

1. 作为独立运行基本单位的标志。

2. 能实现间断性运行方式。

3. 提供进程管理、调度所需要的信息4. 实现与其他进程同步与通信5、临界资源定义、临界区的定义一次只能为一个进程使用的资源称为临界资源。

每个进程访问临界资源的代码称为临界区。

6、同步机制应遵循的规则空闲让进、忙则等待、有限等待、让权等待7、记录型信号量的定义,信号量值的物理意义,wait 和signal 操作8、AND 型信号量的定义,Swait 和Ssignal 操作9、经典同步算法:①生产者-消费者问题算法;②不会死锁的哲学家就餐问题算法;③读者-写者问题算法10、利用信号量机制实现进程之间的同步算法(前驱关系、类经典同步问题)11、高级进程通信三种类型。

操作系统知识点总结

操作系统知识点总结
1、 进程和程序的概念及比较(区别和联系)。
“进程”是指一个程序在给定数据集合上的一次执行过程,是系统进行资源分配和运行调度的独立单位。
进程是一个动态的概念,强调的是程序的一次“执行”过程;程序则是一组有序指令的集合,在多道程序设计环境下,它不涉及“执行”,是一个静态的概念。 不同进程可执行同一个程序。由进程的定义可知,区分进程的条件一是所执行的程序,二是数据集合。即使多个进程执行相同的一个程序,只要它们运行在不同的数据集合上,它们就是不同的进程。
分类:1用户级线程方法 2内核级线程方法 3组合方法 ,
进程和线程区别。1地址空间,2通信关系 3调度切换看详细内容
第三章 处理机管理
1、 处理机调度基本概念(高级调度“作业调度”、中级调度、低级调度“进程调度”),
各级调度的目的。1高级调度决定哪个后备作业可进入系统去接受处理。
2中级调度与实施进程的内、外存交换有关(进程获得处理机)
撤消进程原语 1根据进程标识,找到相应的PCB,若该进程正在运行,则立即终止运行;
2释放该进程使用的所有资源(如程序、数据所占用的存储空间等);
3若有子孙进程,终止它们,释放资源;
4归还所占用的PCB空间。
6、 线程的定义、分类,进程和线程区别。
线程的定义指进程中实施处理机调度和分配的基本单位。、
3、 Os系统的引入和发展(多道程序、批处理系统、分时系统、实时系统 各自特征、存在问题)
1批处理系统指用户作业被分批处理。
2“多道”批处理系统,即是在内存中同时存放一批中的几个作业程序,它们对系统资源进行共享与竞争。具有“多路 共享 自动 封闭”等特点。
3配有分时操作系统的计算机系统称为分时系统。分时系统采用“时间片轮转”的处理机调度策略。分时系统的特点多路性 交互性 独立性 及时性

操作系统的学习总结

操作系统的学习总结

操作系统的学习总结操作系统的学习总结操作系统的学习总结一经过一天半的战斗,终于把操作系统概论这本书给拿下了。

对于曾经专业课学过一些电脑硬件知识的我来说,这本书更加吸引我,以前一些听过的名词或高大上的词语在这本书上被详细介绍了,看的非常有收获。

下面来总结下自己的收获:首先第一章引论,在这里首先介绍了计算机系统,包括了软件和硬件两部分。

接下来就是第一章的重点:操作系统。

如下图:当前流行的操作系统有windows、unix、linux等。

微软的windows系统经历了一个从简单到复杂,从低级到高级的过程;从ms-dos---windows3---windows95---windows98---windowsnt---windows2000,再到现在win7、8甚至win10,微软始终在进步。

unix是一个通用的交互式分时操作系统,有at&t公司下属的bell实验室开发,在诞生后,源代码就一直公开,用户可以参与到unix的升级中。

unix的特点:1.短小精悍;2.可装卸的多层次文件系统;3.可移植性好;4.网络通信功能强。

linux是网络时代的产品,继承于unix,并做了很多改进。

第一章总领了全书,后面的二三四五六章都是讲的计算机的各种管理,总结如下图:在这里我把每章中的重点用红色的颜色标记出来了,这样在精读的时候就可以有重点的向外扩散,抓住考点,征服考试。

第一遍阅读画的有点粗糙,在精读的时候再大大的丰富下。

操作系统学习总结2这里的设备指的是i/o设备,即冯若依曼所提出的计算机五大部件的输入/输出部件,在五大部件中占其二,可想其重要行了,现在,开始我的总结之旅了i/o系统可以分为:微机i/o设备和主机i/o设备。

这两个之间的区别和联系,我还是不太清楚。

感觉微机i/o比主机i/o要简单。

对i/o系统的管理有以下几种管理方式:程序控制方式:这种方式好比学51单片机编汇时反复去检测一个端口是否有要求的信号来一样,简单,但对cpu利用率太太太太太低了。

操作系统知识点复习总结

操作系统知识点复习总结

计算机操作系统第0章计算机系统概述计算机系统由操作员、软件系统和硬件系统组成。

软件系统:有系统软件、支撑软件和应用软件三类。

系统软件是计算机系统中最靠近硬件层次不可缺少的软件;支撑软件是支撑其他软件的开发和维护的软件;应用软件是特定应用领域的专用软件。

硬件系统:借助电、磁光、机械等原理构成的各种物理部件的组合,是系统赖以工作的实体。

如今计算机硬件的组织结构仍然采用冯诺依曼基本原理(有控制器、运算器、存储器、输入设备和输出设备—通常把控制器和运算器做一起称为中央处理机cpu,把输入输出设备统称为I/O设备)。

关于计算机系统的详细:Cpu的四大组件构成:ALU、CU、寄存器和中断系统。

存储器:理想存储器是大容量、高速度和低价位。

在计算机系统中存储器的分层结构:寄存器、高速缓存(cache)(用于解决cpu和内存读写速度过于不匹配)、主存(RAM和ROM)、磁盘和磁带。

I/O系统:由I/O软件和I/O硬件组成,前者用于将数据输入主机和将数据计算的结果输出到用户,实现I/O系统与主机工作的协调。

I/O硬件包括接口模块和I/O设备。

关于系统中断:利用中断功能,处理器可以在I/O操作执行过程中执行其他指令。

第1章操作系统引论操作系统的定义:控制和管理计算机软、硬件资源,合理组织计算机的工作流程,以便用户使用的程序集合。

计算机的四代发展:(1)没有操作系统的计算机(没有晶体管,使用机器语言写成的)(2)有监控系统的计算机(出现晶体管,使用汇编语言和高级语言,出现了单道批处理系统)(3)带操作系统的计算机(出现了小规模的集成电路,出现了多道程序设计技术—相当于系统中断,由于多道程序不能很好的满足用户对响应时间的要求,出现了分时系统。

多批道处理系统和分时系统的出现标志着操作系统的形成。

)(4)多元化操作系统的计算机(出现了大规模集成电路,分布式操作系统)操作系统的特征并发性:两个或两个以上的事物在同一个时间间隔内发生。

操作系统知识总结

操作系统知识总结

1.操作系统:是计算机系统的一个系统软件,它是这样一些程序模块的集合——它们管理和控制计算机系统中的硬件及软件资源,合理地组织计算机工作的流程,以便有效的利用这些资源为用户提供一个具有足够的功能、使用方便、可扩展、安全和可管理的工作环境,从而在计算机与其用户之间起到接口的作用。

2.分时技术:就是把处理机的运行时间分成很短的时间片,按时间片轮流把处理及分配给各联机作业使用。

3.系统调用:系统调用是操作系统提供给编程人员的唯一接口。

编程人员利用系统调用,在源程序一级动态请求和释放系统资源,调用系统中已有的系统功能来完成那些与机器硬件部分相关的工作以及控制程序的执行速度等。

4.系统调用的实现过程:用户在程序中使用系统调用,给出体统调用名和函数后,即产生一条相应的陷入指令,通过陷入处理机制调用服务,引起处理机中断,然后保护处理机现场,取系统调用功能号寻找子程序入口,通过入口地址表来调用系统子程序,然后返回用户程序继续执行。

5.进程:并发执行的程序在执行过程中分配和管理资源的基本单位6.互斥与同步:一组并发进程中的一个或多个程序段,因共享某一共有资源而导致它们必须以一个不允许交叉执行的单位执行,也就是说,不允许两个以上的共享资源的并发进程同时进入临界区成为互斥。

而所谓的同步是指,把异步环境下的一组并发进程,因直接制约而互相发送消息而进行互相合作、互相等待。

使得各进程按一定的速度执行的过程成为进程间的同步。

7.轮转法的基本思路:是让每个进程在就绪队列中的等待时间与享受服务的时间成比例。

轮转法的基本概念是将CPU的处理时间分成固定大小的时间片。

如果一个进程在被调用选中之后用完了系统规定的时间片,但未完成要求的任务,则它自行释放自己所占有的CPU而排到就绪队列的末尾,等待下一次调度。

同时,进程调度程序又去调度当前就绪队列中的第一个进程或作业。

8.虚拟存储器的概念与特点:由进程中的目标代码,数据等的虚拟地址组成的虚拟空间称为虚拟存储器.虚拟存储器不考虑物理存储器的大小和信息存放的实际位置,只规定每个进程中相互关联信息的相对位置.每个进程都拥有自己的虚拟存储器,且虚拟存储器的容量是由计算机的地址结构和寻址方式来确定.实现虚拟存储器要求有相应的地址转换机构,以便把指令的虚拟地址变换为实际物理地址;另外,由于内存空间较小,进程只有部分内容存放于内存中,待执行时根据需要再调指令入内存.9.动态分区式管理的常用内存分配算法有哪几种?比较它们各自的优缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章操作系统引论1.1操作系统的目标(了解、知道)a有效性:提高系统资源的利用率,提高系统的吞吐量。

b、方便性:方便使用计算机系统,避免用户使用机器语言编写程序的繁琐工作。

c、可扩充性:超大规模集成电路(VLSI )技术、计算机技术以及计算机网络发展的需求,以便于增加新的功能和模块,并能修改老的功能和模块。

d、开放性:遵循世界标准规范,如开放系统互联(OSI )国际标准。

1.2操作系统的作用(知道)A、它作为用户和计算机硬件之间的接口;a、命令方式;b、系统调用方式;c、图形窗口方式B、它作为计算机系统资源的管理者:a.处理器管理(分配和控制处理机)b、存储器管理(负责内存的分配与回收)c、I/O设备管理(I/O设备的分配与操纵)d、信息管理(信息的存取、共享和保护)。

C、它实现了对计算机资源的抽象:铺设在硬件上的多层软件系统,增强了系统的功能,隐藏了硬件操作的具体细节,从而方便用户使用。

1.3推动操作系统发展的主要动力(知道)A、不断提高计算机资源的利用率:最初的动力一一计算机系统的昂贵。

B、方便用户使用:改善用户上机、调试的条件,如图形用户界面的出现。

C、器件的不断更新换代:微电子技术的发展,推动OS的功能和性能迅速增强和提高。

D、计算机体系结构的不断发展:操作系统:单处理机OS 多处%机OS 网络OS人工操作方式;脱机输入/输出方式。

脱机的优点:减少CPU的空闲时间;提高了I/O速度。

单道批处理系统主要特征:(知道)(a)自动性:作业自动逐个依次运行,无需人工干预(b)顺序性:先调入内存的作业先完成(c)单道性:内存始终仅有一道程序运行多道批处理系统的好处:(知道)1、提高CPU的利用率;2、提高内存和I/O设备利用率;3、增加系统吞吐量。

多道批处理系统(知道)优点:资源利用率高,系统吞吐量大缺点:平均周转时间长(排队、调度),无交互能力多道批处理系统应解决的问题:(知道)1、处理机的管理问题(分配和回收);2、内存的的管理问题(分配和保护);3、I/O设备的管理问题(共享);4、文件管理问题(程序和数据的组织);5、作业的管理问题(组织和管理)。

分时系统:(掌握)定义:在一台主机上连接多个带有显示器和键盘的终端,同时允许多个用户通过终端,以交互的方式使用计算机,共享主机资源。

分时系统特征:(知道)a)多路性:宏观上多个用户同时工作,微观上每个用户轮流运行一个时间片。

(b)独立性:每个用户各占一个终端,彼此独立操作。

(c)及时性:用户请求能在很短时间内获得相应。

(d)交互性:用户可通过终端与系统进行人机对话。

实时系统:(掌握)定义:计算机能及时响应外部事件的请求,在规定的时间内完成对原事件的处理,并且控制所有实时设备和实时任务协调一致的工作。

实时系统特征:(1)响应时间要快;(2)系统可靠性要高;(3)具有连续的人-机对话能力;(4)具有保护过载能力;(5)系统整体性要强。

实时系统和分时系统的比较:(掌握)1.4操作系统的基本特征:(知道)1、并发性(并行合并发:并发同间隔事件发生,并行同时刻进行;引入进程、线程);2、共享性(互斥共享性和同时访问性);3、虚拟性(时分复用技术,空分复用技术);4、异步性。

1.5操作系统的主要功能(重点)1. 处理机管理:对CPU进行分配,并对其运行控制和管理A、进程控制:为作业创建进程,撤销已结束的进程,控制进程在运行过程中的状态转换;B、进程同步:为多个进程的运行进行协调,包括进程互斥和进程同步两种协调方式;C、进程通信:实现相互合作的进程之间的信息交换;D、调度:包括作业调度和进程调度。

2. 存储器管理:为多道程序分配内存,方便用户使用存储器,提高存储器利用率以及能从逻辑上扩充内存。

A、内存分配:为每道程序静态或者动态地分配内存;B、内存保护:确保每道用户程序都只在自己的内存空间运行,互不干扰;C、地址映射:将应用程序地址空间中的逻辑地址映射为内存空间中的物理地址;D、内存扩充:借助虚拟存储技术,从逻辑上扩充内存。

3. 设备管理功能:完成I/O请求,分配I/O设备,提高CPU和I/O设备的利用率,提高I/O速度,方便用户使用I/O设备。

A、缓冲管理:管理好各类缓冲区,提高系统吞吐量;B、设备分配:根据I/O请求,分配所需要的设备;C、设备处理:实现CPU与设备控制器之间的通信;D、虚拟设备:将一个物理设备变换(改造)为多个对应的逻辑设备,使每个用户感觉自己独占该设备4、文件管理:对用户文件和系统文件进行管理,方便用户使用,并保证文件的安全性A、文件存储空间的管理:为文件分配必要的外存空间,提高外存利用率,并提高文件系统的存取速度;B、目录管理:为每个文件建立目录项,并对众多的目录项加以有效的组织,实现方便的按名存取;C、文件读/写管理和保护:进程之间的信息交换;D、文件读/写管理:从外存中读取数据,或将数据写入外存;E、文件保护:防止未经核准的用户存取文件,防止冒名顶替存取文件,防止以不正确的方式存取文件。

5. 用户接口:方便用户使用操作系统,以命令、系统调用或者图形方式为用户提供接口A、命令接口:包括联机用户接口和脱机用户接口(即批处理用户接口);B、程序接口:由一组具有特定功能的系统调用组成;C、图形接口:图形化的操作界面。

第二章进程管理1. 、程序的顺序执行(掌握)特征: a.顺序性b.封闭性 c.可再现性前趋图(P35-P36)作业。

2. 并发执行的特征:(掌握)(1)间断性;(2)失去封闭性;(3)不可再现性。

3. 进程的定义:(掌握)进程是进程实体的运行过程,是系统进行资源分配和调度的一个独立单位。

特征:1、结构特征:进程实体由程序段、相关的数据段和进程控制块(PCB)构成。

2、动态性:进程的最基本特征,进程由创建而产生,因调度而执行,由撤消而消亡。

3、并发性:进程的重要特征,多个进程实体共同存在于内存中,在一段时间内可以同时运行4、独立性:进程是一个能独立运行、独立分配资源和独立接受调度的基本单位。

5、异步性:进程按各自独立的、不可预知的速度向前推进,即进程按异步方式运行。

进程的三种基本状态:就绪、执行和阻塞。

进程的状态转换:状态转换原理要掌握(P38---P40)进程控制块的组织:1、线性表方式 2、链接方式3、索引方式。

进程控制实现方式:原语(1)原语由若干指令组成,完成特定功能;(2 )原语是不可分割的基本单位,执行过程中不允许被打断; (3 )原语存于内核中,并常驻内存;进程的创建和终止,阻塞和唤醒(掌握)进程创建的步骤:(1) 申请空白PCB :申请唯一的数字标识符,并从PCB 集合中索取空白PCB ;(2) 为新进程分配资源:为新进程的程序和数据以及用户栈分配内存空间,操作系统必须知道新 进程所进程的状态转换:挂起 就绪活动 就绪激活 静止挂起静止 阻塞活动执行就阻塞I/O 完成时间片I/O 请求结束死锁 *起静止进程调度/O 完 挂起 阻塞释放 请求释放激活 挂起活动挂起需内存的大小;(3)初始化进程控制块:初始化标识信息,初始化处理机状态信息,初始化处理机控制信息;(4)将新进程插入就绪队列:如果就绪队列接纳新进程,则将新进程插入到就绪队列中;进程创建的终止:1、正常结束。

2、异常结束。

3、外界干预。

进程的终止过程:1、根据标识符,从PCB集合中检索出进程PCB,读取该进程的状态;2、若进程处于执行状态,则终止,并置调度标志为真;3、若进程有子进程,则终止其所有子进程;4、将进程拥有的全部资源归还其父进程或者系统;5、将进程PCB从队列中移除;引起进程阻塞和唤醒的事件:(1)请求系统服务;(2)启动某种操作;(3)新数据尚未到达;(4)无新工作可做进程的阻塞过程:a.调用Block原语,b.停止执行,c.将PCB状态从执行改为阻塞d.将PCB插入阻塞队列进程的唤醒过程:a.调用wakeup原语,b.从阻塞队列移出进程,c.将PCB状态从阻塞改为就绪d.将PCB插入就绪队列进程的挂起过程:1、调用suspend原语,2、检查被挂起进程的状态3、将活动状态改为静止状态进程的激活过程:1、调用active原语;2、检查进程状态;3、将静止状态改为活动状态。

进程同步的基本定义:(掌握)对多个相关进程在执行次序上进行协调,以使并发执行的诸进程之间能有效地共享资源和相互合作,从而使程序的执行具有可再现性。

临界资源:(掌握)一段时间内只允许一个进程访问的资源,如打印机、扫描仪等。

临界区:(掌握)每个进程中访问临界资源的那段代码。

同步机制,生产着消费者关系编程(精通);(P48--P61,作业)。

整型信号量:描述资源数目的整型量S,它的值只能由原子操作wait(S)和signal(S)来访问,这两个操作又分别称为P操作和V操作,OS用它来管理资源和进程。

记录型信号量:整型信号量机制存在“忙等”,记录型信号量采取“让权等待”策略,它比整型信号量增加一个进程链表指针,用于链接等待的进程。

管程的定义:由代表共享资源的数据结构,以及由对该共享数据结构实施操作的一组过程所组成的资源管理程序,它可被请求和释放资源的进程所调用进程通信(知道)1、进程通信的类型:(1)共享存储器系统(基于共享数据结构,基于共享存储区);(2)消息传递系统;(3)管道通信(管道定义:用来连接一个读进程和一个写进程以实现它们之间通信的一个共享文件,又名Pipe文件)。

2、消息传递通信的实现方式;(1 )直接通信方式;(2)、间接通信方式(私用信箱;公用信箱;共享信箱)。

3、进程同步方式:a、发送进程阻塞,接收进程阻塞;b、发送进程不阻塞,接收进程阻塞;c、发送进程和接收进程均不阻塞;4、线程:定义线程又称为轻型进程(Lightweight Process),是处理机调度的单位。

a.轻型实体:基本上不拥有资源;b.独立调度和分派的基本单位:独立运行,切换快且开销小;c.可并发执行:进程内以及进程间的线程均可并发执行;d.共享进程资源:线程拥有与进程相同的地址空间;56、多线程OS中的进程:1作为系统资源分配的基本单位;2、可包括多个线程;3、进程不再作为一个可执行的实体第三章处理机调度与死锁1、处理机调度的层次:(知道)1.1高级调度:主要功能:根据某种算法,把外存中把处于后备队列中的那些作业调入内存,当作业完成时做善后处理。

A、作业的基本概念(作业,作业步,作业流);B、作业控制块C、作业调度:是根据作业控制块中的信息,审查系统能否满足用户作业的资源需求,以及按照一定的算法,从外存后备队列中选取某些作业调入内存,为它们创建进程、分配必要的资源,然后将进程插入就绪队列,准备执行。

1.2中级调度:提高内存利用率和系统吞吐量,使那些暂时不能运行的进程不再占用内存,把它们调至外存(存储管理中的对换功能)。

相关文档
最新文档