基本的几何图形 章节检测(含答案)

合集下载

几何图形初步基础测试题及答案

几何图形初步基础测试题及答案

几何图形初步基础测试题及答案一、选择题1.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【答案】D【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.3.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠AOC =76°,则∠BOM 等于( )A .38°B .104°C .142°D .144° 【答案】C【解析】∵∠AOC =76°,射线OM 平分∠AOC ,∴∠AOM=12∠AOC=12×76°=38°, ∴∠BOM=180°−∠AOM=180°−38°=142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.4.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )A .30°B .25°C .18°D .15° 【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D.【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.5.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.6.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )A.斗B.新C.时D.代【答案】C【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“时”相对的字是“奋”;“代”相对的字是“新”;“去”相对的字是“斗”.故选C.点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.7.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A.BC=AB-CD B.BC=12(AD-CD) C.BC=12AD-CD D.BC=AC-BD【答案】B【解析】试题解析:∵B是线段AD的中点,∴AB=BD=12 AD,A、BC=BD-CD=AB-CD,故本选项正确;B、BC=BD-CD=12AD-CD,故本选项错误;C、BC=BD-CD=12AD-CD,故本选项正确;D、BC=AC-AB=AC-BD,故本选项正确.故选B.8.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.线段比曲线短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D【解析】【分析】如下图,只需要分析AB+BC<AC即可【详解】∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径又∵两点之间线段最短∴AC<AB+BC故选:D【点睛】本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.考点:菱形的性质;轴对称-最短路线问题10.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠1【答案】C【解析】【分析】根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G,从而推得∠G=12⨯(∠3﹣∠2).【详解】解:∵AD平分∠BAC,EG⊥AD,∴∠1=∠AFE,∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE,∴∠3=∠G+∠2+∠G,∠G=12⨯(∠3﹣∠2).故选:C.【点睛】本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键.11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.12.下列图形不是正方体展开图的是()A .B .C .D .【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A 、B 、C 是正方体展开图,错误;D 折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件13.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.14.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED =50°,那么∠BAF =( )A .10°B .50°C .45°D .40°【答案】A【解析】【分析】 先根据∠CED =50°,DE ∥AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∵DE ∥AF ,∠CED =50°,∴∠CAF =∠CED =50°,∵∠BAC =60°,∴∠BAF =60°﹣50°=10°,故选:A .【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.15.如图,在Rt ABC V 中,90ACB ∠=︒,3tan 4B =,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD的值( )A .35B .34C .45D .67【答案】D【解析】【分析】根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37AB ,再由点D 为AB 中点得AD =12AB ,进而可求得AE AD的值. 【详解】 解:∵CE 平分ACB ∠,∴点E 到ACB ∠的两边距离相等,设点E 到ACB ∠的两边距离位h ,则S △ACE =12AC·h ,S △BCE =12BC·h , ∴S △ACE :S △BCE =12AC·h :12BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE ,∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=︒,3tan 4B =, ∴AC :BC =3:4,∴AE :BE =3:4∴AE =37AB ,∵CD为AB边上的中线,∴AD=12 AB,∴367172ABAEAD AB==,故选:D.【点睛】本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC 是解决本题的关键.16.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b 上,若∠1=30°,则∠2 等于()A.40°B.60°C.50°D.70°【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a∥b∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B.【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.17.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )A .20°B .22°C .28°D .38°【答案】B【解析】【分析】 过C 作CD ∥直线m ,根据平行线的性质即可求出∠2的度数.【详解】解:过C 作CD ∥直线m ,∵∠ABC =30°,∠BAC =90°,∴∠ACB =60°,∵直线m ∥n ,∴CD ∥直线m ∥直线n ,∴∠1=∠ACD ,∠2=∠BCD ,∵∠1=38°,∴∠ACD =38°,∴∠2=∠BCD =60°﹣38°=22°,故选:B .【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.18.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB , ∴CD=12DB , ∴CD=13CB , S △ACD =12CD•AC ,S △ACB =12CB•AC , ∴S △ACD :S △ACB =1:3,∴S △DAC :S △ABD ≠1:3,错误,故选:D .【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.19.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.20.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.。

七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)

七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)

七年级上册数学单元测试卷-第1章基本的几何图形-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,下列图形中全部是柱体的有()A. B. C.D.2、如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7B.6C.5D.43、长方形剪去一个角后所得的图形一定不是()A.五边形B.梯形C.长方形D.三角形4、如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的“着”相对的面上的汉字是()A.冷B.静C.应D.考5、如图几何体的展开图形最有可能是()A. B. C. D.6、如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短 D.垂线段最短7、已知A,B,C是直线l上三点,线段AB=6cm,且AB= AC,则BC=()A.6cmB.12cmC.18cmD.6cm或18cm8、如图是一个正方体的表面展开图,若正方体中相对的面上的数或式子互为相反数,则代数式的值为()A.-2B.-1C.1D.09、“笔尖在纸上快速滑动写出数字 6”,运用数学知识解释这一现象()A.点动成线B.线动成面C.面动成体D.面面相交得线10、如图是一个正方体的平面展开图,正方体中相对面上的数字互为相反数,则2x+y的值为()A.0B.﹣1C.﹣2D.111、下图中各图形经过折叠后可以围成一个棱柱的是()A. B. C. D.12、下列四个图形中是三棱柱的表面展开图的是()A. B. C. D.13、下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段14、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个15、如图,一个正六棱柱的表面展开后正好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出,宽留出,则该六棱柱的侧面积是( )A. B. C. D.二、填空题(共10题,共计30分)16、在直角三角形ABC中,∠C=90°,如图所示,AB>AC的依据是________,AC+BC>AB 的依据是________.17、如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y 的值为________.18、用一个平面去截一个三棱柱,截面可能是________.(填一个即可)19、点C在射线AB上,若AB=3,BC=2,则AC为________20、如图,是一个物体的展开图(单位:cm),那么这个物体的体积为________.21、如图所示,A地到B地有①②③④四条道路,其中第________ 条道路最近,理由是________22、如图,长方形 ABCD 的长 AB=4,宽 BC=3,以 AB 所在的直线为轴,将长方形旋转一周后所得几何体的主视图的面积是________.23、如图所示,在扇形中,,长为2的线段的两个端点分别在线段、上滑动,E为的中点,点F在上,连结、.若的长是,则线段的最小值是________,此时图中阴影部分的面积是________.24、如图是某个正方体的表面展开图,各个面上分别标有1~6的不同数字,若将其折叠成正方体,则相交于同一个顶点的三个面上的数字之和最大的是________.25、笔尖在纸上写字说明________;车轮旋转时看起来象个圆面,这说明________;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明________.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、图中有多少个三角形?28、如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?29、现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?30、如图是一个正方体的表面展开图,请回答下列问题:(1)与面B、C相对的面分别是;(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、B5、B6、B7、D8、C9、A10、C11、B12、A13、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

初中数学青岛版七年级上册第1章 基本的几何图形1.2几何图形-章节测试习题(5)

初中数学青岛版七年级上册第1章 基本的几何图形1.2几何图形-章节测试习题(5)

章节测试题1.【题文】竖直放置的柱体,用一个水平放置的平面去截,所得到的截口是六边形,想一想这个柱体是几棱柱.【答案】见解析【分析】竖直放置的柱体,用一个水平放置的平面去截,所得到的截口是六边形,说明截面与六个面相交,即这个柱体有六个侧面,所以这个柱体是六棱柱.【解答】解:答:这个棱体是六棱柱.2.【题文】如果用平面截掉一个长方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?【答案】答案不惟一.【分析】当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个顶点、12条棱、7个面;当截面截取一棱上的一点和两顶点组成的面时可剩下几何体有8个顶点、13条棱、7个面;当截面截取由2条棱上的点和一顶点组成的面时剩下几何体有9个顶点、14条棱、7个面;当截面截取由三棱上的点组成的面时,剩余几何体有10个顶点、15条棱、7个面.【解答】解:剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:3.【题文】用平面截下列几何体,写出下列截面的形状.【答案】见解析【分析】由图可知.【解答】解:如图所示:4.【题文】如下图的几何体,分别由哪个平面图形绕某条直线旋转一周得到?请画出相应的平面图形.【答案】详见解析.【分析】画出图形从前面看时的平面图,然后从正中间画一条竖直的线,保留边框即可.【解答】解:如图.5.【题文】如图,把下列平面图形(1)~(6)绕虚线旋转一周,便能形成A~F的某个几何体,请找出来.【答案】答案见解析【分析】由几何图形基本特征入手,且根据面动成体的特性和生活中的常识即可得解.【解答】解:(1)~(6)分别对应C,D,B,A,F,E.6.【题文】已知长方形的长为.宽为,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留)【答案】(1)或;(2)或【分析】分以长为轴旋转所得圆柱和以宽为轴旋转所得圆柱两种情况求解即可.【解答】解:(1)情况①,情况②,(2)情况①,情况②,7.【答题】如图所示,截去正方体一角变成一个新的多面体,这个多面体有______个面.【答案】7【分析】根据所截得的几何体的特征解答即可.【解答】解:这个多面体有7个面.故答案为:7.8.【答题】若一个棱柱有十个顶点,且所有侧棱长的和为,则每条侧棱长为______;【答案】6【分析】根据棱柱的特征解答即可.【解答】一个棱柱有十个顶点,棱柱上下对称,所以是5棱柱,30÷5=6cm,所以这个棱柱的棱长为6cm.9.【答题】用一个平面去截一个三棱柱,截面图形的边数最多的为______边形.【答案】五【分析】一个平面去截一个三棱柱,截面图形有:矩形、三角形、梯形和五边形,由此可得出答案。

青岛版七年级上册数学第1章 基本的几何图形 含答案

青岛版七年级上册数学第1章 基本的几何图形 含答案

青岛版七年级上册数学第1章基本的几何图形含答案一、单选题(共15题,共计45分)1、如图,下列平面图形经过折叠后可以围成一个长方体的是()A. B. C.D.2、下列哪个选项的图形经过折叠能围成一个正方体()A. B. C. D.3、“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm 2B.74πcm 2C.84πcm 2D.100πcm 24、分别从正面和上面观察长方体的形状,如图所示(单位:m),则从左面观察此长方体,看到的图形的面积是()A.4m2B.12m2C.1m2D.3m25、图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6、下列说法中,正确的是()A.射线是直线的一半B.线段AB是点A与点B的距离C.两点之间所有连线中,线段最短D.角的大小与角的两边所画的长短有关7、已知平面内有A,B,C三点,且线段,那么AC两点之间的距离为()A.1cmB.6cmC.1cm或6cmD.无法确定8、在△ABC中,∠C=90°,AC=4,BC=3,把它绕AC旋转一周得一几何体,该几何体的表面积为()A.24πB.21πC.16.8πD.36π9、如图,点M、N是线段AB的三等分点,则下列说法错误的是()A.AM=MN=NB= ABB.点M是线段AN的中点C.点N是线段AB的中点D.AN=BM10、下列图形中,不是正方体的展开图的是()A. B. C. D.11、圆柱的截面不可能是()A.椭圆形B.正方形C.梯形D.圆形12、用平面去截正方体,截出的平面图形中不可能是()A.梯形B.六边形C.五边形D.七边形13、如图所示,某公司有三个住宅区可看作一点,A,B,C各区分别住有职工30人、15人、10人,且这三个住宅区在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A.点AB.点BC.A,B之间D.B,C之间14、如图是一个正方体的表面展开图,若正方体中相对的面上的数或式子互为相反数,则2x+y的值为()A.-1B.0C.-2D.115、已知点A(-3,2),B(3,2),则A,B两点相距()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度二、填空题(共10题,共计30分)16、以下说法:①两点确定一条直线;②两点之间直线最短;③线段AB是点A 与点B之间的距离;④若|a|=﹣a,则a<0;⑤单项式﹣a2b3c4的系数是﹣1,次数是9.其中正确的是________ (请填序号)17、如图,已知圆锥的母线长OA=8,地面圆的半径r=2.若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到A点,则小虫爬行的最短路线的长是________(结果保留根式).18、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“成”字所在面相对面上的汉字是________.19、如图,在平面直角坐标系中,A(0,1),B(3,),P为x轴上一动点,则PA+PB最小时点P的坐标为________.20、如图,点B是线段AC上的点,点D是线段BC的中点,若AB=4 cm,AC=10 am,则CD=________cm21、已知AB平行于轴,A点的坐标为(-2,-1),并且AB=3,则B点的坐标为________.22、将如图折叠成一个正方体,与“思”字相对的面上的字是________.23、如图,数轴的单位长度为1,当点B为原点时,若存在一点M到A的距离是点M到D 的距离的2倍,则点M所表示的数是________.24、笔尖在纸上快速滑动写出了一个又一个字,这说明了________;车轮旋转时,看起来像一个整体的圆面,这说明了________;直角三角形绕它的直角边旋转一周形成了一圆锥体,这说明了________.25、如上图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是________.三、解答题(共5题,共计25分)26、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.27、如图,设A、B、C、D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?说明理由.28、如图所示,已知AB=40,点C是线段AB的中点,点D是线段CB上的一点,点E为线段DB的中点,EB=6,求线段CD的长.29、如图是一个正方形的平面展开图,若要使得平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x、y、z的值.30、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)参考答案一、单选题(共15题,共计45分)2、B3、C4、D5、A6、C7、D8、A9、C10、D11、C12、D13、A14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

几何图形初步章节测试卷(含答案)

几何图形初步章节测试卷(含答案)

第四章几何图形初步单元达标检测卷一、单选题:1.如图,李老师家在学校的南偏东55°方向,距离是500米,则学校在李老师家的()A.北偏西35°方向,相距500米处B.北偏东35°方向,相距500米处C.北偏西55°方向,相距500米处D.北偏东55°方向,相距500米处 2.若208'A ∠=︒,201'0'53'∠=︒B ,20.252015'∠=︒=︒C ,则().A.B C A ∠>∠>∠ B.B A C ∠>∠>∠ C.A C B ∠>∠>∠ D.C A B ∠>∠>∠3.计算:135333030306︒︒''''⨯-÷的值为()A.335355︒'''B.363355︒'''C.63533︒'''D.53533︒'''4.如图,直线a ,b 相交于点O ,射线c ⊥a ,垂足为点O ,若∠1=40°,则∠2的度数为()A.50°B.120°C.130°D.140° 5.下列说法中正确的有().(1)线段有两个端点,直线有一个端点;(2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关;(4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A.1个 B.2个 C.3个 D.4个6.用如图所示的纸片折成一个长方体纸盒,折得的纸盒是().A. B. C. D.7.如图,已知直线上顺次三个点A 、B 、C ,已知10cm AB =,4cm BC =.D 是AC 的中点,M 是AB 的中点,那么MD =()cm .A.4B.3C.2D.18.如图,点A 、B 在线段EF 上,点M 、N 分别是线段EA 、BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长是()A.10cmB.11cmC.12cmD.13cm 9.已知,平面内20AOB ∠=︒,50AOC ∠=︒,射线OM 、ON 分别平分AOB ∠,AOC ∠,求MON ∠的大小是()A.10︒ B.10︒或35︒ C.35︒ D.15︒或35︒10.如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为A.15°B.30°C.45°D.60°二、填空题:11.(1)32°43′30″=________°;(2)86.47°=________°________′________″12.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.13.一个角的补角加上10︒后,等于这个角的余角的3倍,则这个角是____________.14.如图,点O 是直线AB 上的一点,OE 平分AOC ∠,OD 平分BOC ∠,则图中与1∠互余的角是________.15.如图,点C 在线段AB 上,D 是线段AC 的中点,若CB=2,CD=3CB ,则线段AB 的长_____.16.如图,已知∠AOB 是直角,ON 平分∠AOC ,OM 平分∠BOC ,则∠MON 的度数为________________°.17.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.18.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.19.小英利用量角器作∠AOB =80°,以OB 为始边作∠BOC =20°,OD 平分∠AOB ,则∠COD 的度数为_________.20.已知80AOB ∠= ,40BOC ∠= ,射线OM 是AOB ∠平分线,射线ON 是BOC ∠平分线,则MON ∠=________.三、解答题:21.计算:(1)49°38′+66°22′(2)180°﹣79°19′(3)22°16′×5(4)182°36′÷422.已知α∠和∠β互为补角,并且∠β的一半比α∠小30︒,求,αβ∠∠.23.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.24.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.25.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.26.已知,如图,点C 在线段AB 上,且AC=6cm ,BC=14cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长度;(2)在(1)中,如果AC=acm ,BC=bcm ,其它条件不变,你能猜测出MN 的长度吗?请说出你发现的结论,并说明理由.27.如图,90AOB ∠=︒,OC 在AOB ∠的内部,分别作AOC ∠、BOC ∠的平分线OM 、ON .(1)若30BOC ∠=︒,求MON ∠的度数;(2)若将OC 绕点O 顺时针旋转,使OC 在AOB ∠的外部且锐角2BOC x ∠=︒,仍然分别作AOC ∠、BOC ∠的平分线OM 、ON ,画出示意图,你能求出MON ∠的度数吗?若能,求出其值,若不能,试说明理由;(3)若将OC 绕点O 逆时针旋转,使OC 在AOB ∠的外部且锐角2AOC y ∠=︒,仍然分别作AOC ∠、BOC ∠的平分线OM 、ON ,画出示意图,你还能求出MON ∠的度数吗?若能,求出其值,若不能,说明理由.28.已知O 为直线AB 上一点,∠COE 是直角,OF 平分∠AOE.(1)如图①,若∠COF =34°,则∠BOE =________;若∠COF =n°,则∠BOE =________;∠BOE 与∠COF 的数量关系为________________.(2)当射线OE 绕点O 逆时针旋转到如图②的位置时,(1)中∠BOE 与∠COF 的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠COF =65°,在∠的内部是否存在一条射线OD ,使得2∠BOD 与∠AOF 的和等于∠BOE 与∠BOD 的差的一半?若存在,请求出∠BOD 的度数;若不存在,请说明理由.答案一、单选题:1-10CABCC CCCDC二、填空题:11.32.72586281212.126︒13.40°14.BOD ∠和COD ∠15.1416.4517.20°.18.2619.20°或60°20.60°或20°三、解答题:21.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′22. 已知α∠和∠β互为补角,并且∠β的一半比α∠小30︒,∴α∠=180︒-∠β,α∠-12β∠=30︒,∴180︒-∠β-12β∠=30︒,得31502β∠=︒,100β∠=︒,∴α∠=180︒-∠β=80︒,∴80,100αβ∠=︒∠=︒.23.解:设∠AOC =x ,则∠BOC =2x.∴∠AOB =3x.又OD 平分∠AOB ,∴∠AOD =1.5x.∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.24.(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点,所以1 5.4cm 2AE AB ==.所以6 5.40.6cmDE AD AE =-=-=25.解:因为15cm AC =,35CB AC =,所以3159(cm)5CB =⨯=,所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===.所以127.5 4.5(cm)DE AE AD =-=-=.26.(1)∵AC=6cm ,BC=14cm ,点M 、N 分别是AC 、BC 的中点,∴MC=3cm ,NC=7cm ,∴MN=MC+NC=10cm ;(2)MN=12(a+b )cm.理由是:∵AC=acm ,BC=bcm ,点M 、N 分别是AC 、BC 的中点,∴MC=12acm ,NC=12bcm ,∴MN=MC+NC=12(a+b )cm.27.(1)OM Q 平分AOC ∠,ON 平分BOC ∠,()1116030222MOC AOC AOB BOC ∴∠=∠=∠-∠=⨯︒=︒,1152CON BOC ∠=∠=︒,45MON MOC CON ∴∠=∠+∠=︒;(2)如图所示:OM Q 平分AOC ∠,ON 平分BOC ∠,()()111+90245222MOC AOC AOB BOC x x ∴∠=∠=∠∠=︒+︒=︒+︒,12CON BOC x ∠=∠=︒,故45MON COM CON ∠=∠-∠=︒;(3)如图所示:OM Q 平分AOC ∠,ON 平分BOC ∠,12COM AOC y ∴∠=∠=︒,()()11190245222CON BOC AOB AOC y y ∠=∠=∠+∠=︒+︒=︒+︒,故45MON CON COM ∠=∠-∠=︒.28.试题分析:(1)根据角平分线的性质结合直角、平角的定义即可得到结果;(2)设EOF x ∠=,根据角平分线的性质可得AOF EOF x ∠=∠=,即可得到180º2BOE x =-,再由90ºCOE ∠=可得90ºCOF x ∠=-,从而得到结论;(3)由∠COF=65°可得∠BOE=2∠COF=130°,即可得到∠AOF 的度数,又2∠BOD+∠AOF=(∠BOE-∠BOD),即可求得结果.(1)若∠COF =34°,则∠BOE =68°;若∠COF =m°,则∠BOE =(2)m °;所以∠BOE=2∠COF ;(2)成立.理由如下:设EOF x∠=∵OF 平分∠AOE∴AOF EOF x∠=∠=∴180º2BOE x=-∵90ºCOE ∠=∴90ºCOF x∠=-∴∠BOE=2∠COF ;(3)存在,∠BOD=16°.理由如下:∵∠COF=65°∴∠BOE=2∠COF=130°∴∠AOF=(180°-∠BOE)=25°又2∠BOD+∠AOF=(∠BOE-∠BOD)∴2∠BOD+25°=(130°-∠BOD)∴∠BOD=16°.。

几何图形的测试题及答案

几何图形的测试题及答案

几何图形的测试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是正方形的内角和?A. 180°B. 360°C. 720°D. 1080°答案:C2. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5厘米B. 10厘米C. 20厘米D. 15厘米答案:A3. 一个三角形的三个内角分别是50°、60°和70°,这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:A4. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,那么它的体积是多少立方厘米?A. 72立方厘米B. 84立方厘米C. 96立方厘米D. 108立方厘米答案:B二、填空题(每题5分,共20分)1. 一个等腰三角形的底角是45°,那么顶角是______°。

答案:902. 一个正五边形的内角和是______°。

答案:5403. 一个圆柱的底面半径是2厘米,高是5厘米,那么它的侧面积是______平方厘米。

答案:62.84. 一个圆锥的底面半径是3厘米,高是4厘米,那么它的体积是______立方厘米。

答案:37.68三、解答题(每题10分,共20分)1. 已知一个正六边形的边长是a,求它的面积。

答案:正六边形的面积= (3√3/2) * a²2. 一个长方体的长、宽、高分别是a、b、c,求它的表面积。

答案:长方体的表面积 = 2(ab + bc + ac)四、证明题(每题10分,共20分)1. 证明:等腰三角形的两个底角相等。

答案:略2. 证明:圆的内接四边形的对角互补。

答案:略。

第1章 基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)

第1章 基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)

第1章基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图所示,A、B、C、D四个图形中各有一条射线和一条线段,它们能相交的是()A. B. C. D.2、如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么图中x 的值是()A.8B.3C.2D.-33、如图,有两种说法:①线段的长是点到点的距离;②线段的长是直线、之间的距离关于这两种说法,正确的是()A.①正确,②错误B.①正确,②正确C.①错误,②正确D.①错误,②错误4、如图,把正方体纸盒沿棱剪开,平铺在桌面上,原来与点A重合的顶点是()A.IB.JC.GD.H5、一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利6、如图,是一个正方体纸盒的平面展开图,则写有“为”字的面所对的面上的是()A.汉B.!C.武D.加7、如图,图中的长方形共有()个.A.4B.5C.8D.98、如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱9、将如图所示的图形减去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1,2,3,4的小正方形中不能剪去的是()A.1B.2C.3D.410、下列语句错误的是()A.两点确定一条直线B.同角的余角相等C.两点之间线段最短 D.两点之间的距离是指连接这两点的线段11、如图中,几何体的截面形状是()A. B. C. D.12、用一个平面去截正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形13、正方体的展开图可能是()A. B. C. D.14、已知线段MN=10cm,点C是直线MN上一点,NC=4cm,若P是线段MN的中点,Q是线段NC的中点,则线段PQ的长度是()A.7cmB.7cm或3cmC.5cmD.3cm15、下列说法:①平角就是一条直线;②直线比射线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有()A.0个B.1个C.2个D.3个二、填空题(共10题,共计30分)16、如图是一个正方形,把此正方形沿虚线AB减去一个角,得到一个五边形,则这个五边形的周长________原来正方形的周长.(填“大于”“小于”或“等于”),理由是________17、如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt△ABC或Rt△DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(﹣7,5),E(4,﹣3).所以DA=|5﹣(﹣3)|=8,AE=|4﹣(﹣7)|=11,所以由勾股定理可得:DE==.下面请你参与:(1)在图①中:AC=________ ,BC=________ ,AB=________(2)在图②中:设A(x1, y1),B(x2, y2),试用x1, x2, y1, y2表示AC=________ ,BC=________ ,AB=________(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标________18、点P(2,4)与点Q(-3,4)之间的距离是________.19、人们喜欢把弯弯曲曲的公路改为直道,其中隐含着数学道理的是________20、已知:如图,建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是________21、数轴上有两点、,点到点的距离为,点到点距离为,则、之间的距离为________.22、如图,在△ABC中,AB=AC=10cm,BC=8cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为________.23、平面上任意两点确定一条直线,任意三点最多可确定3条直线,若平面上任意n个点最多可确定28条直线,则n的值是________.24、一个立方体的每个面上都标有数字1、2、3、4、5、6,根据图中该立方体A、B、C三种状态所显示的数字,可推出“?”处的数字是________25、在实际问题中,在大多数情况下,造桥和架线都尽可能减少弯路,是因为________.三、解答题(共5题,共计25分)26、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.27、将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:①各个扇形的圆心角的度数.②其中最大一个扇形的面积.28、如图①所示是一个长方体盒子,四边形ABCD是边长为a的正方形,DD′的长为b.(1)写出与棱AB平行的所有的棱。

七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)

七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)

七年级上册数学单元测试卷-第1章基本的几何图形-青岛版(含答案)一、单选题(共15题,共计45分)1、一个几何体的展开图如图所示,这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥2、如图所示是一间房子的平面示意图,组成这幅图的简单几何图形是()A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形3、下列图形(如图所示)经过折叠不能围成正方体的是( )A.AB.BC.CD.D4、如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13B.2和9C.1和13D.2和85、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短6、下列各图形中,可以是一个正方体的平面展开图的是()A. B. C. D.7、如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一周所得圆柱的侧面积为( )A.10πB.4πC.2πD.28、正三棱锥的截面中,边数最多的多边形是()A.三角形B.四边形C.五边形D.六边形9、下列图形中,能通过折叠围成一个三棱柱的是()A. B. C. D.10、以下说法正确的是()A.两点之间直线最短B.延长直线到点,使C.相等的角是对顶角 D.连结两点的线段的长度就是这两点间的距离11、把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分染成红色,那么红色部分的面积为()A.21B.24C.33D.3712、如图,已知线段AB=10 cm,点N在AB上,NB=2 cm,M是AB中点,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm13、某校要举办国庆联欢会,主持人站在舞台的黄金分割点处最自然得体.如图,若舞台AB的长为20m,C为AB的一个黄金分割点(AC<BC),则AC的长为(结果精确到0.1m)()A.6.7mB.7.6mC.10mD.12.4m14、如图,把图形折叠起来,变成的正方体是()A. B. C. D.15、如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3B.5C.2D.1二、填空题(共10题,共计30分)16、在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________17、两点之间的所有连线中,________最短;两点之间的________长度,叫做两点之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章《基本的几何图形》测试题及答案
一、选择题(每题3分,共39分)
1、如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是(
)A.和 B.谐 C.社 D.会
2、下面左边是用八块完全相同的小正方体搭成
的几何体,从上面看该几何体得到的图是.()
3、如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()
A. 正方体、圆柱、三棱柱、圆锥
B. 正方体、圆锥、三棱柱、圆柱
C. 正方体、圆柱、三棱锥、圆锥
D. 正方体、圆柱、四棱柱、圆锥
4、如图,对于直线AB,线段CD,射线EF,其中能相交的是()
5、下列说法中正确的是………………...…()
A.画一条3厘米长的射线
B.画一条3厘米长的直线
C.画一条5厘米长的线段
D.在线段、射线、直线中直线最长
6.下列说法正确的是()①教科书是长方形②教科书是长方体,也是棱柱
③教科书的表面是长方形 A.①② B.①③ C.②③ D.①②③7.将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是()
A. B. C. D.
8、下列图形中是圆柱的是()
第1题图会





第3题图
A B C D
9.下列平面图形不能够围成正方体的是( )
A B C D
10.在点、线、面、体中,下列说法正确的是( )
A.点有大小之分
B.线有粗细之分
C.面有厚薄之分
D.体有大小之分
11.下列所举物体中与圆锥体形状类似的是( )A.矿工帽 B. 漏斗 C.烟囱 D.粉笔
12.下列说法错误的是( ) A.长方体的截面可能是六边形
B.从一个n 边形的顶点向其他顶点引线段,可构成(n-3)个三角形
C.直线大于射线
D.球不可以展成一个圆
13、从高密开往济南的特快列车,途中要停靠两个站点如果任意两站间的票价都不同,不同的票价有( ) A.14种 B.6种 C.10种 D.12种
二、填空题(每空1分,共26分)
14、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为 15、在同一平面内,n (n
>1)条直线最多可有__________条交点.(用含有n 的代数式表示)
16、下列图形中属于棱柱的有
(1) (2) (3) (4) (5) (6)
17
.观察图中的立体图形,分别写出它们的名称.
_____
18、在任一直线上有n 个点,则这条直线上有 条线段。

19、工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就
D C
B A 能砌直。

运用的数学原理:
20. 笔尖在纸上快速滑动写出了一个又一个字,这说明了________ ;车轮旋转时,看起来像一个整体的圆面,这说明了_________;直角三角形绕它的直角边
旋转一周,形成了一圆锥体,这说明了_____________.
21.如图,三棱锥有________个面,它们相交形成了________条棱,
这些棱相交形成了________个点.
22.射线OA 反向延长得射线 ______ ,线段CD 向 ______ 延长得直线CD .
23、平面上有2条直线,最多有 个交点;平面上有3条直线,最多有 个交点;
平面上有4条直线,最多有 个交点;平面上有5条直线,最多有 个交点; 平面上有n 条直线,最多有 个交点。

三、解答题(共55分)
24、(12分)根据下列语句,画出图形.
已知四点A 、B 、C 、D.
①画直线AB ;
②连接AC 、BD ,相交于点O ;
③画射线AD 、BC ,交于点P.
④画线段CD
25、(12分)如图,平面内的线段AB,BC,CD,DA 首尾相接,按照下列要求画图:
(1)连接AC ,BD 相交于点O A
(2)分别延长线段AD
,BC 相交于点P D
(3)分别延长线段AB , DC
相交于点Q
C B
26、(6分)右面是一个正方体纸盒的展开图,请把1,2,3,4,5,6
分别填入六个正方形,使得按虚线折成正方体后,
相对面上的两数之和相等。

27、如图,左面的几何体叫三棱柱,它有五个面,9条棱,6个顶点,中间和右边的几何
体分别是四棱柱和五棱柱。

(15分)
(1)四棱柱有个顶点,条棱,个面;
(2)五棱柱有个顶点,条棱,个面;
(3)你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?
(4)n棱柱有几个顶点,几条棱,几个面呢?
28、(10分)正方体六个面分别标有1、2、3、4、5、6,有如下三种不同放置方式,问下底面各是几?和是几?
参考答案
一、选择题
1-5.DDABC 6-10.CDCBD 11-13.BCB
二、填空题
14.
17. 球 六棱柱
圆锥 正方体(四棱柱) 三棱柱 圆柱
三棱锥
18.
19. 两点确定一条直线
20.线动成面 面动成体 21.4 6 4 22. 两方 三、解答题 24.略 25.略 26.略
27.(1) 8 12 6;
(2)10 15 7;
(3)六棱柱12,18,8;
七棱柱14,21,9。

(4)2n ,3n ,n+2
28. (1)2 (2)5 (3)1. 和是8.。

相关文档
最新文档