直线与圆及其方程高考真题分类解析

合集下载

历年高考直线与圆真题以及解析

历年高考直线与圆真题以及解析
(2)假设存在满足题意的直线l,设M(x1,y1)N(x2,y2),联立直线与圆的方程,由直线与圆相交可得△=(2k+4)2﹣16(1+k2)>0,由数量积的计算公式可得 • =(1+k2) + +4=6,解可得k的值,验证是否满足△>0,即可得答案.
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即

名师解读高考真题系列-高中数学文数:专题13 直线与圆

名师解读高考真题系列-高中数学文数:专题13 直线与圆

一、选择题1.【圆的标准方程】【2015,北京,文2】圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-=【答案】D2.【直线、圆及抛物线等基本概念】【2015,四川,文10】设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【答案】D3.【求圆的圆心和半径】【2015,安徽,文8】直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( ) (A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12【答案】D4.【直线与圆的位置关系、平面向量的运算性质】【2015,湖南文9】已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++ 的最大值为( )A 、6B 、7C 、8D 、9【答案】B5.【圆的方程的求法】【2015,新课标2,文7】已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 4D.3【答案】B二、非选择题1.【直线与圆的位置关系】【2015,湖南,文13】若直线3450x y -+=与圆()2220x y r r +=>相交于A,B 两点,且120oAOB ∠=(O 为坐标原点),则r =_____.【答案】22.【圆的切线】 【2015,重庆,文12】若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.【答案】250x y +-=3.【圆的标准方程和圆的切线】【2015,湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.【答案】(Ⅰ)22(1)(2x y -+=;(Ⅱ)1--4.【圆的标准方程、直线与圆的位置关系】【2015,广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围; 若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34k =±. 5.【直线与圆的位置关系】【2015,新课标1,文20】(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围; (II )12OM ON ⋅= ,其中O 为坐标原点,求MN .【答案】(I)桫(II )22017年真题1.【直线与圆、线性规划】【2017,江苏,13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅ ≤则点P 的横坐标的取值范围是 ▲ .【答案】[-2.【直线与圆综合问题】【2017,课标3,文20】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.【答案】(1)不会;(2)详见解析试题解析:(1)设()()12,0,,0A x B x ,则12,x x 是方程220x mx +-=的根, 所以1212,2x x m x x +=-=-,则()()1212,1,112110AC BC x x x x ⋅=-⋅-=+=-+=-≠ ,所以不会能否出现AC ⊥BC 的情况。

高考数学最新真题专题解析—直线与圆(全国通用)

高考数学最新真题专题解析—直线与圆(全国通用)

高考数学最新真题专题解析—直线与圆(全国通用)考向一 求圆的方程【母题来源】2022年高考全国乙卷(理科)【母题题文】过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;【试题解析】解:依题意设圆的方程为220x y Dx Ey F ++++=,若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭; 【命题意图】本题考查圆的一般方程的形式,通过解方程组求一般方程中的系数. 【命题方向】这类试题在考查题型选择、填空、解答题都有可能出现,多为低档题,是历年高考的热点. 常见的命题角度有:(1)直线的方程;(2)圆的方程;(3)直线与圆的位置关系;(4)圆与圆的位置关系. 【得分要点】(1)正确写出圆的一般方程的形式; (2)解方程组;(3)一般式转化为标准式. 考向二 直线与圆的位置关系【母题来源】2022年高考全国甲卷(文科)【母题题文】 若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________.【答案】22(1)(1)5x y -++=【试题解析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上, ∴点M 到两点的距离相等且为半径R , 2222(3)(12)(2)-+-=+-=a a a a R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,5R =M 的方程为22(1)(1)5x y -++=.【命题意图】本题考查直线与圆的位置关系,通过圆心到直线的距离与半径的关系求解.【命题方向】这类试题在考查题型选择、填空题出现,多为低档题,是历年高考的热点.常见的命题角度有:(1)直线的方程;(2)圆的方程;(3)直线与圆的位置关系;(4)圆与圆的位置关系. 【得分要点】(1)正确写出圆的标准方程; (2)求出圆心到直线的距离;(3)由直线与圆的位置关系确定圆心到直线的距离与半径之间的关系. 真题汇总及解析一、单选题1.(湖北省新高考联考协作体2021-2022学年高二下学期期末数学试题)“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】由直线()2140x m y +++=与直线320x my --=垂直求出m 的值,再由充分条件和必要条件的定义即可得出答案. 【详解】直线()2140x m y +++=与直线320x my --=垂直, 则()()2310m m ⨯++⨯-=,解得:2m =或3m =-,所以“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的充分不必要条件. 故选:B.2.(2022·四川乐山·高一期末)圆222440x y x y +-+-=关于直线10x y +-=对称的圆的方程是( ) A .22(3)16x y -+= B .22(3)9x y +-= C .22(3)16x y +-= D .22(3)9x y -+= 【答案】D 【解析】【分析】先求得圆222440x y x y +-+-=关于直线10x y +-=对称的圆的圆心坐标,进而即可得到该圆的方程. 【详解】圆222440x y x y +-+-=的圆心坐标为(1,2)-,半径为3 设点(1,2)-关于直线10x y +-=的对称点为(,)m n ,则211121022n m m n +⎧=⎪⎪-⎨+-⎪+-=⎪⎩ ,解之得30m n =⎧⎨=⎩ 则圆222440x y x y +-+-=关于直线10x y +-=对称的圆的圆心坐标为(3,0) 则该圆的方程为22(3)9x y -+=, 故选:D .3.(2022·四川成都·模拟预测(文))直线410mx y m 与圆2225x y +=相交,所得弦长为整数,这样的直线有( )条 A .10 B .9 C .8 D .7【答案】C 【解析】 【分析】求出过定点(4,1)32(5,6),最长的弦长为直径10,则弦长为6的直线恰有1条,最长的弦长为直径10,也恰有1条,弦长为7,8,9的直线各有2条,即可求出答案. 【详解】直线410mx y m 过定点(4,1),圆半径为5, 最短弦长为2251732(5,6),恰有一条,但不是整数;弦长为6的直线恰有1条,有1条斜率不存在,要舍去; 最长的弦长为直径10,也恰有1条; 弦长为7,8,9的直线各有2条,共有8条, 故选:C .4.(2022·广西柳州·模拟预测(理))已知直线(0)y kx k =>与圆()()22:214C x y -+-=相交于A ,B 两点23AB =k =( ) A .15B .43C .12D .512【答案】B 【解析】 【分析】圆心()2,1C 到直线(0)y kx k =>的距离为d ,则2211k d k-=+而224312AB d r ⎛⎫=--= ⎪⎝⎭,所以22111k d k -=+,解方程即可求出答案. 【详解】圆()()22:214C x y -+-=的圆心()2,1C ,2r =所以圆心()2,1C 到直线(0)y kx k =>的距离为d ,则2211k d k -=+而224312AB d r ⎛⎫=--= ⎪⎝⎭,所以22111k d k -=+,解得:43k =. 故选:B.5.(2022·全国·模拟预测)直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为( ) A .25B .4 C .3D .22【答案】A 【解析】 【分析】直接利用直线被圆截得的弦长公式求解即可. 【详解】由题意圆心()1,2C ,圆C 的半径为3, 故C 到:3410l x y +-=22381234+-=+,故所求弦长为2223225-=故选:A.6.(2022·全国·模拟预测)若圆()()()22140x a y a -+-=>与单位圆恰有三条公切线,则实数a 的值为( ) A 3B .2 C .2D .23【答案】C 【解析】 【分析】两圆恰有三条公切线,说明两圆为外切关系,圆心距12d r r =+. 【详解】由题,两圆恰有三条公切线,说明两圆为外切关系(两条外公切线,一条内公切22121a +=+,结合0a >解得22a =故选:C.7.(2022·湖南岳阳·模拟预测)已知点A (2,0),B (0,﹣1),点P 是圆x 2+(y ﹣1)2=1上任意一点,则PAB △ 面积最大值为( ) A .2 B .45C .51D .52【答案】D 【解析】 【分析】结合点到直线距离公式及图形求出圆上点P 到直线AB 距离的最大值,由此可求PAB △面积的最大值.【详解】 由已知=5AB要使PAB △的面积最大,只要点P 到直线AB 的距离最大. 由于AB 的方程为21x y+=-1,即x ﹣2y ﹣2=0, 圆心(0,1)到直线AB 的距离为d 022455--==, 故P 到直线AB 451, 所以PAB △面积的最大值为()114551=522AB d ⎫⨯⨯+⎪⎪⎝⎭故选:D .8.(2022·河南安阳·模拟预测(理))已知圆22:(2)(6)4-+-=C x y ,点M 为直线:80l x y -+=上一个动点,过点M 作圆C 的两条切线,切点分别为A ,B ,则当四边形CAMB 周长取最小值时,四边形CAMB 的外接圆方程为( )A .22(7)(1)4-+-=x yB .22(1)(7)4-+-=x yC .22(7)(1)2-+-=x yD .22(1)(7)2-+-=x y【答案】D 【解析】 【分析】根据给定条件,利用切线长定理求出四边形CAMB 周长最小时点M 的坐标即可求解作答. 【详解】圆22:(2)(6)4-+-=C x y 的圆心(2,6)C ,半径2r =,点C 到直线l 的距离22221(1)d ==+-依题意,CA AM ⊥,四边形CAMB 周长2222||2||42424CA AM CM CA d +=+-+-242(22)48=+-=,当且仅当CM l ⊥时取“=”,此时直线:80CM x y +-=,由8080x y x y -+=⎧⎨+-=⎩得点(0,8)M ,四边形CAMB 的外接圆圆心为线段CM 中点(1,7)222(1)(7)2-+-=x y .故选:D9.(2022·全国·模拟预测(理))已知圆C 过圆221:42100C x y x y ++--=与圆222:(3)(3)6C x y ++-=的公共点.若圆1C ,2C 的公共弦恰好是圆C 的直径,则圆C的面积为( ) A .115πB .265πC 130πD .1045π【答案】B【解析】 【分析】根据题意求解圆1C ,2C 的公共弦方程,再计算圆2C 中的公共弦长即可得圆C 的直径,进而求得面积即可 【详解】由题,圆1C ,2C 的公共弦为2242100x y x y ++--=和22(3)(3)6x y ++-=的两式相减,化简可得2110x y -+=,又()23,3C -到2110x y -+=的距离()2232311512d --⨯+==+-,故公共弦长为22262655⎛⎫-= ⎪⎝⎭,故圆C 265C 的面积为265π故选:B10.(2022·广东·深圳市光明区高级中学模拟预测)已知圆:C 22(1)4x y -+=与抛物线2(0)y ax a =>的准线相切,则=a ( ) A .18B .14C .4D .8【答案】A 【解析】 【分析】求出抛物线的准线方程,利用圆与准线相切可得124a-=,求解即可. 【详解】因为圆:C 22(1)4x y -+=的圆心为(1,0),半径为2r =抛物线2(0)y ax a =>的准线为14y a=-,所以124a -=,即18a =, 故选:A.二、填空题11.(2022·江苏南京·模拟预测)已知ABC 中,()30A -,,()3,0B ,点C 在直线3yx 上,ABC 的外接圆圆心为()0,4E ,则直线EC 的方程为______. 【答案】344y x =+ 【解析】 【分析】圆心E 到点B 的距离即为半径,可得到外接圆的方程,联立圆的方程与直线的方程,得到C 点坐标,利用直线方程两点式即可求解. 【详解】因为ABC 的外接圆圆心为()0,4E ,所以ABC 22345+=, 即ABC 的外接圆方程为()22425x y +-=.联立()223425y x x y =+⎧⎪⎨+-=⎪⎩,解得47x y =⎧⎨=⎩,或30x y =-⎧⎨=⎩, 所以()4,7C 或()3,0C -(与A 点重合),舍, 所以直线EC 的方程为747440y x --=--,即344y x =+. 故答案为:344y x =+.12.(2022·天津二中模拟预测)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________. 34【解析】 【分析】将圆2C 的方程写成标准形式,然后根据两圆外切,可得圆心距离为半径之和,可得m ,接着计算2C 到直线的距离,最后根据圆的弦长公式计算可得结果. 【详解】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m()()224030225-+--=-m ,解得16m = 所以2:C ()()22439x y -++=2C 到直线的距离为2243211-=+d 2C 的半径为R 则直线:0l x y +=被圆2C 所截的弦长为22129342-=-R d 故答案为: 3413.(2022·安徽·合肥市第八中学模拟预测(文))直线:10l x my m +--=被圆O ;223x y +=截得的弦长最短,则实数m =___________.【答案】1 【解析】 【分析】求出直线MN 过定点A (1,1),进而判断点A 在圆内,当OA MN ⊥时,|MN |取最小值,利用两直线斜率之积为-1计算即可. 【详解】直线MN 的方程可化为10x my m +--=,由1110y x -=⎧⎨-=⎩,得11x y =⎧⎨=⎩,所以直线MN 过定点A (1,1), 因为22113+<,即点A 在圆223x y +=内. 当OA MN ⊥时,|MN |取最小值,由1OA MN k k =-,得111m ⎛⎫⨯-=- ⎪⎝⎭,∴1m =, 故答案为:1.14.(2022·上海静安·模拟预测)已知双曲线()222210,0x y a b a b-=>>的两条渐近线均与圆()22:34C x y -+=相切,右焦点和圆心重合,则该双曲线的标准方程为____________.【答案】22154x y -=【解析】 【分析】根据已知条件得出双曲线的渐近线方程及圆的圆心和半径,进而得出双曲线的焦点坐标,利用双曲线的渐近线与圆相切,得出圆心到渐近线的距离等于半径,结合双曲线中,,a b c 三者之间的关系即可求解. 【详解】由题意可知,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=.由圆C 的方程为()2234x y -+=,得圆心为()3,0C ,半径为2r =.因为右焦点和圆心重合,所以双曲线右焦点的坐标为3,0.3c =又因为双曲线()222210,0x y a b a b-=>>的两条渐近线均与圆()22:34C x y -+=相切,22302b a a b ⨯±⨯=+22c=,解得2b =.所以222945a c b =-=-=,所以该双曲线的标准方程为22154x y -=.故答案为:22154x y -=.15.(2022·全国·哈师大附中模拟预测(理))已知函数()22x xe ef x e -=(其中e是自然对数的底数),若在平面直角坐标系xOy 中,所有满足()()0f a f b +>的点(),a b 都不在圆C 上,则圆C 的方程可以是______(写出满足条件的一个圆的方程即可).【答案】221x y +=(答案不唯一) 【解析】 【分析】根据题意,得到()(2)0f x f x +-=,且关于点(1,0)中心对称,得到2a b +>,进而化简得到2x y +≤,即可得到答案. 【详解】由题意,函数222e e ()e e ex x x xf x --==-在R 上单调递增,且()(2)0f x f x +-=, 所以曲线()y f x =关于点(1,0)中心对称,所以()()0f a f b +>,即2a b +>, 在平面直角坐标系xOy 中所有满足()()0f a f b +>,即2a b +>的点(,)a b 都不在圆C 上,所以圆C 上的点都满足2x y +≤,即圆C 在2x y +≤表示的半平面内, 故圆C 可以是以原点为圆心,半径为1的圆,圆C 的方程可以为221x y +=. 故答案为:221x y +=(答案不唯一).三、解答题16.(2022·江苏·南京市天印高级中学模拟预测)已知动点(),M x y 是曲线C 上任一点,动点M 到点10,4A ⎛⎫⎪⎝⎭的距离和到直线14y =-的距离相等,圆M 的方程为()2221x y +-=.(1)求C 的方程,并说明C 是什么曲线;(2)设1A 、2A 、3A 是C 上的三个点,直线12A A 、13A A 均与圆M 相切,判断直线23A A 与圆M 的位置关系,并说明理由. 【答案】(1)答案见解析(2)若直线12A A 、13A A 与圆M 相切,则直线23A A 与圆M 相切,理由见解析 【解析】 【分析】(1)由抛物线的定义可得出曲线C 是以10,4A ⎛⎫⎪⎝⎭为焦点,直线14y =-为准线的抛物线,进而可求得曲线C 的方程;(2)分析可知直线12A A 、13A A 、23A A 的斜率都存在,设()2111,A x x 、()2222,A x x 、()2333,A x x ,其中1x 、2x 、3x 两两互不相等,利用二次方程根与系数的关系以及点到直线的距离公式以及几何法判断可得出结论.(1)解:由题设知,曲线C 上任意到点10,4A ⎛⎫⎪⎝⎭的距离和到直线14y =-的距离相等,因此,曲线C 是以10,4A ⎛⎫⎪⎝⎭为焦点,直线14y =-为准线的抛物线,故曲线C 的方程为2x y =.(2)解:若直线23A A 的斜率不存在,则直线23A A 与曲线C 只有一个交点,不合乎题意,所以,直线12A A 、13A A 、23A A 的斜率都存在,设()2111,A x x 、()2222,A x x 、()2333,A x x ,则1x 、2x 、3x 两两互不相等,则1222121212A Ax x k x x x x -==+-,同理1313A A k x x =+,2323A A k x x =+, 所以直线12A A 方程为()()21121y x x x x x -=+-,整理得()12120x x x y x x +--=,同理可知直线13A A 的方程为()13130x x x y x x +--=, 因为直线12A A 与圆M ()12212211x x x x +=++,整理可得()222121211230x x x x x -++-=,同理可得()222131311230x x x x x -++-=,所以2x 、3x 为方程()2221111230x x x x x -++-=的两根,则11x ≠±,所以,1232121x x x x +=--,21232131x x x x -=-,圆心M 到直线23A A ()2211221231222123122111321211112111x x x x x x x x x x x x +-+-+-===+++⎛⎫+- ⎪--⎝⎭,所以直线23A A 与圆M 相切. 综上,若直线12A A 、13A A 与圆M 相切,则直线23A A 与圆M 相切. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程; (2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.17.(2022·四川成都·模拟预测(理))点P 为曲线C 上任意一点,直线l :x =-4,过点P 作PQ 与直线l 垂直,垂足为Q ,点()1,0F -,且2PQ PF =. (1)求曲线C 的方程;(2)过曲线C 上的点()()000,1M x y x ≥作圆()2211x y ++=的两条切线,切线与y 轴交于A ,B ,求△MAB 面积的取值范围.【答案】(1)22143x y +=(2)212S ⎡∈⎢⎣ 【解析】 【分析】(1)设点(),P x y ,通过2PQ PF =得到等式关系,化简求得曲线方程; (2)设切线方程()00y y k x x -=-,通过点到切线的距离,化简成k 的一元二次方程,再韦达定理得出12,k k 与00,x y 的等式关系,再求出||AB 弦长,消去12,k k ,再求面积即可.(1)设(),P x y ,由2PQ PF =,得()2241x x y +=++22143x y +=,所以曲线C 的方程为22143x y +=;(2)设点()00,M x y 的切线方程为()00y y k x x -=-(斜率必存在),圆心为()1,0F -,r =1所以()1,0F -到()00y y k x x -=-的距离为:00211k y kx d k-+-==+平方化为()()2220000022110x x k x y k y +-++-=,设P A ,PB 的斜率分别为1k ,2k则()0012200212x y k k x x ++=+,201220012y k k x x -=+ 因为P A :()010y y k x x -=-,令x =0有010A y y k x =-,同理020B y y k x =-所以()()()()222200000201212120414214A B x y x x y AB y y x k k x k k k k +-+-=-=-=+-=又因为22004123y x =-代入上式化简为0062x AB x +=+ 所以3200000006611122222MABx x x S x AB x x x ++=⋅⋅=⋅=++△[]01,2x ∈ 令()3262x x f x x +=+,[]1,2x ∈,求导知()f x 在[]1,2x ∈为增函数,所以2126S ∈⎢⎣.18.(2022·陕西·交大附中模拟预测(理))已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围. 【答案】(1)3y =或34120x y +-=(2)120,5⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)求出圆心的坐标,设出切线的方程,利用圆心到切线的距离等于半径可求出相应的参数值,即可得出所求切线的方程; (2)设点(),M x y ,由已知可得()2214x y ++=,分析可知圆C 与圆()2214x y ++=有公共点,可得出关于a 的不等式组,由此可解得实数a 的取值范围.(1)解:联立241y x y x =-⎧⎨=-⎩,解得32x y =⎧⎨=⎩,即圆心()3,2C ,所以,圆C 的方程为()()22321x y -+-=.若切线的斜率不存在,则切线的方程为0x =,此时直线0x =与圆C 相离,不合乎题意;所以,切线的斜率存在,设所求切线的方程为3y kx =+,即30kx y -+=, 23111+=+k k ,整理可得2430k k +=,解得0k =或34-.故所求切线方程为3y =或334y x =-+,即3y =或34120x y +-=.(2)解:设圆心C 的坐标为(),24a a -,则圆C 的方程为()()22241x a y a -+--=⎡⎤⎣⎦,设点(),M x y ,由2=MA MO 可得()222232x y x y +-+整理可得()2214x y ++=,由题意可知,圆C 与圆()2214x y ++=有公共点,所以,()221233a a ≤+-,即22512805120a a a a ⎧-+≥⎨-≤⎩,解得1205a ≤≤.所以,圆心C 的横坐标a 的取值范围是120,5⎡⎤⎢⎥⎣⎦.。

高考数学真题题型分类解析专题专题07 直线与圆

高考数学真题题型分类解析专题专题07 直线与圆

高考数学真题题型分类解析高考数学真题题型分类解析 专题07直线与圆直线与圆命题解读考向考查统计1.高考对直线的考查,重点是直线的倾斜角与斜率、直线方程的求法、两条直线的位置关系、距离公式、对称问题等。

2.高考对圆的考查,重点是圆的标准方程与一般方程的求法,除了待定系数法外,要特别要重视利用几何性质求解圆的方程。

同时,除了直线与圆、圆与圆的位置关系的判断,还特别要重视直线与圆相交所得弦长及相切所得切线的问题。

3.其他就是直线、圆与其他知识点的交汇。

直线与圆的位置关系2023·新高考Ⅰ卷,62022·新高考Ⅱ卷,152023·新高考Ⅱ卷,152024·新高考Ⅱ卷,10(多选题的一个选项中考查)圆与圆的位置关系2022·新高考Ⅰ卷,14直线的斜率2022·新高考Ⅱ卷,3命题分析2024年高考新高考Ⅰ卷未直接考查直线与圆的相关知识点,Ⅱ卷在多选题的一个选项中考到了直线与圆相切的问题,其实在压轴题中也有直线斜率的影子,后续专题再呈现。

其实直线与圆直接考查的话,难度一般是较易的,一般计算不出错即可。

在一些上难度的题型中,往往有直线斜率的一些影子。

直线与圆考查应关注:直线、圆的方程及位置关系,直线方程的求解、直线过定点问题的求解、含参直线方程中参数取值范围求解、直线与圆的位置关系中涉及的弦长与切线方程的求解。

以常规题型、常规解法为主要方向,常结合基本不等式、函数、三角形面积等知识考查最值问题。

预计2025年高考还是主要考查直线与圆的位置关系。

试题精讲一、多选题1.(2024新高考Ⅱ卷·10)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个一、单选题1.(2023新高考Ⅰ卷·6)过点()0,2−与圆22410x y x +−−=相切的两条直线的夹角为α,则sin α=( )A .1B2.(2022新高考Ⅱ卷·3)图1是中国称为步,垂直距离称为举,图2是某古1111,,,OD DC CB BA 是相等的步,相邻桁的成公差为0.1的等差数列,且直线A .0.75B .0.8C .0.85D .0.93.(2022新高考Ⅰ卷·14)写出与圆是中国古代建筑中的举架结构,,,,AA BB CC DD ′′′′是桁是某古代建筑屋顶截面的示意图.其中111,DD CC 邻桁的举步之比分别为1111111,0.5,DD CC BB k OD DC CB ==OA 的斜率为0.725,则3k =( )与圆221x y +=和22(3)(4)16x y −+−=都相切的一条直是桁,相邻桁的水平距离1,,BB AA 是举,1231,AAk k BA ==.已知123,,k k k 一条直线的方程.由图像可知由图像可知,,共有三条直线符合条件又由方程22(3)(4)16x y −+−=和x 即为过两圆公共切点的切线方程即为过两圆公共切点的切线方程,,又易知两圆圆心所在直线OC 的方程为直线OC 与直线10x +=的交点为条件条件,方程为(当切线为l时,因为14 3OOk=,所以O到l的距离||19116td==+,解得当切线为m时,设直线方程为kx由题意211344pkk p=+++=,解得kp.(新高考卷)设点有公共点,则a的取值范围是.5.(2023新高考Ⅱ卷·15)已知直线:10l x my −+=与2:14C x y −+= 交于A ,B 两点,写出满足“ABC面积为85”的m 的一个值.一、直线的倾斜角和斜率1、直线的倾斜角若直线l 与x 轴相交,则以x 轴正方向为始边,绕交点逆时针旋转直至与l 重合所成的角称为直线l 的倾斜角,通常用,,, αβγ表示(1)若直线与x 轴平行(或重合),则倾斜角为0 (2)倾斜角的取值范围[0),∈απ 2、直线的斜率设直线的倾斜角为α,则α的正切值称为直线的斜率,记为tan =k α (1)当2=πα时,斜率不存在;所以竖直线是不存在斜率的(2)倾斜角α与斜率k 的关系当0=k 时,直线平行于轴或与轴重合;当0>k 时,直线的倾斜角为锐角,倾斜角随k 的增大而增大; 当0<k 时,直线的倾斜角为钝角,倾斜角随k 的增大而增大; 3、过两点的直线斜率公式已知直线上任意两点,11(),A x y ,22(),B x y 则2121−=−y y k x x (1)直线的斜率是确定的,与所取的点无关.(2)若12=x x ,则直线AB 的斜率不存在,此时直线的倾斜角为90° 4、三点共线两直线,AB AC 的斜率相等→、、A B C 三点共线;反过来,、、A B C 三点共线,则直线,AB AC 的斜率相等(斜率存在时)或斜率都不存在.二、直线的方程1、直线方程的五种形式在已知曲线类型的前提下,求曲线(或直线)方程的思路通常有两种:(1)直接法:寻找决定曲线方程的要素,然后直接写出方程,例如在直线中,若用直接法则需找到两个点,或者一点一斜率(2)间接法:若题目条件与所求要素联系不紧密,则考虑先利用待定系数法设出曲线方程,然后再利用条件解出参数的值(通常条件的个数与所求参数的个数一致) 3、线段中点坐标公式若点12,P P 的坐标分别为1122()(),,,x y x y 且线段12PP 的中点M 的坐标为(),x y ,则121222+= + = x x x y y y ,此公式为线段12PP 的中点坐标公式. 4、两直线的夹角公式若直线11y k x b =+与直线22y k x b =+的夹角为α,则2112tan 1k k k k α−=+.三、两直线平行与垂直的判定两条直线平行与垂直的判定以表格形式出现,如表所示. 两直线方程平行垂直11112222:0:0++=++=l A x B y C l A x By C1221122100且−=−≠A B A B B C B C12120+=A A B B111222::=+=+l y k x b l y k x b (斜率存在)11,22::==l x x l x x (斜率不存在)1212,=≠k k b b 或 1212,,==≠x x x x x x121=−i k k 或12与k k 中有一个为0,另一个不存在.四、三种距离1、两点间的距离平面上两点111222(,),(,)P x y P x y 的距离公式为12||=P P. 特别地,原点O (0,0)与任一点P (x ,y )的距离||=OP 2、点到直线的距离点000(,)P x y 到直线:0++=l Ax By C 的距离=d 特别地,若直线为l :x =m ,则点000(,)P x y 到l 的距离0||=−d m x ;若直线为l :y =n ,则点000(,)P x y 到l 的距离0||=−d n y 3、两条平行线间的距离已知12,l l 是两条平行线,求12,l l 间距离的方法:(1)转化为其中一条直线上的特殊点到另一条直线的距离.(2)设1122:0,:0++=++=l Ax By C l Ax By C ,则1l 与2l 之间的距离=d注:两平行直线方程中,x ,y 前面对应系数要相等. 4、双根式双根式()=±f x 型函数求解,首先想到两点间的距离,或者利用单调性求解.五、圆1、圆的四种方程(1)圆的标准方程:222()()−+−=x a y b r ,圆心坐标为(a ,b ),半径为(0)>r r(2)圆的一般方程:22220(40)++++=+−>x y Dx Ey F D E F ,圆心坐标为,22−− D E ,半径r(3)圆的直径式方程:若1122(,),(,)A x y B x y ,则以线段AB 为直径的圆的方程是1212()()()()0−−+−−=x x x x y y y y2、点与圆的位置关系判断(1)点00(,)P x y 与圆222()()−+−=x a y b r 的位置关系: ①222()()−+−>⇔x a y b r 点P 在圆外; ②222()()−+−=⇔x a y b r 点P 在圆上; ③222()()−+−<⇔x a y b r 点P 在圆内.(2)点00(,)P x y 与圆220++++=x y Dx Ey F 的位置关系:①2200000++++>⇔x y Dx Ey F 点P 在圆外; ②2200000++++=⇔x y Dx Ey F 点P 在圆上; ③2200000++++<⇔x y Dx Ey F 点P 在圆内.六、直线与圆的位置关系1、直线与圆的位置关系判断(1)几何法(圆心到直线的距离和半径关系)圆心(,)a b 到直线0Ax By C ++=的距离,则d =:d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离(2)代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数)由2220()()Ax By C x a y b r++= −+−= , 消元得到一元二次方程20p x q x t ++=,20p x q x t ++=判别式为∆,则:0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.七、两圆位置关系的判断用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则:d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r −<<+⇔两圆相离 d R r =−⇔两圆内切;0d R r ≤<−⇔两圆内含(0d =时两圆为同心圆)设两个圆的半径分别为R r ,,R r >,圆心距为d ,则两圆的位置关系可用下表来表示: 位置关系 相离 外切 相交 内切 内含几何特征 d R r >+d R r =+R r d R r −<<+d R r =−d R r <−代数特征 无实数解 一组实数解 两组实数解 一组实数解 无实数解 公切线条数 4321【直线与圆常用结论直线与圆常用结论】】一、直线1、点关于点对称点关于点对称的本质是中点坐标公式:设点11(),P x y 关于点00(),Q x y 的对称点为22(),′P x y ,则根据中点坐标公式,有12012022+=+ = x x x y y y 可得对称点22(),′P x y 的坐标为0101(22),−−x x y y 2、点关于直线对称点11(),P x y 关于直线:0++=l Ax By C 对称的点为22(),′P x y ,连接′PP ,交l 于M 点,则l 垂直平分′PP ,所以′⊥PP l ,且M 为′PP 中点,又因为M 在直线l 上,故可得12121022′⋅=− ++++= l PP k k x x y y AB C ,解出22(),x y 即可.3、直线关于点对称法一:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;法二:求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 4、直线关于直线对称求直线1:0++=l ax by c ,关于直线2:0++=l dx ey f (两直线不平行)的对称直线3l 第一步:联立12,l l 算出交点00(),P x y第二步:在1l 上任找一点(非交点)11(),Q x y ,利用点关于直线对称的秒杀公式算出对称点22(),′Q x y 第三步:利用两点式写出3l 方程 5、常见的一些特殊的对称点(),x y 关于x 轴的对称点为(),−x y ,关于y 轴的对称点为(),−x y .点(),x y 关于直线=y x 的对称点为(),y x ,关于直线=−y x 的对称点为(),−−y x . 点(),x y 关于直线=x a 的对称点为(2),−a x y ,关于直线=y b 的对称点为(2),−x b y . 点(),x y 关于点(),a b 的对称点为(22),−−a x b y .点(),x y 关于直线+=x y k 的对称点为(),−−k y k x ,关于直线−x y =k 的对称点为(),+−k y x k . 6、过定点直线系过已知点00(),P x y 的直线系方程00()−=−y y k x x (k 为参数). 7、斜率为定值直线系斜率为k 的直线系方程=+y kx b (b 是参数). 8、平行直线系与已知直线0++=Ax By C 平行的直线系方程0++=Ax By λ(λ为参数). 9、垂直直线系与已知直线0++=Ax By C 垂直的直线系方程0−+=Bx Ay λ(λ为参数). 10、过两直线交点的直线系过直线1111:0++=l A x B y C 与2222:0++=l A x B y C 的交点的直线系方程:111222()0+++++=A x B y C A x B y C λ(λ为参数).二、圆1、圆的参数方程①222(0)+=>x y r r 的参数方程为cos sin = =x r y r θθ(θ为参数);②222()()(0)−+−=>x a y b r r 的参数方程为cos sin =+ =+x a r y b r θθ(θ为参数).注意:对于圆的最值问题,往往可以利用圆的参数方程将动点的坐标设为(cos ,sin )++a r b r θθ(θ为参数,,()a b 为圆心,r 为半径),以减少变量的个数,建立三角函数式,从而把代数问题转化为三角问题,然后利用正弦型或余弦型函数的有界性求解最值. 2、关于圆的切线的几个重要结论(1)过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=. (2)过圆222()()x a y b r −+−=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r −−+−−=(3)过圆220x y D x E y F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4)求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解: ①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x −=−,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.一、单选题1.(2024·江西新余·二模)已知直线0x ay −=交圆C:2220x y y +−−=于M ,N 两点,则“MCN △为正三角形”是“0a =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2024·陕西西安·三模)若过点0,1P 可作圆22240x y x y a +−−+=的两条切线,则a 的取值范围是( ) A .()3,+∞B .()1,3−C .()3,5D .()5,+∞【答案答案】】C【分析分析】】根据点在圆外即可求解.【详解详解】】圆22240x y x y a +−−+=,即圆()()22125x y a −+−=−,则50a −>,解得5a <.的距离的最大值为( ) A .1B .2C .3D .44.(2024·四川成都·三模)已知直线1:10l x ay −+= 与:11C x a y −+−= 相交于 A B , 两点,若ABC 是直角三角形,则实数 a 的值为( )A .1 或 1−B 或C .17− 或 1−D .17− 或5.(2024·湖南邵阳·三模)已知直线l :1x y +=,过直线l 上的任意一点P 作圆O 的切线PA ,PB ,切点分别为A ,B ,则APB ∠的最大值为( ) A .3π4B .2π3C .π2D .π6当OP 最小时最小时,,则sin APO ∠又因为OP 的最小值即为圆心此时2sin ,2APO APO ∠=∠故选故选::C . 6.(2024·重庆·二模)已知圆:O 若92PA PB ⋅= ,则OP =( ) A B .3C .设,APO BPO OP α∠=∠=则23sin ,cos x xxαα==cos cos212sin APB ∠α==−3,x y P +=是圆O 外一点,过点P 作圆O 的两条切线7.(2024·北京·三模)已知圆()2:11C x y +−=和两点()()(),0,,00A t B t t −>,若圆C 上存在点P ,使得0PA PB ⋅=,则t 的取值范围为( )A .(]0,1B .[]1,3C .[]2,3D .[]3,4故选故选::B A .()2,6B .()3,5C .()()2,35,6∪D .()()2,36,+∞∪9.(2024·北京·三模)已知直线,圆:16O x y +=,下列说法错误..的是()A .对任意实数a ,直线l 与圆O 有两个不同的公共点;B .当且仅当12a =−时,直线l 被圆O 所截弦长为C .对任意实数a ,圆O 不关于直线l 对称;D .存在实数a ,使得直线l 与圆O 相切.10.(2024·江西鹰潭·三模)已知m ∈R ,直线1:20l mx y m ++=与2:40l x my m −+=的交点P 在圆C :()()()222340x y r r −+−=>上,则r 的最大值是( )A ....【答案答案】】D【分析分析】】根据两直线方程可知两直线分别过定点且垂直根据两直线方程可知两直线分别过定点且垂直,,可求得P 点轨迹方程点轨迹方程,,再由圆与圆的位置关系找出圆心距与两圆半径之间的关系可得结果.二、多选题11.(2024·湖南长沙·三模)已知圆 ()22:24C x y ++=,直线 ()():1210l m x y m m ++−+=∈R ,则( )A .直线 l 恒过定点 ()1,1−B .当0m =时,圆C 上恰有三个点到直线l 的距离等于 1 C .直线l 与圆C 可能相切D .若圆C 与圆 22280x y x y a +−++=恰有三条公切线,则8a =12.(2024·山西临汾·三模)已知,E F 是以为半径的圆上任意两点,且满足,P是EF 的中点,若存在关于()3,0对称的,A B 两点,满足0PA PB ⋅=,则线段AB 长度的可能值为( )A .3B .4C .5D .613.(2024·河南郑州·三模)已知直线:10l ax by ++=(,a b 不同时为0),圆22:20C x y x +−=,则( )A .当221b a −=时,直线l 与圆C 相切B .当2a b +=−时,直线l 与圆C .当1,1a b ==−时,与圆C 外切D .当1,1a b ==−时,直线l 与坐标C 不可能相交外切且与直线l 相切的动圆圆心的轨迹是一条抛物线与坐标轴相交于,A B 两点,则圆C 上存在点P 抛物线满足0PA PB ⋅=14.(2024·山东青岛·三模)已知动点M N , 分别在圆()()221:121C x y −+−= 和 ()()222:343C x y −+−=上,动点P 在 x 轴上,则( )A .圆2C 的半径为3B .圆1C 和圆2C 相离C .PM PN +的最小值为D.过点P 做圆1C15.(2024·浙江温州·二模)已知圆1与圆2相交于122C AB C AB S S =△△,则实数a 的值可以是( )A .10B .2C .223D .14316.(2024·浙江绍兴·三模)已知M ,N 为圆224x y +=上的两个动点,点1,1P −,且PM PN ⊥,则()A .max2PM =B .maxMN=C .PMN 外接圆圆心的轨迹方程为22113222x y++−=D .PMN 重心的轨迹方程为22551666x y++−=对于C 中,设PMN 的外接圆的圆心则有22(1)(1)4(x y ++−=−即22113()()222x y ++−=,对于D 中,设PMN 的重心为点由C 项知PMN 的外接圆的圆心点三、填空题17.(2024·广东汕头·三模)已知圆(i )则圆C 的标准方程为;(ii )若直线AB 关于y a =对称的直线知圆C 经过()2,0A ,()0,2B ,()2,4C 三点, 的直线与圆C 有公共点,则a 的取值范围是.18.(2024·天津和平·三模)已知圆C 以点1,1为圆心,且与直线相切,则满足以上条件的圆C 的半径最大时,圆C 的标准方程为.19.(2024·内蒙古呼和浩特·二模)点1,P a −关于直线0x y −=的对称点在圆22(2)(4)13x y −+−=内,则实数a 的取值范围是.因为(),1Q a −在圆22(2)(4)13x y −+−=的内部的内部,,所以22(2)(14)13a −−+−<,解得40a -<<,即实数a 的取值范围是()4,0−. 故答案为故答案为::()4,0−.20.(2024·湖南·二模)已知直线l 是圆22:1O x y +=的切线,点()2,1A −和点()0,3B 到l 的距离相等,则直线l 的方程可以是.(写出一个满足条件的即可)。

高考数学专题08直线与圆-高考数学试题分项版解析(解析版).docx

高考数学专题08直线与圆-高考数学试题分项版解析(解析版).docx

高中数学学习材料马鸣风萧萧*整理制作专 题8 直线与圆1. 【2014高考安徽卷文第6题】过点(3,1)P -的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( ) A.]60π,( B.]30π,( C.]60[π, D.]30[π,2. 【2014高考北京卷文第7题】已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >, 若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4【答案】B【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两圆有交点即可,所以15m -=,故选B.【考点】本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力.3. 【2014高考大纲卷文第16题】直线l 1和l 2是圆222x y +=的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的交角的正切值等于 .4.【2014高考福建卷文第6题】已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是 ( ).20.20.30.30A x y B x y C x y D x y +-=-+=+-=-+=5. 【2014高考湖北卷文第17题】 已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上那个任意一点M ,都有||||MA MB λ=,则(1)=b ;(2)=λ .【答案】(1)21-;(2)21 【解析】试题分析:设),(y x M ,因为||||MA MB λ=,所以])2[()(22222y x y b x ++=+-λ,6.【2014高考湖南卷文第6题】若圆221:1C x y +=与圆222:680C x y x y m +--+=,则m =( ).21A .19B .9C .11D -7.【2014高考江苏卷第9题】在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 .8. 【2014高考全国2卷文第12题】设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )2,2⎡⎤-⎣⎦ (D )22,22⎡⎤-⎢⎥⎣⎦10.【2014高考四川卷文第9题】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )学科网A 、[5,25]B 、[10,25]C 、[10,45]D 、[25,45]11.【2014高考浙江卷文第5题】已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( )A.2-B. 4-C. 6-D.8-【答案】B12.【2014高考重庆卷文第14题】已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且 BC AC ⊥,则实数a 的值为_________.【答案】0或6【解析】试题分析:圆C 的标准方程为:()()22129x y ++-=,所以圆C 的圆心在()-12,,半径3r =又直线0x y a -+=与圆C 交于,A B 两点,且AC BC ⊥,所以圆心C 到直线0x y a -+=的距离322d =.所以,()221232211a --+=+-,整理得:33a -=解得:0a =或6a =. 考点:1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.13. 【2014高考江苏第18题】如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC的长;(2)当OM 多长时,圆形保护区的面积最大?yx14.【2014高考全国1文第20题】已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积。

高考数学真题专题九 解析几何第二十五讲 直线与圆

高考数学真题专题九  解析几何第二十五讲  直线与圆

2 专题九 解析几何第二十五讲 直线与圆一、选择题1.(2018 全国卷Ⅲ)直线 x + y + 2 = 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆(x - 2)2 + y 2 = 2上,则∆ABP 面积的取值范围是A .[2, 6]B .[4,8]C .[ 2,3 2]D .[2 2,3 2]2.(2018 天津)已知圆 x2 + y 2 ⎧⎪x = -1+ - 2x = 0的圆心为 C ,直线⎨2 t , 2( t 为参数)与该圆 ⎪ y = 3 - 2 t ⎩2相交于 A ,B 两点,则△ABC 的面积为.3.(2018 北京)在平面直角坐标系中,记d 为点 P (cos θ ,sin θ ) 到直线 x - my - 2 = 0 的距离,当θ , m 变化时, d 的最大值为 A .1B .2C .3D .4x 2 y2 4.(2017 新课标Ⅲ)已知椭圆C : + a 2 b 2= 1(a > b > 0) 的左、右顶点分别为 A 1 , A 2,且以线段 A 1 A 2 为直径的圆与直线bx - ay + 2ab = 0 相切,则C 的离心率为6 3 A.B .33C .2 D . 1335.(2017 新课标Ⅲ)在矩形 ABCD 中,AB = 1,AD = 2 ,动点 P 在以点C 为圆心且与 BD相切的圆上.若 AP = λ AB + μ AD ,则λ + μ 的最大值为A .3B . 2C .D .26.(2015 山东)一条光线从点(-2, -3) 射出,经 y 轴反射后与圆(x + 3)2 +( y - 2)2 =1相切,则反射光线所在直线的斜率为 A . - 5 或-3 B . - 3 或-2 C . - 5 或-4 D . - 4 或- 3352 34 53 47.(2015 广东)平行于直线2x + y +1 = 0 且与圆 x 2 + y 2 = 5相切的直线的方程是A . 2x + y + 5 = 0 或2x + y - 5 = 055 5 5 5 22B . 2x + y + = 0 或2x + y - = 0C . 2x - y + 5 = 0或2x - y - 5 = 0D . 2x - y + = 0 或2x - y - = 08.(2015 新课标 2)过三点 A (1,3) , B (4, 2) , C (1, -7) 的圆交于 y 轴于 M 、N 两点,则MN =A .2B .8C .4D .109.(2015 重庆)已知直线 l : x + ay -1 = 0(a ∈ R ) 是圆C : x 2 + y 2 - 4x - 2y +1 = 0的对称轴,过点 A (-4, a ) 作圆C 的一条切线,切点为 B ,则 AB = A .2B . 4C .6D . 210.(2014 新课标 2)设点 M (x ,1) ,若在圆O : x 2 + y 2 =1 上存在点 N ,使得∠OMN = 45°,则 x 0 的取值范围是⎡-1 1 ⎤⎡⎤⎡2 ⎤A . [-1,1]B . ⎢ , ⎥C . ⎣- 2, 2 ⎦ D . ⎢- , ⎥ ⎣ 2 2 ⎦⎣ 2 2 ⎦11.(2014 福建)已知直线l 过圆 x 2+( y - 3)2= 4 的圆心,且与直线 x + y +1 = 0 垂直,则l 的方程是A . x + y - 2 = 0B . x - y + 2 = 0C . x + y - 3 = 0D . x - y + 3 = 012.(2014 北京)已知圆C : (x - 3)2+( y - 4)2=1和两点 A (-m ,0) , B (m , 0) (m > 0) ,若圆C 上存在点P ,使得∠APB = 90,则m 的最大值为A . 7B . 6C . 5D . 413.(2014 湖南)若圆C : x 2+ y 2=1与圆C : x 2+ y 2- 6x - 8y + m = 0 外切,则m =12A . 21B .19C . 9D . -1114.(2014 安徽)过点 P (- 3,-1)的直线l 与圆 x 2 + y 2 =1有公共点,则直线l 的倾斜角的取值范围是66 102 17 2 5 ⎢ ⎪ πA .(0, ]6πB .(0, ]3πC .[0, ]6πD .[0, ]315.(2014 浙江)已知圆 x 2 + y 2 + 2x - 2 y + a = 0 截直线 x + y + 2 = 0 所得弦的长度为 4,则实数a 的值是A .-2B .-4C .-6D .-816.(2014 四川)设m ∈ R ,过定点 A 的动直线 x + my = 0 和过定点 B 的动直线mx - y - m + 3 = 0 交于点 P (x , y ) ,则| PA | + | PB | 的取值范围是A .[ 5, 2 5]B .[ 10, 2 5]C .[ 10, 4 5]D .[2 5, 4 5]17.(2014 江西)在平面直角坐标系中, A , B 分别是 x 轴和 y 轴上的动点,若以AB 为直径的圆C 与直线2x + y - 4 = 0 相切,则圆C 面积的最小值为 A .4πB .3π C . (6 - 2 5)πD .5π54 418.(2013 山东)过点(3,1)作圆(x -1)2+ y 2 =1的两条切线,切点分别为 A ,B ,则直线AB 的方程为A . 2x + y - 3 = 0B . 2x - y - 3 = 0C . 4x - y - 3 = 0D . 4x + y - 3 = 019.(2013 重庆)已知圆C : (x - 2)2+( y - 3)2=1,圆C : (x - 3)2+( y - 4)2= 9 ,M , N12分别是圆C 1 , C 2 上的动点, P 为 x 轴上的动点,则 PM + PN 的最小值为A . 5 - 4B . -1C . 6 - 2D .20.(2013 安徽)直线 x + 2y - 5 + = 0 被圆 x 2 + y 2 - 2x - 4y = 0截得的弦长为A .1B .2C .4D . 4 21.(2013 新课标 2)已知点 A (-1, 0) ;B (1, 0) ;C (0,1) ,直线 y = ax + b (a > 0) 将△ ABC分割为面积相等的两部分,则b 的取值范围是 ⎛ A . (0,1)B .1- 2 , 1 ⎫ 2 2 ⎪ ⎛ C .1- 2 , 1 ⎤ 2 3⎦ D . ⎡1 , 1 ⎫⎣3 2⎝⎭⎝⎭22.(2013 陕西)已知点 M (a ,b ) 在圆O : x 2 + y 2 = 1 外, 则直线ax + by = 1与圆 O 的位置关1762 2 系是A .相切B .相交C .相离D .不确定23.(2013 天津)已知过点 P (2,2) 的直线与圆(x -1)2 + y 2 = 5 相切, 且与直线ax - y +1 = 0垂直, 则a = A . - 12B.1C .2D . 1224.(2013 广东)垂直于直线 y = x +1且与圆x 2 + y 2 = 1相切于第一象限的直线方程是A . x + y - = 0B . x + y +1 = 0C . x + y -1 = 0D . x + y + = 025.(2013 新课标 2)设抛物线C : y 2 = 4x 的焦点为 F ,直线l 过 F 且与C 交于 A , B 两点.若| AF |= 3 | BF | ,则l 的方程为A. y = x -1或 y = -x +1B. y =(x -1) 或 y = - 33 (x -1)3C. y = 3(x -1) 或 y = - 3(x -1)D. y = 2 (x -1) 或 y = - 2 2 (x -1) 226.(2012 浙江)设a ∈ R ,则“ a = 1 ”是“直线l 1 : ax + 2 y -1 = 0 与直线l 2 :x + (a +1) y + 4 = 0 平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件27.(2012 天津)设m ,n ∈ R ,若直线(m +1)x +(n +1) y - 2=0 与圆(x -1)2 +(y -1)2 =1相切,则m +n 的取值范围是 A .[1- 3,1+ 3]B . ( -∞,1- 3] [1+ 3,+∞)C .[2 - 2 2,2+2 2]D . ( -∞,2 - 2 2] [2+2 2,+∞)28.(2012 湖北)过点 P (1,1) 的直线,将圆形区域{(x , y ) | x 2 + y 24}分为两部分,使得这两部分的面积之差最大,则该直线的方程为A . x + y - 2 = 0B . y -1 = 0C . x - y = 0D . x + 3y - 4 = 033 29.(2012 天津)在平面直角坐标系 xOy 中,直线3x + 4y - 5 = 0 与圆 x 2 + y 2 =4 相交于A ,B 两点,则弦 AB 的长等于A. 3B. 2 C . D .130.(2011 北京)已知点 A (0,2),B (2,0).若点 C 在函数 y = x 的图像上,则使得ΔABC 的面积为 2 的点 C 的个数为 A .4B .3C .2D .131.(2011 江西)若曲线C : x 2 + y 2 - 2x = 0与曲线C : y ( y - mx - m ) = 0 有四个不同12的交点,则实数 m 的取值范围是A .( - 3 ,3 ) B .( -3 ,0) (0,3 )3 333C .[ -3 ,3 ] D .( -∞ , -3 ) (3 ,+ ∞ )333332.(2010 福建)以抛物线 y 2 = 4x 的焦点为圆心,且过坐标原点的圆的方程为A .x 2 +y 2 +2x =0 B . x 2 +y 2 +x =0 C . x 2 +y 2 - x =0 D .x 2 +y 2 - 2x =033.(2010 广东)若圆心在 x 轴上、半径为 5 的圆O 位于 y 轴左侧,且与直线 x + 2 y = 0相切,则圆O 的方程是A. (x - 5)2 + y 2= 5B. (x + 5)2 + y 2= 5C . (x - 5)2 + y 2= 5D . (x + 5)2 + y 2 = 5二、填空题34.(2018 江苏)在平面直角坐标系 xOy 中,A 为直线 l : y = 2x 上在第一象限内的点,B (5, 0),以 AB 为直径的圆C 与直线 l 交于另一点D .若 AB ⋅ C D = 0 ,则点 A 的横坐标为.35.(2017 江苏)在平面直角坐标系 xOy 中,A (-12, 0) ,B (0, 6) ,点 P 在圆O :x 2 + y 2 = 50上,若 PA ⋅ PB ≤ 20 ,则点 P 的横坐标的取值范围是.36.(2015 湖北)如图,圆C 与 x 轴相切于点T (1, 0) ,与 y 轴正半轴交于两点 A , B (B 在 A33NA NB MAMBNBNANBNA的上方),且AB=2.(Ⅰ)圆C的标.准.方程为;(Ⅱ)过点A 任作一条直线与圆O : x2 +y2 = 1 相交于M , N 两点,下列三个结论:①=;②- = 2 ;③+ = 2 2 .其中正确结论的序号是. (写出所有正确结论的序号)37.(2014 江苏)在平面直角坐标系xOy 中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为.(2014 重庆)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B 两点,且∆ABC 为等边三角形,则实数a = .39.(2014 湖北)直线l:y=x+a和l:y=x+b将单位圆C:x2+y2=1分成长度相等1 2的四段弧,则a2 +b2 = .40.(2014 山东)圆心在直线x - 2 y = 0 上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2 3 ,则圆C 的标准方程为.41.(2014 陕西)若圆C的半径为1,其圆心与点(1,0) 关于直线y=x对称,则圆C的标准方程为.42.(2014 重庆)已知直线x -y +a = 0 与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC ⊥BC ,则实数a 的值为.43.(2014 湖北)已知圆O : x2 +y2 =1 和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O 上任意一点M ,都有| MB |=λ| MA | ,则(Ⅰ)b=;MAMBMAMB(Ⅱ)λ= .44.(2013 浙江)直线y = 2x + 3 被圆x2+y2-6x-8y=0所截得的弦长等于.45.(2013 湖北)已知圆O:x2 +y2 = 5 ,直线l:x cosθ+y sinθ=1( 0 <θ<π).设圆O上2到直线l 的距离等于1 的点的个数为k ,则k = .46.(2012 北京)直线y=x被圆x2+(y-2)2=4截得的弦长为. 47.(2011 浙江)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m= .48.(2011 辽宁)已知圆C 经过A(5,1),B(1,3)两点,圆心在x 轴上,则C 的方程为.49.(2010 新课标)圆心在原点上与直线x +y - 2 = 0 相切的圆的方程为.50.(2010 新课标)过点A(4,1)的圆C 与直线x -y = 0 相切于点B(2,1) ,则圆C 的方程为.三、解答题51.(2016 年全国I)设圆x2 +y2 + 2x -15 = 0 的圆心为A ,直线l 过点B(1, 0) 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I)证明EA +EB 为定值,并写出点E 的轨迹方程;(I I)设点E 的轨迹为曲线C1 ,直线l 交C1 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.52.(2014 江苏)如图,为了保护河上古桥OA ,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m.经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan∠BCO =4 .3(I)求新桥BC 的长;(I I)当OM 多长时,圆形保护区的面积最大?2 653.(2013 江苏)如图,在平面直角坐标系 xOy 中,点 A (0,3) ,直线l :y = 2x - 4 .设圆C的半径为 1,圆心在l 上.y(I ) 若圆心C 也在直线 y = x - 1上,过点 A 作圆C 的切线,求切线的方程; (I I ) 若圆C 上存在点 M ,使 MA = 2MO ,求圆心C 的横坐标a 的取值范围.54.(2013 新课标 2)在平面直角坐标系 xOy 中,已知圆 P 在 x 轴上截得线段长为2 , 在 y轴上截得线段长为2 3 .(I ) 求圆心 P 的轨迹方程;(I I ) 若 P 点到直线 y = x 的距离为2 ,求圆 P 的方程.255.(2011 新课标)在平面直角坐标系 xoy 中,曲线y = x 2 - 6x + 1与坐标轴的交点都在圆C 上.(I ) 求圆 C 的方程;(I I )若圆 C 与直线 x - y + a = 0 交于 A ,B 两点,且OA ⊥ OB , 求a 的值.56.(2010 北京)已知椭圆 C 的左、右焦点坐标分别是(-2, 0) ,( 2, 0) ,离心率是, 3lAO直线y t 椭圆C 交与不同的两点M ,N ,以线段MN 为直径作圆P ,圆心为P .(I)求椭圆C 的方程;(II)若圆P 与x 轴相切,求圆心P 的坐标;(Ⅲ)设Q(x, y) 是圆P 上的动点,当t 变化时,求y 的最大值.。

专题3:直线和圆高考真题赏析

专题3:直线和圆高考真题赏析

专题3:直线和圆高考真题赏析一、单选题1.2020年全国统一高考数学试卷(理科)(新课标Ⅰ)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=2.2020年全国统一高考数学试卷(文科)(新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A .5B .25C .35D .453.2016年全国普通高等学校招生统一考试理科数学(新课标2卷) 圆的圆心到直线的距离为1,则( )A .B .C .D .24.2018年全国卷Ⅲ理数高考试题直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是 A .[]26,B .[]48,C .232D .2232⎡⎣5.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知三点A (1,0),B (03),C (23,则△ABC 外接圆的圆心到原点的距离为( ) A .53 B 21C 25D .43二、填空题6.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷)设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.7.2016年全国普通高等学校招生统一考试文科数学(新课标2卷)设直线2y x a =+与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若23AB =,则圆C 的面积为________8.2016年全国普通高等学校招生统一考试文科数学(新课标3卷)已知直线l :360x y -+=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点.则CD =_________.9.已知圆C :22(1)(4)10x y -+-=上存在两点A ,B ,P 为直线x =5上的一个动点,且满足AP ⊥BP ,则点P 的纵坐标取值范围是_______. 10.2015年全国普通高等学校招生统一考试数学(江苏卷) 在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为 11.2020年江苏省高考数学试卷 在平面直角坐标系xOy 中,已知3(0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________. 12.2017年全国普通高等学校招生统一考试数学(江苏卷精)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若PA ·PB ≤20,则点P 的横坐标的取值范围是_________三、双空题13.2020年浙江省高考数学试卷设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.参考答案1.D 【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程. 【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l的距离为2d ==>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =当直线MP l ⊥时,min MP , min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,1x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D. 【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题. 2.B 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=的距离为25. 故选:B. 【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题. 3.A 【解析】 试题分析:由配方得,所以圆心为,因为圆的圆心到直线的距离为1,所以,解得,故选A.【考点】 圆的方程,点到直线的距离公式【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围. 4.A 【解析】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB 22=点P 在圆22x 22y -+=()上 ∴圆心为(2,0),则圆心到直线距离1202222d ++==故点P 到直线x y 20++=的距离2d 的范围为2,32⎡⎤⎣⎦则[]22122,62ABPSAB d d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题. 5.B 【详解】选B.考点:圆心坐标6.[1,1]- 【解析】由题意知:直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,如图,过OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为∠OMN=45,所以sin 45OA OM =212OM ≤,解得2OM M (0x ,1),所以2012OM x =+≤011x -≤≤,故0x 的取值范围是[1,1]-.考点:本小题主要考查考查直线与圆的位置关系,考查数形结合能力和逻辑思维能力,考查同学们分析问题和解决问题的能力,有一定的区分度. 7.4π 【解析】因为圆心坐标与半径分别为2(0,),2=+C a r a ,所以圆心到直线的距离222a a a d -==22322a a +=+,解之得22a =,所以圆的面积2(22)4πππ==+=S r ,应填答案4π.8.4 【解析】试题分析:由60x +=,得6x =-,代入圆的方程,整理得260y -+=,解得12y y ==120,3x x ==-,所以AB ==l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,4cos30AB CD ==︒.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.9.[2,6] 【解析】 【分析】由题分析可得∠CPA 最大为45°,即sin ∠,解不等式CA CP即得解.【详解】要使AP ⊥BP ,即∠APB 的最大值要大于或等于90°, 显然当PA 切圆C 于点A ,PB 切圆C 于点B 时,∠APB 最大, 此时∠CPA 最大为45°,则sin ∠, 即CA CP≥2, 设点P(5,0y ), 解得2≤0y ≤6. 故答案为:[2,6] 【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.10.22(1) 2.x y -+= 【解析】==≤≤,当且仅当1m =时取等号,所以半径最大为r =22(1) 2.x y -+=考点:直线与圆位置关系 11.【分析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形PAB 面积,最后利用导数求最大值. 【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题. 12.[- 【解析】设(,)P x y ,由20PA PB ⋅≤,易得250x y -+≤,由2225050x y x y -+=⎧⎨+=⎩,可得5:5x A y =-⎧⎨=-⎩或1:7x B y =⎧⎨=⎩,由250x y -+≤得P 点在圆左边弧AB 上,结合限制条件x -≤≤P 横坐标的取值范围为[-.点睛:对于线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数的最值或取值范围.13.3 3- 【分析】由直线与两圆相切建立关于k ,b 的方程组,解方程组即可. 【详解】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C 到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.。

2023年高考数学真题题源解密(新高考全国卷)专题11 直线与圆(解析版)

2023年高考数学真题题源解密(新高考全国卷)专题11  直线与圆(解析版)

专题11直线与圆目录一览2023真题展现考向一直线与圆相切考向二直线与圆相交真题考查解读近年真题对比考向一直线与圆相切考向二直线与圆的位置关系命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与圆相切1.(2023•新高考Ⅰ•第6题)过点(0,﹣2)与圆x 2+y 2﹣4x ﹣1=0相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B解:圆x 2+y 2﹣4x ﹣1=0可化为(x ﹣2)2+y 2=5,则圆心C (2,0),半径为r =5;设P (0,﹣2),切线为PA 、PB ,则PC =22+22=22,△PAC中,sin �2=5cos �2==3所以sin α=2sin �2cos �2=2×5×3=154.故选:B .考向二直线与圆相交2.(2023•新高考Ⅱ•第15题)已知直线x ﹣my +1=0与⊙C :(x ﹣1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.【答案】2(或﹣2或12或−12)解:由圆C :(x ﹣1)2+y 2=4,可得圆心坐标为C (1,0),半径为r =2,因为△ABC 的面积为85,可得S △ABC =12×2×2×sin ∠ACB =85,解得sin ∠ACB =45,设12∠ACB =θ所以∴2sin θcos θ=45,可得2푠푖푛휃 푠휃푠푖푛2휃+ 푠2휃=45,∴2푡푎푛휃푡푎푛2휃+1=45,∴tan θ=12或tan θ=2,∴cos θ=cos θ=∴圆心眼到直线x ﹣my +1=0的距离d===解得m =±12或m =±2.故答案为:2(或﹣2或12或−12).【命题意图】考查直线的倾斜角与斜率、直线方程、两直线平行与垂直、距离公式、圆的方程、直线与圆的位置关系、圆与圆的位置关系.【考查要点】常考查直线与圆的位置关系、动点与圆、圆与圆的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆及其方程高考真题分类解析(文科全国卷)一、高考考点梳理
(一)、直线的倾斜角与斜率
1.直线的倾斜角
①定义:在平面直角坐标系中,对于一条与x轴相交的直线L,把x轴(正方向)按逆时针方向绕着交点旋转到和直线L重合所成的角,叫作直线L的倾斜角,当直线L和x轴平行时,它的倾斜角为0.
②范围:直线倾斜角的取值范围是[0,π).
2.直线的斜率
①定义:一条直线的倾斜角α的正切值叫作这条直线的斜率。

斜率常用小写字母k表示,即k=tanα,倾斜角是90°的直线斜率不存在.
②过两点的直线的斜率公式
经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为:k=y
2
-y1
x
2
-x1
.
(二) 、直线方程的五种形式
(三) 、两条直线的平行与垂直
1.两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2,
则有l1∥l2⇔k1=k2. 特别地,当直线l1,l2的斜率都不存在时,l1与l2也平行.
2.两条直线垂直:如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1. 特别地,当一条直线斜率为零,另一条直线斜率
不存在时,两条直线也垂直. (四) 、两条直线的交点坐标
1.直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0
的解一一对应. (1).相交⇔方程组有唯一解,交点坐标就是方程组的解; (2).平行⇔方程组无解; (3).重合⇔方程组有无数个解. (五) 、距离公式 1. 两点间的距离公式
平面上任意两点A (x 1,y 1),B (x 2,y 2)间的距离公式为|AB |=(x 2-x 1)2+(y 2-y 1)2 2.点到直线的距离公式:
平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |
A 2+
B 2
.
3.两条平行直线间的距离公式
:一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离。

(六) 、线段的中点坐标公式
若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),
则⎩
⎪⎨⎪⎧x =x 1
+x 2
2,y =y 1
+y 2
2,
(七) 、圆的定义和圆的方程
(八) 、点与圆的位置关系
平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: (1).d >r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外; (2).d =r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上; (3).d <r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内. (九) 、判断直线与圆的位置关系的常用方法
设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,
Ax +By +C =0
消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.
(十) 、判断圆与圆的位置关系的常用方法
设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:
二、高考真题题型分类突破
题型一 圆的方程
【例1】(2018全国Ⅱ卷)设抛物线C:y 2=4x 的焦点为F ,过F 且斜率为k(k>0)
的直线L与C交于A,B两点,|AB|=8.
(1)求L的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
解析:(1)由题意得F(1,0),L的方程为y=k(x-1)(k>0).
设A(x
1,y
1
),B(x
2
,y
2
),联立y2=4x和y=k(x-1)(k>0),得k2x2-(2k2+4)x+k2=0.
其中Δ=16k2+16>0,故x
1+x
2
=(2k2+4)/ k2.
所以|AB|= x
1+x
2
+2=(4k2+4)/ k2=8 ,解得k=-1(舍去)或k=1.
故直线L的方程为y=x-1.
(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.
设所求圆的圆心坐标为(x
0,y
),则联立y
=-x
+5和(x
+1)2= (x
- y
-1)2/2 + 16,
解得x
0=3,y
=2或x
=11,y
=-6.
故所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
题型二直线与圆的综合问题
【例2】(2018全国Ⅲ卷)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P 在圆(x-2)2+y2=2上,则ΔABP面积的取值范围是( )
A.[2,6] B.[4,8] C. D.
解析:因为直线x+y+2=0分别与x轴,y轴交于A,B两点,A(-2,0),B(0,-2),则|AB|= 。

因为点P在圆(x-2)2+y2=2上,所以圆心(2,0)到直线x+y+2=0的
距离d
1= 。

所以点P到直线x+y+2=0的距离d
2
的取值范围是。

故S
ΔABP =|AB|d
2
= d
2
=[2,6].故选A.
【例3】(2018全国Ⅰ卷)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,
则|AB|=________.
解析:圆的标准方程为x2+(y+1)2=4,圆心为(0,-1),半径R=2,
圆心到直线的距离d= ,所以|AB|= = .
【例4】(2017全国Ⅲ卷)在直角坐标系中,曲线与轴交于两点,点的坐标为(0,1)。

当变化时,解答下列问题:
(1)能否出现的情况?说明理由;
(2) 证明过三点的圆在轴上截得的弦长为定值。

解析:(1)令
,,又


的根
假设
成立,

不能出现的情况 (2)令圆与轴的交点为

令圆的方程为 令

的根为

令得……. ①
点在①上,
解得或

轴上的弦长为3,为定值. 【例5】(2015全国Ⅰ卷)已知过点且斜率为k 的直线L 与圆C :
交于M ,N 两点.
(1)求k 的取值范围;
(2),其中O 为坐标原点,求. 解析:(1)由题设,可知直线L 的方程为.
()1,0A ()()22
231x y -+-=12OM ON ⋅=u u u u r u u u r
MN 1y kx =+
因为L 与C
.
. 所以的取值范围是
.
(2)设. 将代入方程,整理得,
所以
, 由题设可得
,解得
,所以L 的方程为.
故圆心在直线
L 上,所以.
1<k <k 桫1122(,),(,)M x y N x y 1y kx =+()
()2
2
231x y -+-=22(1)-4(1)70k x k x +++=1212224(1)7
,.11k x x x x k k
++=
=++
2121212122
4(1)1181k k OM ON x x y y k x x k x x k
u u u u r u u u r +?+=++++=++2
4(1)
8=121k k k +++=1k 1y x =+||2MN =。

相关文档
最新文档