2013直线与方程高考题
(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
2013年全国各地高考招生物理试题汇编--直线运动

13【2013广东高考】.某航母跑道长200m.飞机在航母上滑行的最大加速度为6m/s2,起飞需要的最低速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为A.5m/sB.10m/sC.15m/sD.20m/s答案:B19(2013全国卷大纲版).将甲乙两小球先后以同样的速度在距地面不同高度处竖直向上抛出,抛出时间间隔为2s,他们运动的V-t图像分别如直线甲、乙所示。
则()A.t=2s时,两球的高度差一定为40mB.t=4s时,两球相对于各自抛出点的位移相等C.两球从抛出至落地到地面所用的时间间隔相等D.甲球从抛出至达到最高点的时间间隔与乙球的相等答案:BD11【2013江苏高考】. (10 分)某兴趣小组利用自由落体运动测定重力加速度,实验装置如图所示. 倾斜的球槽中放有若干个小铁球,闭合开关K,电磁铁吸住第1个小球. 手动敲击弹性金属片M,M 与触头瞬间分开, 第1 个小球开始下落,M 迅速恢复,电磁铁又吸住第2 个小球. 当第1 个小球撞击M时,M 与触头分开,第2 个小球开始下落……. 这样,就可测出多个小球下落的总时间.(1)在实验中,下列做法正确的有_________.(A)电路中的电源只能选用交流电源(B)实验前应将M 调整到电磁铁的正下方(C)用直尺测量电磁铁下端到M 的竖直距离作为小球下落的高度(D)手动敲击M 的同时按下秒表开始计时(2)实验测得小球下落的高度H =1. 980 m,10 个小球下落的总时间T =6. 5 s. 可求出重力加速度g = ______ m/ s2. (结果保留两位有效数字)(3)在不增加实验器材的情况下,请提出减小实验误差的两个办法.(4)某同学考虑到电磁铁在每次断电后需要时间Δt 磁性才消失,因此,每个小球的实际下落时间与它的测量时间相差Δt,这导致实验误差. 为此,他分别取高度H1和H2,测量n个小球下落的总时间T1和T2. 他是否可以利用这两组数据消除Δt 对实验结果的影响? 请推导说明. 11答案. (1)B D (2) 9.4(3)增加小球下落的高度;多次重复实验,结果取平均值.(其他答案只要合理也可)19【2013广东高考】.如图7,游乐场中,从高处A到水面B处有两条长度相同的光滑轨道。
精编2013年全国各地高考招生物理试题精编直线运动及解析

13【2013广东高考】某航母跑道长200飞机在航母上滑行的最大加速度为6/2,起飞需要的最低速度为50/那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为A5/ B10/15/ D20/答案:B19(2013全国卷大纲版).将甲乙两小球先后以同样的速度在距地面不同高度处竖直向上抛出,抛出时间间隔为2,他们运动的V-图像分别如直线甲、乙所示。
则()A.=2时,两球的高度差一定为40B.=4时,两球相对于各自抛出点的位移相等.两球从抛出至落地到地面所用的时间间隔相等D.甲球从抛出至达到最高点的时间间隔与乙球的相等答案:BD11【2013江苏高考】(10 分)某兴趣小组利用自由落体运动测定重力加速度,实验装置如图所示倾斜的球槽中放有若干个小铁球,闭合开关K,电磁铁吸住第1 个小球手动敲击弹性金属片M,M 与触头瞬间分开, 第1 个小球开始下落,M 迅速恢复,电磁铁又吸住第2 个小球当第1 个小球撞击M 时,M 与触头分开,第2 个小球开始下落……这样,就可测出多个小球下落的总时间(1)在实验中,下列做法正确的有_________(A)电路中的电只能选用交流电(B)实验前应将M 调整到电磁铁的正下方()用直尺测量电磁铁下端到M 的竖直距离作为小球下落的高度(D)手动敲击M 的同时按下秒表开始计时(2)实验测得小球下落的高度H =1 980 ,10 个小球下落的总时间T =6 5 可求出重力加速度g = ______ / 2 (结果保留两位有效字)(3)在不增加实验器材的情况下,请提出减小实验误差的两个办法(4)某同考虑到电磁铁在每次断电后需要时间Δ磁性才消失,因此,每个小球的实际下落时间与它的测量时间相差Δ,这导致实验误差为此,他分别取高度H1和H2,测量个小球下落的总时间T1和T2他是否可以利用这两组据消除Δ对实验结果的影响? 请推导说明11答案(1)B D (2) 94(3)增加小球下落的高度;多次重复实验,结果取平均值(其他答案只要合也可)19【2013广东高考】.如图7,游乐场中,从高处A到水面B处有两条长度相同的光滑轨道。
高三数学直线方程试题

高三数学直线方程试题1.若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2elnx(其中e为自然对数的底数),根据你的数学知识,推断h(x)与φ(x)间的隔离直线方程为________.【答案】y=2x-e【解析】容易观察到h(x)和φ(x)有公共点(,e),又(x-)2≥0,即x2≥2x-e,所以猜想h(x)和φ(x)间的隔离直线为y=2x-e,下面只需证明2eln x≤2x-e恒成立即可,构造函数λ(x)=2eln x-2x+e.由于λ′(x)= (x>0),即函数λ(x)在区间(0,)上递增,在(,+∞)上递减,故λ(x)≤λ()=0,即2eln x-2x+e≤0,得2eln x≤2x-e.故猜想成立,所以两函数间的隔离直线方程为y=2x-e.2.已知点A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是________.【答案】3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.作x轴3.(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1的垂线交椭圆于A、A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.【答案】(1)(2)【解析】(1)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(2)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求椭圆方程为.4.直线2x﹣3y+1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)【答案】D【解析】由题意可得:直线2x﹣3y+1=0的斜率为k=,所以直线2x﹣3y+1=0的一个方向向量=(1,),或(3,2)故选D.5.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.(1)求与圆C相切,且与直线l垂直的直线方程;(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点B的坐标.【答案】(1)y=-2x±3(2)【解析】(1)设所求直线方程为y=-2x+b,即2x+y-b=0,∵直线与圆相切,∴=3,得b=±3,∴所求直线方程为y=-2x±3.(2)(解法1)假设存在这样的点B(t,0),当P为圆C与x轴左交点(-3,0)时,=;当P为圆C与x轴右交点(3,0)时,=,依题意,=,解得,t=-5(舍去),或t=-.下面证明点B对于圆C上任一点P,都有为一常数.设P(x,y),则y2=9-x2,∴=,从而=为常数.(解法2)假设存在这样的点B(t,0),使得为常数λ,则PB2=λ2PA2,∴(x-t)2+y2=λ2[(x+5)2+y2],将y2=9-x2代入得,x2-2xt+t2+9-x2=λ2(x2+10x+25+9-x2),即2(5λ2+t)x+34λ2-t2-9=0对x∈[-3,3]恒成立,∴解得(舍去),所以存在点B对于圆C上任一点P,都有为常数6.已知点P1(2,3)、P2(-4,5)和A(-1,2),求过点A且与点P1、P2距离相等的直线方程.【答案】y-2=-(x+1)或x=-1.【解析】(解法1)设所求直线方程为y-2=k(x+1),即kx-y+k+2=0.由点P1、P2到直线的距离相等得.化简得,则有3k-1=-3k-3或3k-1=3k+3,解得k=-或方程无解.方程无解表明这样的k不存在,但过点A,所以直线方程为x=-1,它与P1、P2的距离都是3.∴所求直线方程为y-2=- (x+1)或x=-1.(解法2)设所求直线为l,由于l过点A且与P1、P2距离相等,所以l有两种情况,如下图:①当P1、P2在l的同侧时,有l∥P1P2,此时可求得l的方程为y-2= (x+1),即y-2=-(x+1);②当P1、P2在l的异侧时,l必过P1、P2的中点(-1,4),此时l的方程为x=-1.∴所求直线的方程为y-2=-(x+1)或x=-1.7.直线l1:2x+y-4=0,求l1关于直线l:3x+4y-1=0对称的直线l2的方程.【答案】2x+11y+16=0【解析】在直线l1上取一点A(2,0),又设点A关于直线l的对称点为B(x,y),则解得B .又l1与l2的交点为M(3,-2),故由两点式可求得直线l2的方程为2x+11y+16=0.8.已知直线l过点P(-2,5),且斜率为-,则直线l的方程为________.【答案】3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.9.过点M(0,1)作一条直线,使它被两条直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M点平分.求此直线方程.【答案】x+4y-4=0.【解析】(解法1)由于过点M(0,1)且与x轴垂直的直线显然不合题意,故可设所求直线方程为y=kx+1,与已知两条直线l1、l2分别交于A、B两点,联立方程组xA=,x B =,∵点M平分线段AB,∴xA+xB=2xM,即有+=0,解得k=-.故所求的直线方程为x+4y-4=0.(解法2)设所求的直线与已知两条直线l1、l2分别交于A、B两点,∵点B在直线l2:2x+y-8=0上,∴设B(t,8-2t),由于M(0,1)是线段AB的中点,∴根据中点坐标公式得A(-t,2t-6),而A点在直线l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解之得t=4,∴B(4,0).故所求直线方程为x+4y-4=0.10.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【答案】(1)x+y+2=0(2)a≤-1.【解析】(1)当直线过原点时,该直线在x轴和y轴上的截距均为零,∴a=2,即方程为3x+y=0符合题意.当直线不过原点时,由截距存在且均不为0,∴=a-2,即a+1=1,∴a=0,即方程为x+y+2=0.(2)(解法1)将l的方程化为y=-(a+1)x+a-2,∴∴a≤-1.综上可知a的取值范围是a≤-1.(解法2)将l的方程化为(x+y+2)+a(x-1)=0(a∈R).它表示过l1:x+y+2=0与l2:x-1=0交点(1,-3)的直线系(不包括x=1).由图象可知l的斜率-(a+1)≥0,即a≤-1时,直线l不经过第二象限.11.不论m取何值,直线(m-1)x-y+2m+1=0恒过定点________.【答案】(-2,3)【解析】把直线方程(m-1)x-y+2m+1=0,整理得(x+2)m-(x+y-1)=0,则得12.经过直线x+2y-3=0与2x-y-1=0的交点且和点(0,1)的距离等于1的直线方程为.【答案】x-1=0【解析】设所求直线的方程为(x+2y-3)+λ(2x-y-1)=0,即(1+2λ)x+(2-λ)y-3-λ=0,由于点(0,1)到该直线的距离为1,即1==,所以|2λ+1|=,解得λ=2.故所求直线方程为(x+2y-3)+2(2x-y-1)=0,即x-1=0.13.若直线ax+by+c=0经过第一、二、三象限,则有()A.ab>0,bc>0B.ab>0,bc<0C.ab<0,bc>0D.ab<0,bc<0【答案】D【解析】易知直线的斜率存在,将直线ax+by+c=0变形为y=-x-,如图所示.数形结合可知即ab<0,bc<0.14.已知△ABC三顶点坐标A(1,2),B(3,6),C(5,2),M为AB中点,N为AC中点,则直线MN的方程为()A.2x+y-8=0B.2x-y+8=0C.2x+y-12=0D.2x-y-12=0【答案】A【解析】由中点坐标公式可得M(2,4),N(3,2),再由两点式可得直线MN的方程为=,即2x+y-8=0.15.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为()A.x-y+1=0B.x-y=0C.x+y+1=0D.x+y=0【答案】A【解析】由题意知直线l与直线PQ垂直,所以kl=-=1,又因为直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.16.已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.【答案】x+2y-5=0或x-6y+11=0【解析】解:解方程组得交点P(1,2).(1)若点A,B在直线l的同侧,则l∥AB.而kAB==-,由点斜式得直线l的方程为y-2=- (x-1),即x+2y-5=0;(2)若点A,B分别在直线l的异侧,则直线l经过线段AB的中点,由两点式得直线l的方程为=,即x-6y+11=0.综上所述,直线l的方程为x+2y-5=0或x-6y+11=0.17.已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平行,则a的值为________.【答案】2【解析】依题意得k==2,解得a=2.AB18.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为________.【答案】x+y-2=0【解析】当OP与所求直线垂直时面积之差最大,故所求直线方程为x+y-2=0.19.若直线与直线垂直,则的值是()A.或B.或C.或D.或1【答案】B【解析】直线的斜率乘积等于-1,或根据求解。
2013-2017高考数学(文)真题分类汇编第9章直线与圆的方程.docx

第九章直线与圆的方程第一节直线的方程与两条直线的位置关系题型 100倾斜角与斜率的计算2014 年( 2014 辽宁文 8)已知点A( 2,3)在抛物线C:22 px 的准线上,记C的焦点为 F ,则直线AFy的斜率为()4B.1C.31A.4D.32题型 101直线的方程2014 年1.(2014福建文)已知直线l过圆 x2y 32 4 的圆心,且与直线x y10垂直,则 l 的6方程是().A. x y 2 0B. x y 2 0C. x y 3 0D. x y 3 02015 年1.( 2015重庆文12)若点P 1,2在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为___________.1. 解析kOP20k1,所以 k1x 2 y 5 0 .12 , k OP,所以切线方程为化简得02题型 102两直线的位置关系2014 年1. ( 2014 四川文9 )设m R ,过定点A的动直线x my0 和过定点B的动直线mx y m 30交于点 P x, y,则 PA PB 的取值范围是() .A.5, 25B. 10, 25C.10, 45D. 25, 45题型 103有关距离的计算及应用2016 年3.( 2016上海文3)l1: 2x y10 , l 2 : 2x y 1 0,则 l1, l2的距离为.251125 3.解析由题意 d2212.55题型 104对称问题——暂无第二节圆的方程题型 105用二元二次方程表示圆的充要条件2016 年1.( 2016 浙江文 10)已知a R ,方程a2x2(a 2) y24x 8y 5a0 表示圆,则圆心坐标是_____,半径是 ______.1.2,4; 5解析由于此方程表示圆的方程,所以 a2a 2 ,解得 a 1 或2.当 a1时,带入得方程为 x2y24x 8 y 5 0 ,即x22225 ,所以圆心为y42, 4 ,半径为5;当a 2 时,带入得方程为 4x2 4 y24x8 y 10 0 ,即1225,此方程不表示圆的方程 .由上所述,圆心为x y2, 4,半径为 5 .124题型 106求圆的方程2013 年1.( 2013江西文14)若圆C经过坐标原点和点4,0 ,且与直线y 1 相切,则圆C的方程是.2014 年1.( 2014 山东文 14)圆心在直线x 2 y0 上的圆 C 与y轴的正半轴相切,圆 C 截x轴所得弦的长为 2 3 ,则圆C的标准方程为.2015 年1.( 2015北京文 2)圆心为1,1且过原点的圆的方程是() .A.x 122221 y 11 B. x 1y 1C.x 122222 y 12 D. x 1y 11.1,1 ,半径为2y22 .故选D.解析由已知得,圆心为 2 ,圆的方程为x 112.( 2015江苏文 10)在平面直角坐标系xOy中,以点1,0 为圆心且与直线mx y2 m10m R相切的所有圆中,半径最大的圆的标准方程为.2. 解析解法一(几何意义):动直线 mx y2m10整理得 m x2y 10 ,则l经过定点M 2 , 1 ,故满足题意的圆与l切于M时,半径最大,从而r212102 2 ,故标准方程为x12y2 2 .解法二(代数法——基本不等式):由题意 r d m1m22m 1 m21m2112m12,22 ,当且仅当m 1 时,取“”.211m1m 2 m1m m故标准方程为x12y22.22m1m2m1,设 tm2m 1解法三(代数法——判别式):由题意 r dm2m2,1m211222剟则t 1 m2m t10,因为 m R ,所以24t1⋯0,解得0t2,即d 的最大值为 2 .3.(2015湖北文16x T(10))如图所示,已知圆 C 与轴相切于点,,与 y轴正半轴交于两点 A , B ( B 在 A 的上方),且| AB | 2 .yBC(1)圆(2)圆C 的标准方程为.AC 在点B处切线在x轴上的截距为O Tx.4. 解析(1)由条件可设圆C的标准方程为(x 1)2+ (y r )2r2( r 为半径).因为 AB 2 ,所以r1212 2 ,故圆C的标准方程为22x y2 2 .122中,令 x 0 ,得B 0,2 1 .(2) 在x 1y 22又 C 1, 2,所以 k BC21201,1所以圆 C 在点B处的切线斜率为1,即圆 C 在点B处的切线方程为y x2 1 .令 y 0 可得 x1 2 ,即圆 C 在点 B 处的切线在 x 轴上的截距为 1 2 .2016 年1.( 2016 天津文 12)已知圆 C 的圆心在 x 轴的正半轴上,点 M 0, 5 在圆 C 上,且圆心到直线2 x y 0 的距离为45,则圆 C 的方程为 __________.51. ( x 2) 2y 2 9 解析C a,0a 0 ,则 | 2a |4 5 ,得 a2, r22 5 3 ,故圆 C 的55方程为 ( x2) 2 y 29 .2017 年1.( 2017 天津卷文 12)设抛物线 y 2 4x 的焦点为 F ,准线为 l .已知点 C 在 l 上,以 C 为圆心的圆与 y 轴的正半轴相切于点A .若 FAC120 ,则圆的方程为.1. 解析 如图所示,设坐标原点为O ,由题意,得2 p 4 ,p1 , OF1 , l : x1 . 因为2FAC120 ,所以 AFO60 , AO OF tan603 ,所以 C 的坐标为 ( 1, 3) ,rAC1,所以圆 C 的方程为 ( x 1)2 ( y3) 2 1 .yy 2=4xCAO Fxl题型 107点与圆的位置关系的判断2016 年1.( 2016 四川文15)在平面直角坐标系中,当P( x, y) 不是原点时,定义 P 的“伴随点”为y xP x 2y 2 ,x 2,当 P 是原点时,定义“伴随点”为它自身,现有下列命题:y 2①若点 A 的“伴随点”是点 A ,则点 A 的“伴随点”是点A ;②单元圆上的“伴随点”还在单位圆上;③若两点关于 x 轴对称,则他们的“伴随点”关于 y 轴对称;④若三点在同一条直线上,则他们的“伴随点”一定共线 .其中的真命题是.1. ②③解析 对于①,若令A(1,1), 则其伴随点为A 1 , 1 ,而 A 1, 1 的伴随点为22 2 2, ,而不是 P ,故错误;11对于②, 令单位圆上点的坐标为 P(cos x,sin x) ,其伴随点为 P (sin x,cosx) 仍在单位圆上, 故②正确;对于③,设曲线f ( x, y) 0 关于 x 轴对称,则 f ( x,y)0 对曲线 f ( x, y)0 表示同一曲线,其伴随曲线分别为 fy2 ,x0 与 fy,x 0 也表示同一曲线,又因2y x 2y 2x 2y 2 2y 2xx为其伴随曲线分别为y x与yx的图像关于y 轴对称,所以③正确;对于fx 2y 2 ,x 2y 20fx 2y 2 ,x 2y 2 0④,直线 y kxb 上取点得,其伴随点y,x 2x 消参后轨迹是圆,故④错误.所以正x 2 y2y 2确的序号为②③ .题型 108与圆的方程有关的最值或取值范围问题2013 年1. (2013 重庆文2 24 上的动点, Q 是直线 x3 上的动点, 则 PQ4)设 P 是圆 x 3 y 1的最小值为() .A. 6B.4C. 3D. 22. ( 2013 山 东 文 13 ) 过 点 3,1 作 圆 x222y 24 的 弦 , 其 中 最 短 弦 的 长为 .2014 年1.( 20147)已知圆 C : x 22和两点 A m,0, B m,0m 0 ,若北京文3y 41圆mC 上存在点 P ,使得 APB90 ,则) .的最大值为(A. 7B. 6C.5D.42. ( 2014 新课标 2 文 12)设点 Mx 0 ,1 ,若在圆 O : x 2 y 21上存在点 N ,使得 OMN45°,则 x0的取值范围是()A. 1,111C.2,2D.2,2 B.,2 2223( 2014湖北文 17)已知圆O : x2y 2 1 和点A2,0 ,若定点B b,0b 2 和常数满足:圆 O 上任意一点M ,都有MB MA,则(Ⅰ) b;(Ⅱ).(辽宁文20)如图所示,圆x2y24的切线与x轴正半轴, y轴正半轴围成一个三角形,4. 2014当该三角形面积最小时,切点为P .( 1)求点P的坐标;( 2)焦点在x 轴上的椭圆C过点P,且与直线l : y x+ 3 交于A, B 两点,若△PAB的面积为2 ,求 C 的标准方程.yPO x2017 年1.2017北京卷文12)已知点P在圆x y=1上,点A的坐标为2,0,O 为原点,则AO AP(22的最大值为 _________.1.解析解法一:利用坐标法求数量积.设点P x, y ,则AO AP2,0x2,y2x 4 ,且1剟x 1,当x 1 时,AO AP 的最大值为 6.解法二:利用数量积的定义 . AO AP AO AP cos 剟 AO AP221 6 .所以最大值是 6.y解法三:利用数量积的几何意义.如图所示,点 P 是单位圆上的动点,当 A ,PO ,P三点共线时,AP 的长度最大,且向量AO 与向量AP同向,易A O x得2 2 1 6 .2.( 2017江苏卷13)在平面直角坐标系xOy 中,点 A12,0, B 0,6,点P 在圆O : x2y250上.若 PA PB,20,则点 P 的横坐标的取值范围是.2.解析不妨设P x0, y0,则 x02y0250,且易知x0 5 2,52.因为 PA PB AP BP x012, y0x0 , y0 6x02 12x0y02 6 y0 5012x0 6 y0, 20,故 2x0y05, 0 .所以点 P x0 , y0在圆 O : x2y250上,且在直线 2 x y 5 0的左上方(含直线) .联立x2y250,得 x1 5 , x2 1 ,如图所示,结合图形知x052,1 .2x y50yB(1,7)O 5 2xA(-5,-5)2x-y+ 5=0评注也可以理解为点 P 在圆x2y212 x 6 y020 的内部来解决,与解析中的方法一致.000题型 109与圆的方程有关的轨迹问题2014 年1.(2014新课标Ⅰ文 20)已知点P 2,2,圆 C :x2y28 y 0 ,过点 P 的动直线l与圆C交于A, B 两点,线段 AB 的中点为M, O 为坐标原点.(1)求M的轨迹方程;( 2)当OP OM 时,求l的方程及△POM的面积.2015 年1.( 2015 广东文 20)已知过原点的动直线l 与圆C1:x2y26x 5 0 相交于不同的两点 A ,B .( 1)求圆 C 1 的圆心坐标;( 2)求线段 AB 的中点 M 的轨迹 C 的方程;( 3)是否存在实数k ,使得直线 L : yk x 4与曲线 C 只有一个交点?若存在,求出取值范围;若不存在,说明理由.1. 解析 (1)圆 C 1 的标准方程为 ( x 3)2y 24 ,所以圆心坐标为 C 1 3,0 .( 2)设线段AB的中点M (x 0 , y 0 ) ,由圆的性质可得,C 1Ml , l 斜率存在,设直线 l 的方程为 ymx ,则 k C 1M m1.又 y 0mx 0 ,所以y 0 y 01 ,x 0 3 x 02所以 x 0 2 3x 0 y 0 20 ,即 x3 y 29 .24因为动直线 l与圆 C 1 相交,所以 | 3m |2 ,得 m2 4m 2 1.5所以 y 02m 2 x 024x 0 2,即 3x 0 x 024x 0 2 ,55解得 x 05 0 ,又因为 0 x 0 , 3 5 x 0 , 3 .或 x 0,所以332所以M ( x 0 , y 0 ) 满足 x 03 y 0 29 5 x 0 , 3 , 24 32即中点 M 的轨迹 C 的方程为 x3 y 29 5 x , 3 .24 3( 3)由题意作图,如图所示.由题意知直线 L 表示过定点 T (4,0) ,斜率为 k 的直线 .329 55 , 2 5 结合图形,x y 2x , 3 表示的是一段关于 x 轴对称,起点为24 33 3 时针方向运动到5 , 2 5 的圆弧 .根据对称性,只需讨论在x 轴下方的圆弧 .3 32 5y5 2 52 5设 P,,则 k PT 3.33 5 7T(4,0)43Ok 的按逆xP3k 4k23而当直线 L 与轨迹 C 相切时,,k 21 23 .解得 k4在这里暂取 k3 2 53,所以 k PTk .,因为474结合图形, 可得对于 x 轴对称下方的圆弧,当2 5剟k 0 或 k 4 时,直线 L 与 x 轴下方的圆73弧有且只有一个交点 .根据对称性可知2 50 或 k4剟k时,直线 L 与 x 轴上方的圆弧有且73只有一个交点 .综上所述,当2 5剟k 2 5或 k 4时,直线 L 与曲线 C 只有一交点 .7732016 年uuur1.( 2016 四川文9)已知正 △ ABC 的边长为 2 3 ,平面 ABC 内的动点 P , M 满足 AP1 ,uuur uuuruuurPM MC ,则 BM2的最大值是( ) .43493763D. 37 2 33A.B.C.44441.B 解 析正 三 角 形 ABC 的 对 称 中 心 为 O , 易 得AOCAOBBOC120 ,uur uuur uuur OA OB OC .以 O 为 原 点 , 直 线 OA 为 x 轴 建 立 平 面 直 角 坐 标 系 , 如 图 所 示 .则A 2,0 , B1, 3 ,C 1, 3 .uur1 ,得 x 222uuur uuurx 1, y3设 P(x, y) ,由已知 PAy 1 .又 PM PC ,所以 M,222222uuur x 1 y 33uuur 2x 1 y 3 3 x 1y3 3.所以 BM ,2.因此 BM2242它表示圆 ( x 2) 2 y 21上的点 x ,y 与点1, 3 3 距离平方的1 ,4uuur1222249所以 BM4 1 23 31.故选 B .max4yC2MPOAxB-2第三节 直线与圆、圆与圆的位置关系题型 110 直线与圆的位置关系2013 年1. (2013 陕西文 8)已知点, 在圆 O:x 2 y 2 1 外,则直线 ax 与圆 O 的位置关系M a b by 1是( ) .A. 相切B. 相交C. 相离D. 不确定2.( 2013 湖北文 14)已知圆 O : x 2y25,直线l : x cos y sin1( 0π).设圆O 上到直线 l 的距离等于 1 的点的个数为 k ,则 k2.2014 年1. ( 2014 安徽文 6)过点 P 3, 1 的直线 l 与圆 x2y 21有公共点, 则直线 l 的倾斜角的取值范围是( ) .A. 0,B. 0,C. 0,D. 0,36 3 62015 年1. ( 2015 安徽文 8)直线 3x 4 y b 与圆 x2y 2 2x 2y 1 0相切,则 b 的值是() .A . 2或 12B .2 或 12C . 2或 12D .2 或 121. 解析 记直线为 l ,圆的圆心为 O .由题意可得圆的标准方程为x221,则 O 1,1 .1 y 1由直线 l 与圆相切,可得d O, l3 4 b 1 ,解得 b2 或 b 12 .故选 D.32422. ( 2015 湖南文 13)若直线3x 4y5 0 与圆 x 2 y 2r 2 r 0 相交于 A , B 两点,且AOB120 ( O 为坐标原点),则 r_____.2. 解析如图直线 3x4y 5 0与圆 x2y2r 2r0 交于 yBA, B 两点, O 为坐标原点, 且 AOB120 ,则圆心 0,0到直线-2O2x1r ,51r ,所以 rA3x 4 y5 0 的距离为422 .23223. ( 2015 山东文 13)过点 P 1 , 3作圆 x 2 y 2 1的两条切线,切点分别为 A ,B ,则 PA PB.3. 解 析根 据 题 意 , 作 出 图 形 , 如 图 所 示 . 由 平 面 几 何 知 识 , 得yPPA PB 由切线长定理,得APB 2 OPB.3 .OB 3 OPB 30 .在 Rt △OPB 中, tan OPB ,所以PB3可得APB 60 .AOB x所以 PA PB PA PB cosAPB333cos60.22016 年1.( 2016 北京文 5)圆 x2y 22的圆心到直线 y x 3) .1 的距离为(A. 1B.2C. 2D.2 21. C 解析圆 x1 2y22的圆心坐标是 ( 1,0) ,半径长是2 .由点到直线的距离公式,可求得圆心 ( 1,0)到直线yx 3 即xy 30 的距离是2 .故选 C.2. 2016 全国甲文 6x 2y 2 2x 8y 13 0的圆心到直线 axy 10 的距离为 1 ,则 a( )圆( ).A.4B.3C. 3D. 234222.A 解析 将圆化为标准方程得,x 1y 4 4 ,则圆心 1,4 到直线 ax y 1 0 的距a 414.故选 A.离 d 1 ,解得aa213题型 111 直线与圆的相交关系及应用2013 年1. (2013安徽文 6)直线x 2 y 5 5 0 被圆 x2y 22x 4 y 0 截得的弦长为() .A.1B. 2C.4D. 462. (2013浙江文 13)直线y2x 3 被圆x2y26x8y0 所截得的弦长等于__________. 3.(2013 福建文 20)如图,抛物线E : y24x 的焦点为F,准线 l 与x轴的交点为A,点 C 在抛物线 E 上,以C为圆心,CO为半径作圆,设圆 C 与准线 l 交于不同的两点 M ,N.y( 1)若点C的纵坐标为 2 ,求MN;2AN ,求圆C的半径.( 2)若AFAM MCNFA O x4. (2013 四川文 20)已知圆C的方程为x2( y 4)2 4 ,点 O 是坐标原点.直线l : y kx 与圆C交于M , N 两点.( 1)求k的取值范围;( 2)设Q( m,n)是线段MN上的点,且2112 .请将n表示为m的函数 .22| OQ ||OM ||ON |2014 年1.( 2014222 x 2 y a0 截直线 x y20 所得弦的长度为 4 ,则实数浙江文 5)已知圆 x ya 的值是().A.2B.4C.6D.82.( 2014江苏 9)在平面直角坐标系xOy 中,直线 x 2 y3022被圆 x 2y14 截得的弦长为.3(. 2014 重庆文 14)已知直线x y a 0 与圆心为 C 的圆x2y 22x 4 y 40 相交于A,B两点,且AC BC ,则实数a的值为_________.2015 年1.( 2015全国 1 文 20)文已知过点A 0,1且斜率为 k 的直线 l 与圆 C:x222y 31交于 M,N两点 .( 1)求 k 的取值范围;( 2)若 OM ON12,其中 O 为坐标原点,求MN .1. 解析( 1)由l与圆交于 M , N 两点,所以直线的斜率必存在.设直线 l 的斜率为 k ,则直线 l 的方程为y kx1.由圆 C 的方程,可得圆心为 C 2 , 3 ,则 d C, l2k311 ,即k 21 ,解得147k 4733.( 2)设M x1, y1, N x2 , y2,则 OM x1 , y1, ON x2 , y2,OM ON x1 x2y1 y212 .把直线 y kx 1 代入到x2y 321中,2得 k 2 1 x2 4 4k x 7 0 .x1 x27x244k由根与系数的关系,得k 2, x1k 2. 11则 x1x2y1y2x1 x2kx1k kx2k 4k11k 271 .1k 211 ,解得k所以直线 l 的方程为y x1.又圆心 C2,3到直线 l 的距离d C, l 2310,即直线 l 过圆心 C . 121所以 MN 2 .2016 年1.( 2016 全国乙文 15)设直线y x 2a 与圆 C : x2y22ay 2 0 相交于A, B两点,若AB23,则圆 C 的面积为.1. 4x y2a0 ,圆的标准方程为x2y a 22解析由题意直线即为 a 2,a a2a2a 2所以圆心到直线的距离d,所以 AB22222 3 ,222故 a22r 2 4 ,所以 S r 2 4 .2. 2016全国丙文15)已知直线l : x3y60与圆x2y212交于 A 、 B 两点,过 A 、 B(分别作 l 的垂线与x轴交于 C 、 D 两点,则CD_________.2. 4解析由已知条件得圆x2y212 的圆心到直线 x3y60 的距离为66,则AB23,所以直线 AB 与 x 轴的212623 . 因为l AB的斜率22223 31夹角π,因此CD AB 4.6πcos6题型 112直线与圆的相切关系及应用2013 年1.( 2013 广东文7)垂直于直线y x 1且与圆x2y 21相切于第一象限的直线方程是()A.x y 2 0 B .x y 1 0C.x y 1 0D.x y 2 02. (2013 天津文5)已知过点P2,2的直线与圆 (x1)2y2 5 相切,且与直线ax y 1 0垂直,则 a().A.1B. 1C. 2D.1 223. ( 2013 江苏 17)如图,在平面直角坐标系xOy 中,点A(0,3),直线 l : y 2 x 4 .设圆C的半径为1,圆心在 l上 .y( 1)若圆心C也在直线y x 1上,过点 A 作圆C的切线,求切线的方程;Al( 2)若圆C上存在点M,使MA2MO ,求圆心 C 的横坐标a的取值范围.O x2014 年1.( 2014 大纲文 16)直线 l 1和 l 2是圆 x 2y 22 的两条切线,若 l 1与 l 2的交点为( 1, 3),则 l 1与 l 2的夹角的正切值等于.2. ( 2014 江苏 18)如图所示,为了保护河上古桥 OA ,规划建一座新桥 BC ,同时设立一个圆形保护区.规划要求:新桥 BC 与河岸 AB 垂直;保护区的边界为圆心M 在线段 OA 上并与 BC相切的圆.且古桥两端O 和 A 到该圆上任意一点的距离均不少于80m .经测量,点 A 位于点 O正北方向 60m 处,点 C 位于点 O 正东方向 170m 处( OC北4 .为河岸),tan BCOB3( 1)求新桥 BC 的长;A ( 2)当 OM 多长时,圆形保护区的面积最大?60 mMO170 mC 东2015 年1. ( 2015 四川文10) 设直线 l 与抛物线 y 24x 相交于 A, B 两点,与圆 C :x 2y 2 r 2 r0 相切于点 M ,且 M 为线段 AB 中点,若这样的直线l 恰有 4条,5 则 r 的取值范围是( ) .A.1,3B.1,4C.2,3D.2,41. 解析 设直线 l 的方程为 x tym ,代入抛物线方程得 y 24ty 4m 0 ,则16t 2 16m 0 .又中点 M 2t 2 m,2t ,则 k MC k l1,即 m3 2t 2 .代入16t 2 16m ,可得 3 t 20 ,即 0 t 23 .5 m2 2t 2t 2又由圆心到直线的距离等于半径,可得d r 2 1 .1 t 21 t 2。
2013高考数学试卷及答案

2013高考数学试卷及答案一、选择题1.若函数 $f(x)=\\frac{\\sqrt{1-x^2}}{\\sqrt{1+x^2}}$,则f(−1)+f(0)+f(1)的值为A. 0B. 1C. 2D. 3答案: C. 22.已知函数 $y=\\log_2{x}$,则 $y^2-4y-5 \\leq 0$ 的解集为A. (-∞, -1] ∪ [5, +∞)B. [-1, 5]C. [-1, 1]D. (1, 5)答案: B. [-1, 5]3.如图所示,在ΔABC 中,$AD \\perp BC$,则 $\\frac{BD}{CD} =$imageimageA. $\\frac{2}{3}$B. $\\frac{3}{7}$C. $\\frac{5}{3}$D. $\\frac{3}{2}$答案: A. $\\frac{2}{3}$二、填空题4.设a1=3,$a_2=\\frac{7}{4}$,a n+2=2a n+1+a n,则a10=答案: $\\frac{535}{64}$5.设 $f(x)=\\sin^3{x}-\\cos^3{x}$,则 $f(\\frac{\\pi}{6})=$答案: $\\frac{1}{4}$三、解答题1. 计算题6.已知数列 $\\{a_n\\}$,a1=2,$a_{n+1}=2a_n+3(n\\geq1)$,求a n 的通项公式。
解答:首先我们观察数列的前几项,可以发现:a1=2 $a_2 = 2 \\cdot 2 + 3 \\cdot 1 = 7$ $a_3 = 2 \\cdot 7 + 3 \\cdot 2 = 20$定义数列 $\\{b_n\\}$,$b_n = a_n + \\frac{3}{2} \\cdot n$,我们来观察数列 $\\{b_n\\}$: $b_1 = 2 + \\frac{3}{2} \\cdot 1 = \\frac{7}{2}$ $b_2 = 7 + \\frac{3}{2} \\cdot 2 = 12$ $b_3 = 20 + \\frac{3}{2} \\cdot 3 =\\frac{29}{2}$我们可以发现数列 $\\{b_n\\}$ 是一个等差数列,公差为$\\frac{3}{2}$。
2013-2014直线与方程高考题

直线与圆专题复习一 、直线方程的几种形式 :1.一般式:ax+by+c=0, a ≠02.点斜式:y-y1=k(x-x1)3.斜截距式:y=k x + b4.两点式:121121x x x x y y y y --=--5.截距式:1=+bya x 6、点向式:2111v y y v x x -=- 7、点法式:0)()(11=-+-y y B x x A 二、圆的方程1、 圆的标准方程:()()222r b y a x =-+-2、 圆的一般方程:022=++++F Ey Dx y x 三、直线与直线关系、直线与圆的关系 1、 直线与直线平行的判断与其应用 2、直线与直线垂直的判断与其应用 3、直线与直线相交的判断与其应用 4、直线关于直线的对称直线的方程 5、圆与圆的位置关系与其判断与应用 6、直线与圆的位置关系与其应用 实战演练:1.〔某某高考〕直线过点〔-1,2〕且与直线23x y -+4=0垂直,如此的方程是 A .B.C.D.2.〔某某高考〕直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,如此K 得值是〔 〕〔A 〕 1或3 〔B 〕1或5 〔C 〕3或5 〔D 〕1或23.假如直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,如此m 的倾斜角可以是: ①15②30③45④60⑤75其中正确答案的序号是.〔写出所有正确答案的序号〕 4.假如直线1x ya b+=通过点(cos sin )M αα,,如此〔 〕 A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b+≥5、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,如此底边所在直线的斜率为〔 〕A .3B .2C .13- D .12-6、直线210x y -+=关于直线1x =对称的直线方程是〔 〕A.210x y +-=B.210x y +-= C.230x y +-=D.230x y +-=7、1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,如此△ABC 的边长是〔 〕〔A 〕23 〔B 〕364〔C 〕3174〔D 〕22138、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是9、〔2008某某高考〕在平面直角坐标系中,设三角形ABC 的顶点坐标分别为(0,),(,0),(,0)A a B b C c , 点(0,)P p 在线段OA 上〔异于端点〕,设,,,a b c p 均为非零实数,直线,BP CP 分别交,AC AB 于点E ,F ,一同学已正确算出OE 的方程:11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你求OF 的方程:。
2013高考数学试题及答案

2013高考数学试题及答案一、选择题(每题5分,共40分)1. 若函数f(x)=x^2-2x+3,g(x)=x^2-4x+c,则f(x)与g(x)的图象有且仅有一个公共点,则c的值为:A. 2B. 3C. 4D. 5答案:C2. 已知等差数列{a_n}的前n项和为S_n,若a_1=1,a_3=4,则S_5的值为:A. 15B. 25C. 35D. 45答案:A3. 设集合A={1, 2, 3},B={3, 4, 5},则A∩B的元素个数为:A. 1B. 2C. 3D. 0答案:A4. 若直线y=2x+3与曲线y=x^3-x^2+1相切,则切点的横坐标为:A. 1B. 2C. 3D. 4答案:A5. 已知复数z满足|z-1|=1,|z+1|=2,则|z|的最小值为:A. 1B. 2C. 3D. 4答案:B6. 已知函数f(x)=x^3-3x+1,若f'(x)=0,则x的值为:A. 1B. -1C. 2D. -2答案:A7. 已知向量a=(1,2),b=(2,1),若a·b=5,则a与b的夹角为:A. 30°B. 45°C. 60°D. 90°答案:C8. 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0),若椭圆C与直线y=x+1相交于A、B两点,且|AB|=2√2,则a^2+b^2的值为:A. 4B. 6C. 8D. 10答案:B二、填空题(每题5分,共20分)9. 已知函数f(x)=x^3-6x^2+9x+1,若f'(x)=0,则方程x^3-6x^2+9x+1=0的根为________。
答案:0,310. 已知等比数列{a_n}的前n项和为S_n,若a_1=2,S_3=26,则公比q为________。
答案:311. 设函数f(x)=3x^2-6x+5,若f(x)=0,则x的值为________。
答案:1,5/312. 已知向量a=(3, -4),b=(2, 1),若a·b=-11,则向量a与b的夹角为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 .(2013年高考天津卷(文))已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与
直线10ax y -+=垂直, 则a =
( ) A .12- B .1
C .2
D .12 2 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1
与圆O 的位置关系是 ( )
A .相切
B .相交
C .相离
D .不确定
3 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆221x y +=相切于第一象限
的直线方程是
(
)
A .0x y +=
B .10x y ++=
C .10x y +-=
D .0x y +=
4 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆
C 的方程是_________.
5.(2013年高考浙江卷(文))直线y=2x+3被圆x 2+y 2-6x-8y=0所截得的弦长等于__________.
6.(2013年高考山东卷(文))过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦
长为__________
三、解答题
7.(2013年高考四川卷(文))
已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于
,M N 两点.
(Ⅰ)求k 的取值范围;
1.C 2. B 3. A
4、22325(2)()24x y -++=,
5、【答案】,
6、【答案】
7、【答案】解:(Ⅰ)将x k y =代入22(4)4x y +-=得 则 0128)1(22=+-+x k x k ,(*)由012)1(4)8(22>⨯+--=∆k k 得 32>k . 所以k 的取值范围是),3()3,(+∞--∞。