MBA联考数学常用小公式

合集下载

MBA管理类联考数学公式大全

MBA管理类联考数学公式大全

MBA联考数学公式大全数列一.数列的定义通常简记为{a n}二.数列的通项公式a n与n之间的关系,一般用a n=f(n)来表示三.数列的分类(1)有穷数列和无穷数列(2)单调数列、摆动数列、常数列四. a n与S n的关系a n={s1(n=1)s n−s n−1(n≥2)等差数列一.等差数列的定义a n−a n−1=d(n∈N∗,n≥2)或a n+1−a n=d(n∈N∗)二.等差数列的通项公式a n=a1+(n−1)d=a1+dn−d=dn+a1−d⇓⇓d=a n−a1n−1a n与n的一次函数关系,其斜率为d,在y轴上的截距为a1−da n=a m+(n−m)d⇓d=a n−a mn−m(n≠m)三.等差数列的增减性d>0 递增数列d<0 递减数列d=0常数列四.等差中项A=a+b2⟺a,A,b三个数构成等差数列五.等差数列的前n项和公式(重点)S n=(a1+a n)n2=na1+n(n−1)2d=d2n2+(a1−d2)n(当公差d不为0时,可将其抽象为关于n的二次函数f(n)=d2n2+(a1−d2)n)六.等差数列的性质1.若公差d>0,次数列为递增数列;若公差d<0,次数列为递减数列;若d=0,次数列为常数列。

2.有穷等差数列中,与首末两项距离相等的两项和相等,并且等于首末两项之和;特别的若项数为奇数,还等于中间项的2倍。

3.若m,n,p,k∈N∗,且m+n=p+k,则a m+a n=a p+a k,特别的若m+n=2p,则a m+a n=2a p此条性质可推广到多项的情形,但要注意等式两边下标和相等,并且两边和的项数相等。

4.等差数列每隔相同项抽出来的项按照原来的顺序排列,构成新数列依然是等差数列,但剩下的项不一定是等差数列。

5.等差数列连续几项之和构成的新数列依然是等差数列,即S n,S2n−S n,S3n−S2n⋯是等差数列,d∗=n2d(n代表片段里面的元素个数)总结为:片段和公式(S2n−S n)−S n=n2d6.若数列{a n}和数列{b n}是等差数列,则{ma n+kb n}也是等差数列,其中m,k为常数。

MBA数学公式集锦

MBA数学公式集锦

MBA 数学常用公式初等数学 一、初等代数1. 乘法公式与因式分解:(1)222)2a b a ab b ±=±+( (2)2222)222a b c a b c ab ac bc ++=+++++( (3)22()()a b a b a b -=-+(4)33223)33a b a a b ab b ±=±+±( (5)3322()()a b a b a ab b ±=±+2. 指数 (1)m n m na a a +⋅= (2)m n m na a a-÷=(3)()m n mna a= (4)()mm mab a b =(5)()m m m a a b b = (6)1mm a a-=3. 对数(log ,0,1a N a a >≠) (1)对数恒等式 log a NN a=,更常用ln NN e=(2)log ()log log a a a MN M N =+ (3)log ()log log a a a MM N N=- (4)log ()log na a M n M =(5)1log log aa M n=(6)换底公式log log log b a b MM a=(7)log 10a =,log 1a a = 4.排列、组合与二项式定理(1)排列 (1)(2)[(1)]mn P n n n n m =--⋅⋅⋅--bbaAC(2)全排列 (1)(2)321!nn P n n n n =--⋅⋅⋅⋅⋅=(3)组合 (1)(2)[(1)]!!!()!mn n n n n m n C m m n m --⋅⋅⋅--==-组合的性质:(1)m n m n n C C -= (2)111m m m n n n C C C ---=+(3)二项式定理01111n n n n n nn n n n C a C a b L C ab C b ---=++++n (a+b) ● 展开式特征:1)11,0,1,...,k n k kk n k T C a b k n -++==通项公式:第项为2)1n +项数:展开总共项 3)指数:1100;a n b n −−−→−−−→逐渐减逐渐加的指数:由;的指数:由各项a 与b 的指数之和为n4)展开式的最大系数:212132nn n n C n C +++n当n 为偶数时,则中间项(第项)系数最大2n+1当n 为奇数时,则中间两项(第和项)系数最大。

MBA数学必背公式汇总

MBA数学必背公式汇总
即 m1=3,m2=4(不符合质数的条件,舍)或者 m1=2,m2=7
则 m1+m2+m3=14。
小技巧:考试时,用 20 以内的质数稍微试一下。
(4)奇数和偶数
整数 Z 奇数 2n+1
偶数 2n
相邻的两个整数必有一奇一偶
①合数一定就是偶数。 (×) ②偶数一定就是合数。 (×)
③质数一定就是奇数。 (×) ④奇数一定就是质数。 (×)
a2
a | a | a
a0 a0
非负性(重点):归纳具有非负性的量
1
1
| a | 0, a2......a2n 0, a 2 ......a 2n 0
a2, a4......a2n 0 ;
1 1
1
a 2 , a 4 .......a 2n 0
6、重要公式
(3)多项式×多项式(2x+3)(3x-4)=6 x2 +x-12
3、乘法公式(重点)
(1) (a b)2 a2 2ab b2
(2) (a b c)2 a2 b2 c2 2ab 2bc 2ac
(a b c)2 a2 b2 c2 2ab 2bc 2ac
左边等号成立的条件: ab 0 且| a || b |
右边等号成立的条件: ab 0
第二章 整式和分式 一、内容提要
1、
整式
单项式:若干字母与数字之积 多项式:若干单项式之和
2、乘法运算
(1)单项式×单项式
2x·3 x2 =6 x3
(2)单项式×多项式
x(2x-3)=2 x2 -3x
正整数 Z (2) 整数Z 0
负整数 Z

MBA联考数学常用公式

MBA联考数学常用公式

MBA 数学常用公式一、初等代数乘法公式与因式分解:(1)222)2a b a ab b ±=±+( (2)2222)222a b c a b c ab ac bc ++=+++++( (3)22()()4a b a b ab +--=(4)2222221[()()()]2a b c ab bc ac a b a c b c +++++=+++++ (5)22()()a b a b a b -=-+ (6)33223)33a b a a b ab b ±=±+±( (7)3322()()a b a b aab b ±=±+ (8)22()()4a b a b ab -=+-(9)3322332232()(),,0,0111a b a b a ab b a b a b a ab b a a a a -=-++=>≠-==>++=-++=-指数(1)mnm na a a+⋅= (2)m n m na a a-÷= (3)()m n mna a= (4)()m m mab a b =22||n n n n ==而不是(5)()m m m a a b b = (6)1mm a a-= | x 1+x 2 | =212(x x )+11n n n n +++-与互为倒数对数(log ,(0,1N 0)a N a a >≠>,对数存在的意义)解对数方程式时需要注意定义域 (1)对数恒等式 log a NN a=,更常用ln NN e= a>0时为增函数 0<a<1时为减函数,都过(1,0)点(2)log ()log log a a a MN M N =+ (3)log ()log log a a a MM N N=- (4)log ()log na a M n M = (5)n 1log log =log n a a a M M M n= logax= log a x 2(6)换底公式log log log b a b M M a =7)log 10a =,log 1a a = (8)1log log a b b a= 方程式求根公式: x=242b b ac a -±- 根与系数关系:x 1+x 2 = –b a x 1•x 2 = ca21212()0x x x x x x +++•=方程特性:○1c=0,说明x 1=0或x 2=0○2b=0说明两根互为相反数○3a 、c 异号,则必为一正一负根○4a 独号则必为一正一负根且|正|>|负|○5c 独号则必为一正一负根且|负|>|正|○6b 独号且∆>0必有两正根 因式定理:f(x)含有(x-a)的因式,则f(a)=0;反之,若f(a)=0说明含有(x-a)的因式(反面快速解法)例:36x x -+则说明含有x+2的因式。

MBA数学公式大全

MBA数学公式大全

管理类MBA联考数学必背公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h 83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3 三边对应成比例,两三角形相似(sss) 95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

MBA数学常用必备公式

MBA数学常用必备公式

初等数学一、初等代数1. 乘法公式与因式分解:(1)222)2a b a ab b ±=±+( (2)2222)222a b c a b c ab ac bc ++=+++++( (3)22()()a b a b a b -=-+ (4)33223)33a b a a b ab b ±=±+±( 》(5)3322()()a b a b aab b ±=±+ 2. 指数(1)m n m n a a a+⋅= (2)m n m n a a a -÷= (3)()m n mn a a = (4)()m m mab a b = (5)()m m m a a b b = (6)1m m a a-= 3. 对数(log ,0,1a N a a >≠)(1)对数恒等式 log a N N a =,更常用ln N N e =(2)log ()log log a a a MN M N =+)(3)log ()log log a a a M M N N=- (4)log ()log n a a M n M =(5)1log log a a M n= (6)换底公式log log log b a b M M a =(7)log 10a =,log 1a a =4.排列、组合与二项式定理(1)排列 (1)(2)[(1)]m n P n n n n m =--⋅⋅⋅--b h ab cah;A C(2)全排列 (1)(2)321!nn P n n n n =--⋅⋅⋅⋅⋅=((3)组合 (1)(2)[(1)]!!!()!m n n n n n m n C m m n m --⋅⋅⋅--==-组合的性质:(1)m n m n n C C -= (2)111m m m n n n C C C ---=+(3)二项式定理 01111n n n n n nn n n n C a C a b L C ab C b ---=++++n (a+b)展开式特征:1)11,0,1,...,k n k kk n k T C a b k n -++==通项公式:第项为2)1n +项数:展开总共项3)指数:\1100;a n b n −−−→−−−→逐渐减逐渐加的指数:由;的指数:由各项a 与b 的指数之和为n4)展开式的最大系数:212132nn n n C n C +++n 当n 为偶数时,则中间项(第项)系数最大2n+1当n 为奇数时,则中间两项(第和项)系数最大。

MBA联考 数学常用公式 基础知识重点内容 及总结

MBA联考 数学常用公式 基础知识重点内容 及总结

目录第一部分算术 (2)一、比和比例 (2)二、指数和对数的性质 (3)第二部分初等代数 (4)一、实数 (4)二、代数式的乘法公式与因式分解 (5)三、方程与不等式 (5)四、数列 (8)五、排列、组合、二项式定理和古典概率 (10)第三部分几何 (13)一、常见平几何图形 (13)二、平面解析几何 (15)第一部分 算术一、比和比例1.比例具有以下性质:(1)bc ad = (2)ac bd = (3)d d c b b a +=+ (4)d dc b b a -=- (5)dc dc b a b a -+=-+(合分比定理) 2.增长率问题设原值为, 变化率为,若上升%p )(现值%1p a +=⇒ 若下降升%p )(现值%1p a -=⇒注意:p%%乙甲甲是乙的=⇔p 3.增减性)0.......(1><++⇒>m b am b m a b a )0.......(10>>++⇒<<m ba mb m a b a本题目可以用: 所有分数, 在分子分母都加上无穷(无穷大的符号无关)时, 极限是1来辅助了解。

助记:二、指数和对数的性质(一)指数 1. 2.3. 4、 5. 6、 7、100=≠a a 时,当 (二)对数)1,0,(log ≠>a a N a 1.对数恒等式2、N M MN a a a log log )(log +=3、N M NMa a a log log )(log -= 4、M n M a na log )(log = 5、M nM a nalog 1log =6.换底公式7、1log 01log ==a a a ,第二部分 初等代数一、实数(一)绝对值的性质与运算法则 1. 2. 3. 4.5、)0.........(≠=b ba b a6.(二)绝对值的非负性即负,任何实数的绝对值非0≥a归纳: 所有非负的变量1.正的偶数次方(根式), 如: 2、负的偶数次方(根式), 如: 3.指数函数考点:若干个非负数之和为0, 则每个非负数必然都为0. (三)绝对值的三角不等式b a b a b a +≤+≤- 时成立且左边等号当且仅当时成立右边等号当且仅当b a ab ab >≤≥00二、代数式的乘法公式与因式分解221()()a b a b a b +-=-、 (平方差公式)2. (二项式的完全平方公式 3、 (巧记: 正负正负) 4. (立方差公式)5、ac bc ab c b a c b a 222)(2222+++++=++三、 方程与不等式(一)一元二次方程设一元二次方程为, 则1.判别式二次函数的图象的对称轴方程是 , 顶点坐标是。

MBA数学公式集锦

MBA数学公式集锦

MBA 数学常用公式初等数学 一、初等代数1. 乘法公式与因式分解: (1)222)2a b a ab b ±=±+((2)2222)222a b c a b c ab ac bc ++=+++++( (3)22()()a b a b a b -=-+ (4)33223)33a b a a b ab b ±=±+±( (5)3322()()a b a b a ab b ±=±+ 2. 指数 (1)mnm na a a+⋅= (2)m n m na a a-÷=(3)()m n mn a a = (4)()m m m ab a b =(5)()m m m a a b b= (6)1mm a a -=3. 对数(log ,0,1a N a a >≠) (1)对数恒等式 l o g a NN a=,更常用ln NN e=(2)log ()log log a a a MN M N =+ (3)log ()log log a a a MM N N=- (4)log ()log n a a M n M = (5)1log log aa M n=(6)换底公式log log log b a b MM a=(7)log 10a =,log 1a a = 4.排列、组合与二项式定理(1)排列 (1)(2)[(1mn P nn n n m =--⋅⋅⋅--bbaAC(2)全排列 (1)(2)321nn P nn n n =--⋅⋅⋅⋅⋅= (3)组合 (1)(2)[(1)]!!!()!mn n n n n m n C m m n m --⋅⋅⋅--==- 组合的性质:(1)m n m n n C C -= (2)111m m m n n n C C C ---=+ (3)二项式定理 01111n n n n n nn n n n C a C ab L C a b C b---=++++n (a+b)● 展开式特征:1)11,0,1,...,k n k kk n k T C a b k n -++==通项公式:第项为2)1n +项数:展开总共项 3)指数:1100;a n b n −−−→−−−→逐渐减逐渐加的指数:由;的指数:由各项a 与b 的指数之和为n4)展开式的最大系数:212132nn n n C n C +++n当n 为偶数时,则中间项(第项)系数最大2n+1当n 为奇数时,则中间两项(第和项)系数最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分算术一、比和比例1、比例具有以下性质:(1)(2)(3)(4)(5)(合分比定理)2、增长率问题设原值为,变化率为,若上升若下降升注意:3、增减性本题目可以用:所有分数,在分子分母都加上无穷(无穷大的符号无关)时,极限是1来辅助了解。

助记:二、指数和对数的性质(一)指数1、 2、3、 4、5、 6、7、(二)对数1、对数恒等式2、3、4、5、6、换底公式7、第二部分初等代数一、实数(一)绝对值的性质与运算法则1、2、3、4、5、6、(二)绝对值的非负性即归纳:所有非负的变量1、正的偶数次方(根式),如:2、负的偶数次方(根式),如:3、指数函数考点:若干个非负数之和为0,则每个非负数必然都为0.(三)绝对值的三角不等式二、代数式的乘法公式与因式分解(平方差公式)2、(二项式的完全平方公式3、(巧记:正负正负)4、(立方差公式)5、三、方程与不等式(一)一元二次方程设一元二次方程为,则1、判别式二次函数的图象的对称轴方程是,顶点坐标是。

用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即,和(顶点式)。

2、判别式与根的关系之图像表达△= b2–4ac △>0 △= 0 △< 0f(x)=ax2+bx+c(a>0)f(x) = 0根无实根f(x) > 0解集x < x1 或x > x2 X∈Rf(x)<0解集x 1 < x < x2 x ∈f x ∈f3、根与系数的关系(韦达定理)的两个根,则有利用韦达定理可以求出关于两个根的对称轮换式的数值来:(1)(2)(3)(4)(二)、一元二次不等式1、一元二次不等式的解,可以根据其对应的二次函数的图像来求解(参见上页的图像)。

2、一般而言,一元二次方程的根都是其对应的一元二次不等式的解集的临界值。

3、注意对任意x都成立的情况(1)对任意x都成立,则有:a>0且△< 0(2)ax2 + bx + c<0对任意x都成立,则有:a<0且△< 04、要会根据不等式解集特点来判断不等式系数的特点(三)其他几个重要不等式1、平均值不等式,都对正数而言:两个正数:n个正数:注意:平均值不等式,等号成立条件是,当且仅当各项相等。

2、两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系是(助记:从小到大依次为:调和·几何·算·方根)注意:等号成立条件都是,当且仅当各项相等。

3、双向不等式是:左边在时取得等号,右边在时取得等号。

四、数列(一)1、公式:2、公式:(二)等差数列1、通项公式2、前n项和的3种表达方式第三种表达方式的重要运用:如果数列前n项和是常数项为0的n的2项式,则该数列是等差数列。

3、特殊的等差数列常数列自然数列奇数列偶数列 etc.4、等差数列的通项和前的重要公式及性质(1)通项(等差数列),有(2)前的2个重要性质Ⅰ.仍为等差数列Ⅱ.等差数列和的前,则:(三)等比数列1、通项公式2、前n项和的2种表达方式,(1)当时后一种的重要运用,只要是以q的n次幂与一个非0数的表达式,且q的n次幂的系数与该非0常数互为相反数,则该数列为等比数列(2)当时3、特殊等比数列非0常数列以2、、(-1)为底的自然次数幂4、当等比数列的公比q满足<1时,=S=。

5、等比数列的通项和前的重要公式及性质Ⅰ. 若m、n、p、q∈N,且,那么有。

Ⅱ. 前的重要性质:仍为等比数列五、排列、组合(一)排列、组合1、排列2、全排列3、组合4、组合的5个性质(只有第一个比较常用)(1)(2)(助记:下加1上取大)(3)=(见下面二项式定理)(4)=(5)(二)二项式定理1、二项式定理:助记:可以通过二项式的完全平方式来协助记忆各项的变化2、展开式的特征(1)通项公式3、展开式与系数之间的关系(1)与首末等距的两项系数相等(2)展开式的各项系数和为(证明:,即轻易得到结论)(3),展开式中奇数项系数和等于偶数项系数和(三)古典概率问题1、事件的运算规律(类似集合的运算,建议用文氏图求解)(1)事件的和、积满足交换律(2)事件的和、积交满足结合律(3)交和并的组合运算,满足交换律(4)徳摩根定律(5)(6)集合自身以及和空集的运算(7)(8)2、古典概率定义3、古典概率中最常见的三类概率计算(1)摸球问题;(2)分房问题;(3)随机取数问题此三类问题一定要灵活运用事件间的运算关系,将一个较复杂的事件分解成若干个比较简单的事件的和、差或积等,再利用概率公式求解,才能比较简便的计算出较复杂的概率。

4、概率的性质(1)强调:但是不能从(2)有限可加性:若,则(3)若是一个完备事件组,则,=1,特别的5、概率运算的四大基本公式(1)加法公式加法公式可以推广到任意个事件之和提示:各项的符号依次是正负正负交替出现。

(2)减法公式(3)乘法公式(4) 徳摩根定律6、伯努利公式只有两个试验结果的试验成为伯努利试验。

记为,则在重伯努利概型中的概率为:第三部分几何一、常见平面几何图形(一)多边形(包含三角形)之间的相互关系1、边形的内角和=边形的外角和一律为,与边数无关2、平面图形的全等和相似(1)全等:两个平面图形的形状和大小都一样,则称为全等,记做。

全等的两个平面图形边数相同,对应角度也相等。

(2)相似:两个平面图形的形状相同,仅仅大小不一样,则称为相似,记做。

相似的两个平面图形边数对应成比例,对应角度也相等。

对应边之比称为相似比,记为。

(3),即两个相似的的面积比等于相似比的平方。

(二)三角形1、三角形三内角和2、三角形各元素的主要计算公式(参见三角函数部分的解三角形)3、直角三角形(1)勾股定理:对于直角三角形,有 1(2)直角三角形的直角边是其外接圆的直径。

(三)平面图形面积1、任意三角形的6个求面积公式(1)(已知底和高);提示:等底等高的三角形面积相等,与三角形的形状无关。

(2)(已知三边和外接圆半径);(3)(已知三个边)备注:(4)(已知半周长和内切圆半径)另外两个公式由于不考三角,不做要求。

另外2个公式如下(5)(已知任意两边及夹角);(6)(已知三个角度和外接圆半径,不考);2、平行四边形:3、梯形:4、扇形:5、圆:二、平面解析几何(一)有线线段的定比分点1、若点P分有向线段成定比λ,则λ=2、若点,点P分有向线段成定比λ,则:λ==;=,=3、若在三角形中,若,则△ABC的重心G的坐标是。

(二)平面中两点间的距离公式1、数轴上两点间距离公式:2、直角坐标系中两点间距离:(三)直线1、求直线斜率的定义式为k=,两点式为k=2、直线方程的5种形式:点斜式:,斜截式:两点式:,截距式:一般式:3、经过两条直线的交点的直线系方程是:4、两条直线的位置关系(设直线的斜率为)(1)()(2)(3),夹角为。

(了解即可)Ⅰ若:,则。

Ⅱ若:,则:Ⅲ的交点坐标为:助记:分母相同,分子的小角标依次变化5、点到直线的距离公式(重要)点到直线的距离:6、平行直线距离:(四)圆(到某定点的距离相等的点的轨迹)1、圆的标准方程:2、圆的一般方程式其中半径,圆心坐标思考:方程在和时各表示怎样的图形?3、关于圆的一些特殊方程:(1)已知直径坐标的,则:若,则以线段AB为直径的圆的方程是(2)经过两个圆交点的,则:过的交点的圆系方(3)经过直线与圆交点的,则:过与圆的交点的圆的方程是:(4)过圆切点的切线方程为:重要推论(已知曲线和切点求其切线方程——就是把其中的一个替换后代入原曲线方程即可):例如,抛物线的以点为切点的切线方程是:,即:。

1、直线与圆的位置关系相切相离相交最常用的方法有两种,即:(1)判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离;(2)考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。

2、两个圆的位置关系相交相切相离三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角。

相关文档
最新文档