鸡兔同笼奥数题
小学奥数--鸡兔同笼(含答案解析)

小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。
2.删除了第一题和第五题中的选项,因为没有必要。
3.改写了第一题和第二题的问题,使其更加清晰。
4.修改了第三题和第七题的答案,因为原来的答案是错误的。
5.修改了第六题的选项,因为原来的选项是重复的。
6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。
7.修改了部分题目的语言,使其更加易懂。
选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。
2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。
3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。
蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。
XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。
5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。
6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。
小学奥数鸡兔同笼问题及其拓展专项练习含有详细答案解析(50题)

小学奥数鸡兔同笼问题及其拓展专项练习含有详细答案解析(50题)1、鸡兔同笼,从上面数有8个头,从下面数有22只脚,鸡和兔相差( )只。
A.2 B.3 C.4 D.62、鸡兔同笼,有21个头,50条腿,鸡有()只,兔有()只。
A.14 B.4C.17 D.73、“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()。
A.鸡23只兔12只B.鸡12只兔23只C.鸡14只兔21只4、鸡兔同笼,从上面数8个头,有22只脚,鸡有()只.A.3 B.5 C.65、鸡兔同笼,有17个头,42条腿,鸡有只,兔有只.6、鸡兔同笼,有35个头,94条腿,鸡有只,兔有只.7、鸡兔同笼,共有20个头,有60只脚,鸡有只,兔有只.8、鸡兔同笼,共32个头,102只脚,有只鸡,只兔.9、鸡兔同笼共有100个头,354只脚,那么,笼中有鸡只。
10、乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?11、鸡兔同笼,头共,足共,鸡兔各几只?12、鸡兔同笼,上有头,下有足,求笼中鸡兔各几只?13、动物园里有一群鸵鸟和大象,它们共有只眼睛和只脚,问:鸵鸟和大象各有多少?14、动物园里养了一些梅花鹿和鸵鸟,共有脚只,鸵鸟比梅花鹿多只,梅花鹿和鸵鸟各有多少只?15、一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?16、鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?17、鸡兔同笼,鸡、兔共有只,兔的脚数比鸡的脚数多只,问鸡、兔各多少只?18、鸡、兔同笼,鸡比兔多只,足数共只,问鸡、兔各几只?19、鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?20、在一个停车场上,现有车辆辆,其中汽车有个轮子,摩托车有个轮子,这些车共有个轮子,那么三轮摩托车有多少辆?21、鸡、兔共只,鸡脚比兔脚多只.问:鸡、兔各多少只?22、小建和小雷做仰卧起坐,小建先做了分钟,然后两人各做了分钟,一共做仰卧起坐次.已知每分钟小建比小雷平均多做次,那么小建比小雷多做了多少次?23、体育老师买了运动服上衣和裤子共件,共用了元,其中上衣每件元、裤子每件元,问老师买上衣和裤子各多少件?24、个和尚个馍,大和尚人分个馍,小和尚人分个馍.问:大、小和尚各有多少人?25、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?26、从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?27、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?28、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?29、鸡兔共有只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有条腿.试计算,笼中有鸡多少只?兔子多少只?30、某次数学竞赛,共有道题,每道题做对得分,没做或做错都要扣分,小聪得了分,他做对了多少道题?31、数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?32、东湖路小学三年级举行数学竞赛,共道试题.做对一题得分,没有做一题或做错一题都要倒扣分.刘钢得了分,问他做对了几道题?33、一张数学试卷,只有道选择题.做对一题得分,做错一题倒扣分;如不做,不得分也不扣分.若小明得了分,那么他做对多少题,做错多少题,没做多少题?34、某次考试有52人参加,共考5道题,每题做错人数的统计表如下图.还知道每人都至少做对1道题,做对1道题的有7人,5道题全对的有6人,做对2道题和3道题的人数一样多.那么做对4道题的人数是多少?35、春风小学3名云参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3名同学都回答了所有的题,小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了多少道题?36、有1元和5元的人民币共17张,合计49元,两种面值的人民币各有多少张?37、小华用二元五角钱买了面值二角和一角的邮票共张,问两种邮票各买多少张?38、买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?39、小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.小同共存了多少钱?40、李明和张亮轮流打一份稿件,李明每天打页,张亮每天打页,他们一连打了天,平均每天打页,问李明、张亮各打了多少天?41、四年级的同学们去春游,按团体购票120张,共432元,其中单程票每张2元,往返票4元,那么单程票和往返票相差多少张?42、使用甲种农药每千克要兑水20千克,使用乙种农药每千克要兑水40千克.根据农科院专家的意见,把两种农药混起来用可以提高药效,现有两种农药共50千克,要配药水1400千克,那么,其中甲种农药用了多少千克?43、某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?44、大、小猴共只,它们一起去采摘水蜜桃.猴王不在时,一只大猴一个小时可采摘千克,一只小猴子一小时可摘千克;猴王在场监督的时候,每只猴子不论大小每小时都可以多采摘千克.一天,采摘了小时,其中第一小时和最后一小时猴王在监督,结果共采摘了千克水蜜桃.在这个猴群中,共有小猴子多少只?45、有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?46、鸡兔同笼,共有头71个,鸡的脚比兔的脚少98只,问鸡、兔各几只?47、鸡兔同笼,有23个头,56条腿,鸡兔各多少只?48、鸡兔同笼,有30个头,76条腿,鸡、兔各有多少只?头/个鸡/只兔/只腿/条参考答案1、A2、C ,B3、A。
鸡兔同笼9种解题方法(完整版)

鸡兔同笼9种解题方法鸡兔同笼问题是我国古代著名趣题之一,同时也是是小学阶段一个重要的奥数问题。
让我们看看这道大约在1500年前就存在的有趣的问题都有哪些方法可以解决吧!题目:现有一笼子,里面有鸡和兔子若干,数一数,共有头14个,腿38条,求鸡和兔子各有多少只?[方法一:列表法]列表法直观、易理解、不易出错,一起来看一下①鸡有2只脚,比兔子少2只脚。
但是鸡有2只翅膀,兔子没有。
假设鸡有特异功能,把2只翅膀变成2条腿,那么鸡也有4只脚。
此时脚的总数是14×4=56只,但实际上只有38只,为什么呢?因为我们把鸡的翅膀当做脚来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔子就是14-9=5只。
②假设每只鸡都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔子的,它的脚数就是38-14×2=10只,因此兔的只数有10÷2=5只,鸡有14-5=9只。
③假如每只兔子又长出一个头来,然后魔术师说“劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目。
鸡就有14-5=9只。
[方法七:砍足法]假如把每只鸡砍掉一只脚,每只兔子砍掉一只脚,则每只鸡就变成了“独脚鸡”,每只兔子就变成了“双脚兔”。
这样,鸡和兔的脚的总数就由38变成了19;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只)。
所以,鸡的只数就是14-5=9(只)了。
[方法八:耍兔法]假如训兔师喊口令:“兔子,站起来!”此时兔子们都把两只前脚高高抬起来,两只后脚着地。
此时鸡兔都是两只脚着地的。
在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只脚。
为什么会多出来呢?因为兔子们把他们的2只前脚抬了起来,所以兔的只数是10÷2=5只,则鸡是14-5=9只。
小学六年级奥数鸡兔同笼与数位问题及答案

二.鸡兔同笼问题二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只? 解:解: 4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?只,这是为什么? 4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6) 372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数表示兔的只数三.数字数位问题三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 解:解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除整除依次类推:1~1999这些数的个位上的数字之和可以被9整除整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005 从1000~1999千位上一共999个“1”的和是999,也能整除;,也能整除;200020012002200320042005的各位数字之和是27,也刚好整除。
【奥数系列训练】(含答案)鸡兔同笼

【奥数系列训练】(含答案)鸡兔同笼【奥数系列训练】(含答案)——鸡兔同笼请填入正确答案:【题目1】一个大笼子里关了一些鸡和兔子。
数它们的头,一共有36个;数它们的腿,共100条。
则鸡有多少只,兔有多少只?【题目2】王老师用40元钱买来20枚邮票,全是1元和5元的。
求这两种邮票分别买了多少枚和多少枚。
【题目3】兔妈妈上山采蘑菇,晴天,每天能採30个,雨天,每天能採12个.它从4月10号开始,到4月29号,中间没休息,一共採了510个蘑菇。
那么,晴天是多少天?雨天有多少天?【题目4】肖老师带51名学生去公园里划船。
他们一共租了44条船,其中有大船和小船,每条大船坐6人,小船4人。
每条都坐满了人。
他们租的大船有几条,小船有几条?【题目5】一辆汽车参加车赛,9天共行了5000公里。
已知它晴天每天行688公里,雨天平均每天行390公里。
在比赛期间,有几个晴天?有几个雨天?【题目6】有大小两种塑料桶共60只。
每个大桶装水5公斤,每个小桶只能装水2公斤。
又知大桶一共比小桶多装26公斤。
则大桶有多少只,小桶有多少只?【题目7】用单价为6元/公斤的两种水果糖,配制成单价为6元/公斤的混合型糖15公斤。
有的原来单价11元/公斤的糖取了几公斤?【题目8】一百个和尚吃一百个馒头,大和尚一人吃三个,小和尚三人吃一个。
大和尚有多少个?小和尚有多少个?【题目9】孙老师带领99名同学种100棵树,他先种了一棵示范后,安排男同学一人种两棵,女生每两人种一棵。
植树的男生有多少人?而女生有多少人?【题目10】某化工厂甲、乙两车间共110人,现在要求甲车间每8人选出一名代表,乙车间每6人选出一名代表。
两车间一共选出了16名代表。
则甲车间有多少名工人,乙车间有多少名工人?【参考答案】1.【解答】鸡22只,兔子14只。
可先假设这36个全是鸡,那么应该只有36×2=72条腿。
而实际上有100条腿,这是因为兔子有4条腿,比鸡多2条。
奥数鸡兔同笼问题

奥数鸡兔同笼问题1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,•也就是244 + 2=122 (只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数+ 2-总头数二兔子数.2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了 16支,花了 2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19x 16-280) + (19-11)=24 + 8=3 (支).红笔数=16-3=13 (支).答:买了13支红铅笔和3支蓝铅笔.3、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成, 现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30 + 6=5 (份),乙每小时打30 + 10=3 (份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡” 头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式“兔”数二(30-3X7)・(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了 4.5小时,乙打字用了 2.5小时.答:甲打字用了 4小时30分.4.今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是(25X4-86) + (4-3) =14 (岁).1998年,兄年龄是14-4=10 (岁).父年龄是(25-14)X4-4=40 (岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10) + (3-1) =15 (岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.5.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的蜘蛛数二(118-6X18)0(8-6)=5 (只).因此就知道6条腿的小虫共18-5=13 (只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数二(13X2-20)0(2-1) =6 (只).因此蜻蜓数是13-6=7 (只).答:有5只蜘蛛,7只蜻蜓,6只蝉.6.某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对7道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道、3道、4道题的人共有52-7-6=39 (人).他们共做对181Tx7-5X6=144 (道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)+2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.5X39) + (4-1.5) =31 (人).答:做对4道题的有31人.7.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分------------------------------------------------ 百度文库 ---------------------------------------------- 的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8X40) + (8+4) =30 (张),这就知道,余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70 (张).答:买了 8分的邮票70张,4分的邮票30张.也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件“8分比4分多40张”,那么应有60张8分.以“分”作为计算单位,此时邮票总值是4X20+8X60=560.比680少,因此还要增加邮票.为了保持“差”是40,每增加1 张4分,就要增加1张8分,每种要增加的张数是(680-4X20-8X60) + (4+8) =10 (张).因此4分有20+10=30 (张),8分有60+10=70 (张).------------------------------------------------ 百度文库 ----------------------------------------------- 8.一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-8X3) + (10+8) = 7 (天).雨天是7+3=10天,总共7+10=17 (天).答:这项工程17天完成.。
四年级下册奥数试题-鸡兔同笼问题(含答案)全国通用

小学奥数:鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
例题:鸡兔同笼,头共有52个,脚共有136只,问鸡和兔各有多少只?根据上面所说的思路,套用公式方法1:把所有的鸡假设成兔子:鸡=(4 × 52 - 136 )÷(4 - 2 )= 36兔= 52 - 36 = 16方法2:把所有的兔子假设成鸡:兔=(136 - 2 × 52 )÷ ( 4 - 2 ) = 16鸡= 52 - 16 = 36特点:公式所得那个种类与假设的种类相反1、某玩具店购进飞机和汽车模型共30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型共有110个轮子,那么新购进的飞机模型和汽车模型各有多少个?解:假设全为飞机模型全为飞机情况下总轮数:3×30=90 (个)汽车模型数量:20÷1=20(个)与实际总轮子数之差:110-90=20(个)飞机模型数量:30-10(个)每单位轮子数之差:4-3=1(个)公式综合算式:汽车=(110-3×30)÷(4-3)=20(个)2、某商店买了儿童上衣和裤子共30件,其中一件上衣20元,一条裤子15元,一共花了515元,求买了几件上衣和几条裤子?解:假设全为上衣全为上衣情况下总价格:20×30=600(元)裤子数量:85÷5=17(条)与实际总价之差:600-515=85(元)衣服数量:30-17=13(件)每单位价格之差:20-15=5(元)公式综合算式:裤子=(20×30-515)÷(20-15)=17(条)3、一些2角和5角的硬币放在同一个存钱罐里,一共50枚,总钱数是14元8角,求各有多少枚?解:假设全为2角硬币 ,14元8角=148角全为2角时总钱数:2×50=100(角) 5角数量:48÷3=16(枚)与实际钱数之差:148-100=48(角) 2角数量:50-16=34(枚)每单位钱数之差:5-2=3(角)公式综合算式:(148-2×50)÷(5-2)=16(枚)4、现有大油瓶和小油瓶一共35个,其中大油瓶可装5千克,小油瓶可装3千克,一共装了145千克的由,求有大小油瓶各有几个?解:假设全为大油瓶全为大油瓶时总容量:5×35=175(千克)小油瓶数量:30÷2=15(个)与实际容量之差:175-145=30(千克)大油瓶数量:35-15=20(个)每单位容量之差:5-3=2(千克)公式综合算式:(5×35-145)÷(5-3)=15(个)5、亮亮参加数学竞赛,一共20道题,按照规定每答对一道题得5分,答错一道或者不答倒扣2分,一共得了72分,请问答对了几道题?解:假设全为答对的全为答对时总得分数:5×20=100(分)答错题数:28÷7=4(题)与实际得分之差:100-72=28(分)答对题数:20-4=16(题)每单位得分之差:5-(-2)= 5+2=7(分)公式综合算式:(5×20-72)÷(5+2)=4(题)*本题由于答对得5分,答错扣2分,故一共相差为7分*6、鸡和兔子关在同一个笼子里,鸡比兔子多28只,一共有176条腿,求鸡和兔各有几只?解:把兔子数量看做单位数鸡比兔子多28只,除这28只以外,鸡与兔子一样多,兔子的腿数量是鸡的2倍(鸡×2)那么得出脚的数量算式:(鸡+鸡×2+28)×2 = 176等式两边扩大或缩小相同倍数等式不变(鸡×3+28)×2÷2=176÷2鸡×3+28 = 88等式两边增加或减少相同的数等式不变鸡×3+28-28 = 88-28鸡×3=60等式两边扩大或缩小相同倍数等式不变鸡×3÷3=60÷3鸡=20只此得数为单位数,故兔子=20只,鸡=20+28=48只。
四年级鸡兔同笼奥数题及答案

四年级鸡兔同笼奥数题及答案
鸡兔同笼的例题及答案【1】
鸡和兔共有100只脚,若将鸡换成兔,将兔换成鸡,则共有86只脚,则鸡有多少只?兔有多少只?
【分析】【解法一】:鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让鸡只数和兔只数相等后的脚数:100+7×2=114(条);
鸡的脚数:114÷(2+1)=38(条);
鸡的只数:38÷2=19(只);兔的.只数:19-7=12(只);
【解法二】鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让兔只数和鸡只数相等后的脚数:100-7×4=72(条);
鸡的脚数:72÷(2+1)=24(条);
兔(鸡)的只数:24÷2=12(只);鸡的只数:12+7=19(只);
【解法三】:方程法设鸡有x只,兔有y只;
解方程得:x=12;y=19;
鸡兔同笼的例题及答案【2】
鸡兔同笼,头共46,足共128,鸡兔各几只
【分析】假设只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4-2=2(只)脚,那么56只脚是我们把56÷2=28只鸡当成了兔子,所以鸡的只数就是28,兔的只数是46-28=18(只).当然,这里我们也可以假设46只全是鸡,小朋友们,请你按此思路做做这道题目!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。
(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。
(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本
××元……。
它的解法显然可套用上述公式。
)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)。