数据采集系统——计算机测控系统
测控系统概念

第一章1.1测控系统的概念测控系统是现代检测技术与现代控制技术发展的必然和现实的需要,是以检测为基础,以传输途径,以处理为手段,以控制为目的的闭环系统。
测控系统的基本构成由四个部分构成:传感检测部分:感知信息(传感技术、检测技术)信息处理部分:处理信息(人工智能、模式识别)信息传输部分:传输信息(有线、无线通信及网络技术)信息控制部分:控制信息(现代控制技术)1.3测控系统的基本特点❖设备软件化:简化硬件、缩小体积、降低功耗、提高可靠性。
❖过程智能化:以计算技术和人工智能为核心。
❖高度灵活性:实现组态化、标准化、分布式。
❖高度实时性:采集、传输、处理、控制高速化。
❖高度可视性:图形编程、三维技术、虚拟现实。
❖测控一体化:测量、控制、管理。
二、测控系统的分类和组成(ppt图10页)1.检测系统又称数据采集系统。
以通用计算或嵌入式计算系统为核心,单纯实现系统信号的检测、处理、记录和显示为目的的系统。
2.控制系统以通用计算机或嵌入式计算系统为核心,单纯以实现控制为目的的系统。
3. 测控系统以通用计算机或嵌入式计算机系统为核心,以实现检测、传输、处理和控制为目的的系统4. 局域分布式测控系统以通用计算机和网络为核心,以实现对分布在局部区域内的多个系统的检测、传输、处理和控制为目的的系统5. 广域分布式测控系统以通用计算机和网络为核心,以实现对分布在大范区域内的多个系统的检测、传输、处理和控制为目的的系统四、测控技术的发展方向◆微型化:向微机电系统方向发展◆网络化:向无线网、自组织网、物联网、泛在网方向发展◆智能化:向人工智能化方向发展◆虚拟化:向虚拟现实方向发展测控系统的网络化(1)有线测控网络工业总线、局域网络、广域网(2)无线测控网络ADhoc自组织网络、传感网(3)混合测控网络物联网、泛在网第二章MEMS器件的封装要求(1)封装应对传感器芯片提供一个或多个环境通路(接口);(2)封装给传感器带来的应力要尽可能的小;(3)封装与封装材料不应对应用环境造成不良影响;(4)封装应保护传感器及其电子器件免遭不利环境的影响;(5)封装必须提供与外界的通道。
数据采集卡及基于板卡的测控系统

还有其它一些专用I/O板卡,如智能接口卡、虚拟存储板 (电子盘)、信号调理板、专用(接线)端子板等,这些种 类齐全、性能良好的I/O板卡与IPC配合使用,使系统的构成 十分容易。
PCI-5121智能CAN接口卡
常用的数据采集卡
1.模拟量输入卡(A/D卡)
在工业测控系统中,输入信号往往是模拟量,这就需要一个装置把 模拟量转换成数字量,各种A/D芯片就是用来完成此类转换的。在实际 的计算机测控系统中,不是以A/D芯片为基本单元,而是制成商品化的 A/D板卡。
大部分数据采集应用实例都使用了驱动软件。软 件层中的驱动软件可以直接对数据采集件的寄存器 编程,管理数据采集硬件的操作并把它和处理器中 断,DMA和内存这样的计算机资源结合在一起。驱 动软件隐藏了复杂的硬件底层编程细节,为用户提 供容易理解的接口。
系统特点
基于PC的DAQ系统(简称PCs)的基本特点 是,输入输出装置为板卡的形式,并将板卡直接 与个人计算机的系统总线相连,即直接插在计算 机主机的扩展槽上。这些输入输出板卡往往按照 某种标准由第三方批量生产,开发者或用户可以 直接在市场上购买,也可以由开发者自行制作。 一块板卡的点数(指测控信号的数量)少的有几 点,多的可达24点、32点甚至更多。
6.执行机构
它的作用是接受计算机发出的控制信号, 并把它转换成执行机构的动作,使被控对象 按预先规定的要求进行调整,保证其正常运 行。生产过程按预先规定的要求正常运行, 即控制生产过程。
7.外围设备
主要是为了扩大计算机主机的功能而配置 的。它用来显示、存储、打印、记录各种数 据。包括输入设备、输出设备和存储设备。
注意:在用手持板卡之前,请先释放手上 的静电(例如:通过触摸电脑机箱的金属 外壳释放静电),不要接触易带静电的材 料(如塑料材料),手持板卡时只能握它 的边沿,以免手上的静电损坏面板上的集 成电路或组件。
计算机测控系统包含的量化过程

计算机测控系统包含的量化过程
计算机测控系统的量化过程通常包含以下几个步骤:
1. 传感器采集:使用传感器、仪表等设备将待测量的物理量转化为电信号或数字信号。
2. 信号处理:将采集到的信号进行放大、滤波、增益调节、数字化等处理,使其适合输入到计算机系统中。
3. 数据采集:计算机通过数据采集卡、模拟输入模块等设备接收处理后的信号,将其转化为计算机可识别的数据。
4. 数据存储:将采集到的数据存储在计算机的内存或硬盘中,以备后续处理和分析。
5. 数据处理:利用计算机系统中的算法和软件对采集到的数据进行分析、计算、整理等操作,得出所需的测量结果。
6. 结果显示:将处理后的测量结果以图形、数值、报表等形式显示在计算机屏幕、打印机或其他输出设备上。
7. 控制反馈:根据测量结果,计算机系统可以进行反馈控制,通过输出控制信号控制被测对象的运动、温度、压力等参数。
以上步骤是通常的量化过程,实际情况可能有所不同,具体应根据实际应用和系统架构进行调整。
测控系统

2010年
第一章 概述
• 就技术而言: 测控系统是传感器技术、通信技术、计算机技术、控制技术、 计算机网络技术等信息技术的综合;
• 就其应用而言: 广泛应用于国民经济的各个领域,如化工、冶金、纺织、能源、 交通、电力,城市公共事业的自来水、供热、排水、医疗, 在科学研究、国防建设和空间技术中的应用更是屡见不鲜。
放大器是任何一台现代测量仪器不可缺少的基本电路。越灵 敏的仪器,越需要高增益高性能的放大器。根据实际仪器的 功能和要求的不同,对放大器也有这样或那样的性能要求, 如增益的高低,频带的宽窄,输入阻抗的高低等等。实际上, 放大器的参数远不止这些,还有许许多多的参数来表征放大 器,如非线性放大器,程控放大器,差动放大器,微功耗放 大器,轨—轨放大器……所以,放大器的种类举不胜举。往 常,通用运算放大器是设计工程师们的“万金油”。不管什 么样的放大器都用通用运算放大器来设计。虽然有的运算放 大器在某个或某些参数上具有突出的特性,比较适合于某些 应用场合。但可以说,最适合应用于某种场合的放大器一般 都不是采用通用运算放大器所构成的放大器,而是采用某些 有特色的运算放大器或专门设计的放大器芯片
●第三代就是智能式仪器仪表:计算机置于仪器中
●第四代为虚拟仪器:仪器仪表置于计算机中
以计算机为核心
• 门捷列夫:“科学是从测量开始的”
• 钱学森:“新技术革命的关键技术是信息技术。 信息技术由测量技术、计算机技术、通讯技术三 部分组成。测量技术是关键和基础”
数据采集技术
数据采集系统的组成结构
传感器
★时间频率:各种计时仪器与钟表、铯原子钟、时间频率测 量仪等
★电磁量:交、直流电流表、电压表、功率表、RLC测量仪、 静电仪、磁参数测量仪等
数据采集系统(第二组)

数据采集系统的设计姓名:专业:指导老师:学号:前言数据采集是从一个或多个信号获取对象信息的过程。
随着微型计算机技术的飞速发展和普及,数据采集监测已成为日益重要的检测技术,广泛应用于工农业等需要同时监控温度、湿度和压力等场合。
数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。
本实验采用89C51系列单片机,89C51系列单片机基于简化的嵌入式控制系统结构,具有体积小、重量轻,具有很强的灵活性,并采用AD0809模数转换芯片,具有很高的稳定性,且节约成本。
(一)、数据采集系统的基本介绍1.1 数据采集系统的简介数据采集系统一般包括模拟信号的输入输出通道和数字信号的输入输出通道。
数据采集系统的输入又称为数据的收集;数据采集系统的输出又称为数据的分配。
1.2数据采集系统的分类数据采集系统的结构形式多种多样,用途和功能也各不相同,常见的分类方法有以下几种:根据数据采集系统的功能分类:数据收集和数据分配;根据数据采集系统适应环境分类:隔离型和非隔离型,集中式和分布式,高速、中速和低速型;根据数据采集系统的控制功能分类:智能化数据采集系统,非智能化数据采集系统;根据模拟信号的性质分类:电压信号和电流信号,高电平信号和低电平信号,单端输入(SE)和差动输入(DE),单极性和双极性;根据信号通道的结构方式分类:单通道方式,多通道方式。
1.3数据采集系统的基本功能数据采集系统的任务,具体地说,就是采集传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机,根据不同的需要由计算机进行相应的计算和处理,得出所需的数据。
与此同时,将计算得到的数根进行显示和打印,以便实现对某些物理量的监视。
1.4数据采集系统的结构形式从硬件力向来看,白前数据采集系统的结构形式主要有两种:一种是微型计算机数据采集系统;另一种是集散型数据采集系统。
测控

一.概述1.计算机测控技术的含义:是传感技术,自动控制技术,计算机技术,通信技术,计算机网络技术,智能技术和数据库管理技术综合发展的产物。
2.计算机测控系统的含义:是以测量与控制为目的,在无人直接参与的情况下,应用计算机测控技术实现目标对象的数据采集,信息处理,决策控制,监督管理的综合自动化系统。
3.测试系统特点:网络化,多功能,智能化,易操作,可靠性高等。
4.测控系统的基本组成:测控对象;测控系统硬件(测试主机,检测与执行机构,过程通道,通信与网络接口,人机接口);测控系统软件(数据采集,分析及处理,控制决策,控制输出,监控报警,数据通信系统管理)5.典型的测控系统:1)基于处理器的测控系统;2)基于工控机的测控系统;3)集散控制系统(DCS);4)基于现场总线的测控系统;5)工业以太网测控系统;6)基于无线通信的测控系统;7)基于Internet的网络测控系统。
6.微处理器化测控系统的组成:嵌入式微处理器(最核心),外围硬件设备,接口部件及软件。
特点:1)功能丰富,性价比高;2)结构紧凑,可靠性高;3)具有自测试和自诊断功能;4)系统自动化水平高;5)系统能实现复杂的运算和控制功能;6)系统的人机对话能力强;7)系统构成柔性化。
7.集散控制系统(DCS):体系机构按垂直分解通常分为三级:第一级即分散过程控制级(基础);第二级为集中操作监控级;第三级为综合信息管理级。
集散控制系统特点:1)采用分级递阶结构;2)采用微处理器技术;3)采用工业以太网络通信技术;4)采用高可靠性技术;5)具有丰富的软件功能。
8.现场总线控制系统(FTS)是以现场总线为基础,是开放式,数字化,多点,铜线的网络化控制系统。
FCS的特点:1)全数字化;2)系统开放性;3)互操作与互换性;4)现场是被智能化,功能自治;5)高度分散性;6)高度环境适应性;7)低成本;8)信息系统化。
9.测控系统发展趋势:测控系统的智能化,网络换,虚拟化,多样化,标准化。
119. 测控技术中的数据采集系统如何设计?

119. 测控技术中的数据采集系统如何设计?119、测控技术中的数据采集系统如何设计?在测控技术领域,数据采集系统是获取和处理各种物理量、环境参数等信息的关键环节。
它就像是一双敏锐的眼睛,能够捕捉到我们所需的各种数据,并将其转化为有价值的信息,为后续的分析、控制和决策提供坚实的基础。
那么,如何设计一个高效、准确且可靠的数据采集系统呢?首先,我们需要明确数据采集系统的需求和目标。
这包括要采集哪些类型的数据,比如温度、压力、湿度、电流、电压等等;采集的频率是多少,是每秒采集几次还是每分钟采集几次;数据的精度要求有多高,是精确到小数点后几位;以及数据的存储和传输方式等。
只有清楚地了解这些需求,才能为后续的设计工作指明方向。
在确定了需求之后,接下来就是选择合适的传感器。
传感器是数据采集系统的“触角”,它负责将物理量转化为电信号。
不同的传感器适用于不同的测量对象和测量范围。
例如,测量温度可以使用热电偶、热敏电阻或红外传感器;测量压力可以使用应变式压力传感器、电容式压力传感器等。
在选择传感器时,需要考虑测量范围、精度、响应时间、稳定性、可靠性以及成本等因素。
同时,还要确保传感器能够与后续的信号调理电路和数据采集设备兼容。
信号调理电路是数据采集系统中的重要组成部分。
传感器输出的电信号往往比较微弱、含有噪声或者是非标准的信号形式,需要经过信号调理电路进行放大、滤波、线性化等处理,以提高信号的质量和可用性。
放大电路可以将微弱的信号放大到合适的幅度,便于后续的处理;滤波电路可以去除信号中的噪声和干扰,提高信号的纯度;线性化电路则可以将非线性的传感器输出信号转换为线性信号,方便后续的计算和分析。
数据采集设备是将调理后的信号转换为数字信号并进行存储和处理的关键部件。
常见的数据采集设备有数据采集卡、单片机、嵌入式系统等。
数据采集卡通常安装在计算机中,通过计算机的软件进行控制和数据处理;单片机和嵌入式系统则具有体积小、功耗低、可靠性高等优点,适用于一些对体积和功耗有严格要求的场合。
第一章计算机测控系统概述

第一章计算机测控系统概述计算机测控系统是一种用计算机和相关设备进行控制和测量的系统。
它通常包括硬件设备、软件工具和算法,用于收集、分析和处理测量数据,并根据需要控制被测对象。
计算机测控系统被广泛应用于各个领域,如工业自动化、环境监测、科学研究等。
计算机测控系统的基本构成主要包括传感器、数据采集卡和数据处理器。
传感器用于将被测量转换为电信号,传感器的种类多种多样,根据不同的测量对象和需求选择合适的传感器进行测量。
数据采集卡是连接传感器和计算机的接口,它负责将传感器输出的模拟信号转换为数字信号,然后传输给计算机进行处理。
数据处理器是计算机或嵌入式设备,它负责接收和处理采集到的数据,并根据需要进行控制操作。
计算机测控系统的核心技术包括数据采集和处理、数据传输和通信、控制和决策算法等。
数据采集和处理是系统的基础部分,它涉及到模拟信号转换为数字信号的过程,以及对采集到的数据进行滤波、去噪、校准等处理。
数据传输和通信是系统与外部设备或网络之间进行信息交换的方式,通常使用串口、以太网等接口进行数据传输。
控制和决策算法是系统的核心部分,它根据测量数据进行分析和判断,并根据需要进行自动或手动控制操作。
计算机测控系统的优势在于其高效、准确和灵活的特点。
通过计算机的处理能力和算法优势,可以对大量的测量数据进行实时分析和决策,提高系统的控制精度和效率。
同时,系统的硬件设备可以根据需要进行扩展和更新,以适应不同的测量对象和环境要求。
此外,计算机测控系统还可以实现远程监控和操作,便于用户对系统进行远程控制和数据访问。
然而,计算机测控系统也存在一些挑战和问题。
首先,系统的稳定性和可靠性是一个关键问题,由于测控系统常常运行在复杂的工业环境中,例如高温、强电磁干扰等,因此对系统的硬件设备和软件工具进行可靠性设计是至关重要的。
其次,系统的数据安全和保密性也是需要考虑的问题,特别是在一些敏感领域和国家级重点工程中,对系统的数据进行保护和防护是必不可少的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衬底B
结构
7
2)工作原理
❖ Chapter 10 信号测量与调理
原理1
栅源电压vGS的控制作用—— 形成导电沟道
正电压vGS产生的反型层把 漏-源连接起来,形成宽度均 匀的导电N沟道,自由电子是 沟道内的主要载流子。
反型层刚形成时,对应的栅 源电压vGS称为开启电压,用 VT表示。
2021/3/1
2021/3/1
16
❖ Chapter 10 信号测量与调理
传感器 变送器
······
传感器 变送器
多 路 模 拟 开
采 样 保 持 器
A/D
计 算 机
D/A
模 拟 控 制 器
关
测控系统框图
2021/3/1
2
❖ Chapter 10 信号测量与调理
把模拟量转换为数字量的过程称为模数 转换,完成这种转换的电路称为模数转换器 (Analog to Digital Converter),简称为ADC或 A/D;
耗尽型FET重要参数。在VGS=0的条件下,管子预夹 断时的漏极电流。
2021/3/1
13
❖ Chapter 10 信号测量与调理
4)直流输入电阻RGS、rds 栅源电压与漏极电流之比,通常JFET的
RGS>107Ω,MOSFET的RGS>109Ω。 5)低频跨导gm
表征工作点Q上栅源电压vgs 对漏极电流id的控制作用大小 的参数,单位是mS。 6)最大漏极功耗PDM 最大漏极功耗可由PDM= vDS iD决 定,与双极型三极管的PCM相当。
9
❖ Chapter 10 信号测量与调理
沟道预夹断后, vDS继续 增大,夹断点向源极方向移 动, iD略有增大。 vGS变化时,vGS < VT,没有导电 沟道, iD≈0; vGS =VT时开始形成导电沟道; vGS ≥ VT时,导电沟道变宽。从 而改变vGS 的大小有效地控制沟 道电阻的大小。 ——输入电压vGS 对输出电流iD的控制
2、 场效应三极管的参数
1)开启电压VGS(th) (或VT) 增强型FET的重要参数。 在VDS为某
一固定值下能产生iD所需要的最小 |VGS|值。 2)夹断电压VGS(off) (或VP)
耗尽型FET的参数。在VDS为某一固定值 条件下, iD等于一微小值(便于测量)时所 对应的VGS。 3)饱和漏极电流IDSS
MOSFET可分为 增强型 N沟道、P沟道 耗尽型 N沟道、P沟道
2021/3/1
6
❖ Chapter 10 信号测量与调理
1、N沟道增强型MOSFET
1)结构 N沟道增强型
源极S
MOSFET在P型半导
体上生成一层SiO2 薄膜绝缘层,然后
用光刻工艺扩散两
个高掺杂的N型区。
栅极G
漏极D
2021/3/1
2021/3/1
10
3)特性曲线
❖ Chapter 10 信号测量与调理
iDf(vFra bibliotek)DS vG
S
常
数
——输出特性
2021/3/1
iD
f(vG
)
S vDS
常
数
——转移特性
11
❖ Chapter 10 信号测量与调理
N沟道耗尽型
N沟道增强型
P沟道耗尽型
P沟道增强型
2021/3/1
12
❖ Chapter 10 信号测量与调理
把数字量转换为模拟量的过程称为数模 转换,完成这种转换的电路称为数模转换器 (Digital to Analog Converter),简称DAC或D/A。
2021/3/1
3
❖ Chapter 10 信号测量与调理
§10.7 多路模拟开关
模拟开关是一种能够按照控制指令对模拟信号 传输进行通、断控制的电子器件
注意:模拟开关多用场效应管来构成,因为 场效应管的VGS能够使D、S之间导通和断开, 但这样做成的实际的模拟开关接通时还会有 一导通电阻,在断开状态时仍会有一小的关 断电流
2021/3/1
4
❖ Chapter 10 信号测量与调理
一、场效应管结构原理
场效应管(Fiedl Effect Transistor——FET)是利 用电场效应来控制的有源器件,它不仅兼有一般 半导体管体积小、重量轻、耗电省、寿命长的特 点,还具有输入电阻高(MOSFET最高可达 1015Ω)、噪声系数低、热稳定性好、工作频率高、 抗辐射能力强、制造工艺简单等优点。在近代大 规模和超大规模集成电路以及微波毫米波电路中 得到广泛应用。
2021/3/1
14
❖ Chapter 10 信号测量与调理
二、 双极型和场效应型三极管的比较
双极型三极管
结构
NPN型
PNP型
C与E一般不可倒置使 用
载流子 多子扩散少子漂移
输入量
电流输入
电流控制电流源 CCCS(β)
场效应三极管
结型耗尽型 N沟道 P沟道 绝缘栅增强型 N沟道 P沟道 绝缘栅耗尽型 N沟道 P沟道 D与S有的型号可倒置使用
按结构,场效应管可分两大类:
结型场效应管(JFET)
绝缘栅型场效应管(IGFET)
2021/3/1
5
❖ Chapter 10 信号测量与调理
二、绝缘栅型场效应管
绝缘栅型场效应管中应用最多的是以二氧化 硅作为金属(铝)栅极和半导体之间绝缘层 , 又称金属-氧化物-半导体场效应管,简称MOSFET ( Metal-Oxide-Semiconductor FET)。
8
❖ Chapter 10 信号测量与调理
漏源电压vDS对漏极电流iD的控制作用 原理2 vGS ≥ VT,加vDS,形成iD,且iD与vDS基本成正比。 因vDS形成电位差,使导电沟道为梯形。 vDS增大至vGD = vGS− vDS< VT,沟道被预夹断(漏 端),管子进入饱和区。
2021/3/1
多子漂移 电压输入 电压控制电流源 VCCS(gm)
2021/3/1
15
❖ Chapter 10 信号测量与调理
噪声 温度特性 输入电阻 静电影响 集成工艺
双极型三极管
较大 受温度影响较大 几十到几千欧姆
不受静电影响 不易大规模集成
场效应三极管
较小 较小,可有零温度系数点
几兆欧姆以上 易受静电影响 适宜大规模和超大规模集成
❖ Chapter 10 信号测量与调理
第十章 数据采集系统—— 计算机测控系统
§10.6 典型的测控系统组成 §10.7 多路模拟开关 §10.8 采样保持器 §10.9 D/A 转换器 §10.10 A/D 转换器
2021/3/1
1
❖ Chapter 10 信号测量与调理
§10.6 典型的测控系统组成