锌锰酸性电池
锌锰干电池

酸性锌锰干电池-结构
• 负极经汞齐化处理,使表面性质更为均匀, 以减少锌的腐蚀,提高电池的储藏性能
酸性锌锰干电池-电池反应
• • • • • • 正极: 2MnO2+2H2O+2e→2MnO(OH)+2OHˉ 负极: Zn+2NH4Cl→Zn(NH3)2Cl2+2H+2eˉ 总反应: 2MnO2+Zn+2NH4Cl→2MnO(OH)+Zn(NH 3)2Cl2
•
我国的锌锰碱性干电池中 汞含量达1%至5%,中性干 电池为0.025%,已严重超 标,全国每年用于生产干电 池的汞仅一次性污染含量每 年达100t汞之多。数字巨大, 污染惊人。
废旧电池要回收
• 防止环境污染。如果多 数产品在使用后被丢弃, 那么资源将丌断减少, 垃圾则相应增加。 • 废旧电池中的有色金属 是宝贵的自然资源,处 理100t废旧电池能获得 25t锌,5t锰,17t钢皮。 这样废旧电池回收以后, 使废旧电池的回收及处 理更能符合国家城市生 活垃圾处理原则,以及 污染防治技术政策。
锌锰干电池
•
化学电池分不可充电(一次 性电池)与可充电(二次性电池) 两种,锌锰干电池是一次性电池中 使用历史最长、产量最大、价格最 低的品种,使用最为普遍。
碱性电池反应
分类
• 锌锰干电池属于一次电池,使用一次后就被废弃, 区别于在充电后又能反复使用,使用周期较长的可 冲式电池。 • 锌锰干电池根据电解质酸碱性质可分为以下两类: • 1: 19世纪60年代法国的勒克兰谢(Leclanche) 发明的酸性锌锰干电池,又称为勒克兰谢电池戒炭 锌干电池 • 2:1882年研制成功,1912年开发,1949年投产问 世的碱性锌锰干电池
03-锌锰电池

3.1 概述
1、锌锰电池的发展
(4)碱性锌锰电池
自1965年开始生产至今。正极是电解MnO2粉,负极是汞齐 化锌粉,电解液是KOH水溶液。电池反应机理和电池结构与上述 三类电池全然不同。其电性能优于前三类电池,放电时间大约是 同类糊式电池的5~7倍,其R20电池的比能量达0.21 Wh/cm3,且 可制成二次电池。
MnO2+H +e
+
-
MnOOH
反应产物水锰石在电极表面的积累减少了MnO2同溶液之间发 生反应的固-液界面,阻碍了反应的继续进行。为了使反应继续进 行下去,必须使水锰石从电极表面上转移走,这一过程称为MnO2 还原的二次过程,也称次级过程。
3.2 二氧化锰电极
1、二氧化锰阴极还原的初级过程( MnO2 还原)
3.2 二氧化锰电极
1、二氧化锰阴极还原的初级过程
另外,虽然MnOOH的生成是在固相中直接完成的,但是质子 是来源于溶液的,因此反应必须在固/液界面上进行。也就是说, 固/液界面的面积越大,电极反应进行的速度越快。因此,MnO2 电极通常采用MnO2颗粒制成多孔电极,尽可能增大电极固/液界 面的面积。
单体电池的型号是在英文大写字母的后面跟上以阿拉伯数 字表示的序号。大写字母R表示圆筒形电池,F表示扁形电池, S表示方形或矩形电池。
3.1 概述
2、锌锰电池的规格
国际电工委员会(IEC)对干电池的型号和规格做出了规定。
表3-1 一些常见中性锌锰电池的型号和规格
电池型号 R20(D、一号) R14(C、二号) R6(AA、五号) R03(AAA、七号) 6F22(九伏电池)
3.4 锌锰电池材料
1、二氧化锰材料
(1)二氧化锰的晶型 二氧化锰有着不同的晶体结构。常见的有α、β、γ型。此外还 有δ、ε、ρ型。
酸性锌锰干电池优点

铅蓄电池
放电时P__bO__2 电极发生还原反应
_铅___电极发生氧化反应 负极: Pb -2e- +SO42- → PbSO4
正极: PbO2 +4H++SO42-+2e- → PbSO4 +2H2O
电池反应为: Pb+PbO2+2H2SO4=2PbSO4&,价格便宜.
存在的问题: 会发生自放电使电压下降,缩短存放时间.
[思考与分享] 锌锰干电池即使不用,放置过久,也会失效(作 为电解质的糊状氯化铵显酸性),为了充分有效 地利用锌锰干电池,在购买、保存和使用方面你 有何经验与建议?请思考后与大家分享。
如何改进酸性锌锰干电池?
铅蓄电池
想一想
铅蓄电池是一种二次电池,可多次充放电 优点:性能优良,价格便宜,可多次充放电
主要缺点:单位重量电极材料释放的电能小
铅蓄电池
锂电池
[经验分享]:
对于如何合理使用 充电电池,你都有 哪些经验可以和大 家分享呢?
想一想、填一填
可充电电池也称为二__次__电池, 可以反复__放___电和__充___电, 是电池发展的一个重要方向。
[小组讨论与交流]
在你的生活与学习中,或你了解的范围 里,还有哪些需要使用电池的产品或器 具?各使用什么样的电池?
化学电源是能够实际应用的原电池
二、 发展中的化学电源
化学电源的分类:
锌锰干电池 银锌纽扣电池
铅酸电池
锂离子电池 氢氧燃料电池
其它燃料电池
酸性锌锰干电池是最早进入市场的实用 电池这种电池的结构如图2-11所示
放电时将_化__学__能转化为_电__能, 是一个__原__电_池__装置. 充电时将_电__能转化为_化__学__能.
第二讲 锌锰电池

(3)大电流连续放电其容量是酸性锌锰电池 的5倍左右;
(4)贮存寿命长。
碱性锌锰电池
表示。用于大电流放电和连续使用的用电器具,如放录机、BP机、 照相机、电动玩具等。根据电池中汞含量的高低,分为含汞电池、 低汞电池和无汞电池。 扣式电池采用电解二氧化锰与石墨混合压成片状正极,氢氧化 钾水溶液作电解液,锌粉压成片状作负极,正负极间用隔膜隔开。
锌离子的存在形式
pH值
电液导电能力
大,正极极化大
好
小电流间放
不好
大电流连放、防漏性能好
结论
中性锌锰电池:
一、将旧电池拆开,按物质初 类,并了解电池的构造。基本原理 中性锌锰电池结构 下:
)Zn NH4Cl ZnCl2 MnO2 , C(
铜帽 封蜡 锌筒 多孔纸 石墨电极
NH4Cl 和 MnO2
锌负极的自放电
○ 锌电极产生自放电的原因
氢离子的阴极还原所引起的锌的自放电
氧的阴极还原所引起的锌电极的自放电 电解液中的杂质所引起的锌电极的自放电
○ 引起锌电极自放电的主要原因是氢的阴极析出所引起
的锌的腐蚀,即析氢腐蚀
○ 影响锌电极自放电的因素
锌的纯度及表面均匀性的影响 溶液pH 值的影响 电液中NH4Cl、ZnCl2浓度对自放电的影响 温度的影响
水蒸气压/Pa 2933 2340
Zn2+离子状态 [Zn(H2O)]2+ [ZnCl4]2—
两电池比较
差异 氯化铵型 氯化锌型
好,不容易漏液
反应式不同
蒸气压 产物不同
无水生成和消耗 消耗大量的水,防漏性能
低
Zn(NH3)2Cl2, 致密而坚硬的沉淀 ,小电流间放 负离子,负极极化大 高,密封要求高 ZnCl2· 4 ZnO· 5 H2 O, 水泥效应,大电流连放 正离子,负极极化小 小,正极极化小
锌锰电池的工作原理

锌锰电池的工作原理
锌锰电池是一种常见的原始电池,它的工作原理基于化学反应。
它由锌和锰两种金属作为电池的两个电极,并通过电解质连接起来。
在电池中,锌作为阳极,锰作为阴极。
电解质在两个电极之间起到导电的作用,同时也起到离子传输的作用。
在正极(锌)上,锌原子会脱离金属形成离子,同时释放出两个电子:
Zn(s) → Zn2+(aq) + 2e-
这个过程被称为氧化反应,在这个反应中,锌原子失去了电子,氧化成为离子。
这个反应让锌阳极呈现正电荷。
在负极(锰)上,锰离子接受了两个电子,还原成为锰原子:
2MnO2(s) + 2H+(aq) + 2e- → Mn2O3(s) + H2O(l)
这个过程被称为还原反应,在这个反应中,锰离子接受了电子,还原成为锰原子。
这个反应让锰阴极呈现负电荷。
在锌和锰之间的化学反应生成了一种电势差,产生了电流。
电子从锌阳极流向锰阴极,在外部电路中产生了电流的流动。
总的来说,锌锰电池的工作原理基于氧化还原反应。
锌阳极氧化成锌离子,锰阴极还原成锰原子,产生了电势差和电流。
常见的原电池反应式书写

二、常见原电池电极反应方程式的书写1、锌-铜-硫酸原电池负极: Zn - 2e-═ Zn2+正极:2H++2e-═ H2↑总反应式:Zn+2H+═ Zn2++H2↑2、利用反应Fe + 2FeCl3═ 3FeCl2设计原电池负极: Fe - 2e-═ Fe2+正极: 2Fe3++2e-═ 2Fe2+3、普通锌锰干电池(酸性电池)负极: Zn - 2e-═ Zn2+正极: 2MnO2 + 2NH4+ + 2e-═ 2MnO(OH) + 2NH3总反应式: Zn + 2MnO2 + 2NH4+═ Zn2+ + 2MnO(OH) + 2NH3知多点:电池中MnO2的作用是将正极上NH4+还原生成的H氧化成为水,以免产生H2附在石墨表面而增加电池内阻。
由于反应中锌筒不断消耗变薄,且有液态水生成[2MnO(OH)→Mn2O3+H2O],故电池用久后会变软。
4、碱性锌锰电池,电解质为KOH溶液负极: Zn + 2OH- - 2e-═ Zn(OH)2正极: 2MnO2 + 2H2O + 2e-═ 2MnO(OH) + 2OH-总反应式: Zn + 2MnO2 + 2H2O ═ Zn(OH)2 + 2MnO(OH)5、银锌电池(碱性电池),又称纽扣电池,结构是Ag2O-Zn-KOH负极: Zn + 2OH- - 2e-═ ZnO + H2O 正极: Ag2O + H2O + 2e-═ 2Ag + 2OH-总反应式:Zn + Ag2O ═ 2Ag + ZnO6、铅蓄电池(酸性电池)负极: Pb + SO42- -2e-═ PbSO4正极: PbO2 + 4H+ + SO42- + 2e-═ PbSO4 + 2H2O 总反应式: Pb + PbO2 + 2H2SO4═ 2PbSO4 + 2H2O7、碱性镍镉电池:该电池以Cd和NiO(OH)作电极材料,NaOH作电解质溶液。
负极:Cd + 2OH- - 2e-═ Cd(OH)2正极: 2NiO(OH) + 2H2O + 2e-═ 2Ni(OH)2 + 2OH-总反应式: Cd + 2NiO(OH) + 2H2O ═ Cd(OH)2 + 2Ni(OH)28、镍氢电池(碱性电池)负极: H2 + 2OH--2e-═ 2H2O 正极:2NiO(OH) + 2H2O + 2e-═ 2Ni(OH)2 + 2OH-总反应式: H2+ 2NiO(OH) ═ 2Ni(OH)2知多点:铅蓄、镍镉、镍氢可充电池的比较:从三种蓄电池的总反应式可看出,铅蓄电池在放电时除消耗电极材料外,同时还消耗电解质硫酸,使溶液中的自由移动的离子浓度减小,内阻增大,导电能力降低。
第二章 锌锰电池

代汞缓蚀剂的要求
能有效地抑制锌的腐蚀
耐碱性电解液的腐蚀 对锌粉电极无不良影响
(Al? Ni?)
有害元素或杂质含量低 材料成本增加不明显
(Au?Pt?)
在锌电极中加入代汞金属元素 的方法(合金化)
直接在高纯锌中添加代汞元素,通
过共熔制造锌合金粉 把代汞金属(和化合物)添加在电解 质溶液中,通过置换反应使微量代 汞金属元素沉积在金属锌粉的表面, 从而改变锌电极的表面性能
三、有机缓蚀剂
有机缓蚀剂一般为非离子型表面活
性剂(共价型,C、H、N、O、S等, 一般不含金属。) 分子一端是极性基团,另一端为非 极性基团 连接两个基团的一般有-NH-,-S-, -COO-,-CON-,-SON-等
有机缓蚀剂的种类
聚乙二醇衍生物 芳烃衍生物
聚乙烯氧化物
胺类及肟类
亚乙基二醇类
碱性锌锰电池
按外形 分类
中性和 酸性锌 锰电池
碱性锌 锰电池
筒式 迭层式 薄层纸式 筒式
扣式
扁平式
2.1.1 勒克朗谢电池
( ) Zn NH 4 Cl, ZnCl 2 MnO 2 C( )
正极活性物质用天然MnO2(70~75%)
负极活性物质用Zn筒
隔膜为淀粉糨糊隔离层(糊状物)
锌电 极分 类
2.2.1 锌电极类型
锌筒
片状锌 锌合金粉
汞齐锌粉
无汞齐锌粉
无铅 锌粉
有铅 锌粉
几种电池中的锌电极 (1) 勒克朗谢电池中的锌电极
典型的电解液为4.96M
ZnCl2。 电池在放电和储存过程中,会发生析 氢反应,氢离子浓度降低,pH值不断 升高,在pH为5.1-5.8时,锌以离子进 入溶液,在5.8-7.9范围时,锌表面产 生不溶性ZnCl2.2NH3晶体,在大于7.9 时, ZnCl2.2NH3晶体会溶解产生 Zn(NH3)42+。
废旧酸性锌锰干电池的回收和碳酸锰的制备

废旧酸性锌锰干电池的回收和碳酸锰的制备——过氧化氢法一、前言①MnCO3摩尔质量 114.95 玫瑰色三角晶系菱面体或无定形亮白棕色粉末。
相对密度3.125。
几乎不溶于水,微溶于含二氧化碳的水中。
溶于稀无机酸,微溶于普通有机酸中,不溶于醇和液氨。
在干燥空气中稳定。
潮湿时易氧化,形成三氧化二锰而逐渐变为棕黑色。
受热时分解放出CO2,与水共沸时即水解。
在沸腾的氢氧化钾中,生成氢氧化锰。
②MnO2二氧化锰分子量86.94(自然界以软锰矿形式存在)物理性状:黑色无定形粉末,或黑色斜方晶体。
溶解性:难溶于水、弱酸、弱碱、硝酸、冷硫酸,溶于浓盐酸而产生氯气。
③锌锰干电池锌锰干电池由金属锌片挤压成圆筒形,作为电池的负极兼容器。
天然锰矿(主要是二氧化锰)与乙炔黑、石墨、固体氯化铵按一定比例混合,加适当的电解液压制成电芯(或称炭包)。
炭包周围包上棉纸并在其中插入炭棒,同时炭棒头上戴上铜帽,构成电池的正极。
用氯化铵、氯化锌的水溶液作为电解质,并加入淀粉,通过加温糊化、凝固,达到不流动的目的。
电池底部内放有绝缘垫,上部有纸垫和塑料盖,锌筒外部裹一张蜡纸或沥青纸,并在最外面包以纸壳或铁壳商标。
电池的组成含量取决于其品牌和种类,通常锌锰电池的组成成分中炭包和锌壳约占总质量的四分之三。
④碳酸锰制备方法:工业上:方法一:将软锰矿煅烧成氧化锰,酸化后加入过量碳酸氢铵即可制得碳酸锰。
方法二:以菱锰矿为原料,采用无机酸浸取,获取相应的锰盐溶液,锰盐与碳酸盐沉淀剂再进行复分解反应制得碳酸锰。
方法三:向锰盐溶液中通入二氧化碳、氨气制备碳酸锰。
方法四:用贫矿湿法可直接生产高纯度碳酸锰。
本实验中,以干电池中的二氧化锰为原料制备碳酸锰。
实验室制备方法:方法一:在酸浸、过滤后得到的酸浸渣中加入理论量的110%的H2SO4 ,于充分搅拌下,采用逐步法加入理论量120%的还原剂FeS,使酸浸渣中难溶于酸的猛还原浸出。
反应4h后过滤,与所得滤液中加入MnO2 使溶液中的二价铁氧化为三价铁,加入氨水除去杂质铁。