蜘蛛丝

合集下载

神奇的蜘蛛丝为何它如此坚固

神奇的蜘蛛丝为何它如此坚固

神奇的蜘蛛丝为何它如此坚固蜘蛛丝是一种非常神奇的材料,它具有出色的韧性和强度,被认为是自然界中最坚固的材料之一。

蜘蛛丝的坚固性源于其特殊的结构和化学成分。

本文将探讨蜘蛛丝为何如此坚固,并介绍一些关于蜘蛛丝的有趣事实。

一、蜘蛛丝的结构蜘蛛丝的结构是其坚固性的关键。

蜘蛛丝由蛋白质分子组成,这些蛋白质分子排列成纳米级的晶体结构。

这种结构使得蜘蛛丝具有高度的有序性和规则性,从而增强了其强度和韧性。

蜘蛛丝的结构可以分为两种类型:刚性结构和弹性结构。

刚性结构主要存在于蜘蛛丝的外层,它们具有高度的有序性和规则性,使得蜘蛛丝具有较高的强度。

而弹性结构主要存在于蜘蛛丝的内层,它们具有较高的柔韧性和延展性,使得蜘蛛丝具有较高的韧性。

二、蜘蛛丝的化学成分蜘蛛丝的化学成分也对其坚固性起到了重要作用。

蜘蛛丝主要由蛋白质组成,其中最重要的成分是一种叫做“蜘蛛丝蛋白”的蛋白质。

蜘蛛丝蛋白具有特殊的氨基酸序列,这种序列使得蜘蛛丝蛋白具有高度的有序性和规则性,从而增强了蜘蛛丝的强度和韧性。

此外,蜘蛛丝中还含有一些其他的化学成分,如甘氨酸、丝氨酸和酪氨酸等。

这些化学成分在蜘蛛丝的结构和性能中起到了重要的作用。

例如,甘氨酸可以增强蜘蛛丝的柔韧性和延展性,丝氨酸可以增强蜘蛛丝的强度和韧性,酪氨酸可以增强蜘蛛丝的抗紫外线能力。

三、蜘蛛丝的制造过程蜘蛛丝的制造过程也对其坚固性起到了重要作用。

蜘蛛丝是由蜘蛛的腺体分泌出来的,然后通过蜘蛛的腹部的喷射器喷射出来。

在喷射出来的瞬间,蜘蛛丝会迅速凝固并形成纤维状的结构。

蜘蛛丝的制造过程非常复杂,涉及到多个步骤和多个腺体的协同作用。

蜘蛛丝的制造过程中,蜘蛛会调节腺体的分泌速度和喷射速度,以控制蜘蛛丝的结构和性能。

这种精密的调节机制使得蜘蛛丝具有出色的坚固性和适应性。

四、蜘蛛丝的应用蜘蛛丝的坚固性和适应性使得它具有广泛的应用前景。

目前,科学家们已经成功地从蜘蛛身上提取蜘蛛丝,并利用其制造出了各种各样的产品。

蜘蛛丝的强度和用途

蜘蛛丝的强度和用途

蜘蛛丝的强度和用途蜘蛛丝是一种天然纤维,由蜘蛛的腺体分泌而出。

它具有出色的强度和韧性,被认为是自然界中最坚韧的材料之一。

蜘蛛丝的强度和用途引起了科学家们的广泛关注和研究。

本文将探讨蜘蛛丝的强度特点以及其在不同领域的用途。

蜘蛛丝的强度是其最显著的特点之一。

根据科学研究,蜘蛛丝的强度比钢的强度还要高。

例如,金丝蛛的丝线强度可以达到每直径单位面积1.3 GPa,而钢的强度通常在0.5-1.2 GPa之间。

这种超强的强度使得蜘蛛丝在许多领域具有广泛的应用前景。

首先,蜘蛛丝在材料科学领域有着广泛的应用。

由于其出色的强度和韧性,蜘蛛丝被认为是一种理想的材料,可以用于制造高强度的纤维和复合材料。

科学家们已经成功地将蜘蛛丝与其他材料结合,制造出具有超强强度和韧性的复合材料。

这些复合材料可以应用于航空航天、汽车制造、建筑等领域,提高产品的性能和安全性。

其次,蜘蛛丝在医学领域也有着重要的应用价值。

蜘蛛丝具有良好的生物相容性和生物降解性,可以用于制造可吸收的缝合线和修复材料。

相比传统的缝合线,蜘蛛丝缝合线具有更好的强度和韧性,可以减少手术创伤和促进伤口愈合。

此外,蜘蛛丝还可以用于制造人工血管、人工皮肤等医疗器械,为医学领域的发展提供新的可能性。

此外,蜘蛛丝还在纺织和服装领域有着广泛的应用。

蜘蛛丝具有良好的柔软性和透气性,可以制造出舒适、透气的纺织品。

一些科技公司已经开始研发蜘蛛丝纺织品,用于制造高端运动服装、户外装备等产品。

蜘蛛丝纺织品不仅具有出色的性能,还具有环保的特点,可以替代传统的合成纤维,减少对环境的影响。

此外,蜘蛛丝还在生物工程和能源领域有着潜在的应用前景。

科学家们已经成功地利用蜘蛛丝制造出高效的太阳能电池和储能器件。

蜘蛛丝的导电性和光学性能使其成为一种理想的材料,可以用于制造新型的能源设备。

此外,蜘蛛丝还可以用于生物传感器和生物芯片的制造,为生物医学和生物工程领域的研究提供新的工具和方法。

综上所述,蜘蛛丝具有出色的强度和韧性,被广泛应用于材料科学、医学、纺织和服装、生物工程和能源等领域。

蜘蛛丝为什么这么强韧

蜘蛛丝为什么这么强韧

蜘蛛丝为什么这么强韧蜘蛛,这种在自然界中随处可见的小生物,常常凭借其精巧编织的蜘蛛网给我们留下深刻的印象。

而蜘蛛网之所以能够如此坚韧耐用,关键就在于蜘蛛丝那令人惊叹的强韧特性。

要理解蜘蛛丝的强韧,首先得从它的化学成分说起。

蜘蛛丝主要由蛋白质构成,这些蛋白质分子有着独特的结构和排列方式。

与我们常见的蛋白质不同,蜘蛛丝中的蛋白质分子经过了精心的“编排”,形成了高度有序的结构。

这种有序结构使得蜘蛛丝在承受外力时能够有效地分散和传递力量,从而增强了其整体的强度。

从微观层面来看,蜘蛛丝的分子结构具有很高的规整性。

其中的多肽链通过氢键、范德华力等相互作用紧密结合在一起,形成了稳定的结构。

这种微观结构的稳定性为蜘蛛丝的强韧性能奠定了基础。

就好像是一座精心搭建的建筑,每一块砖石都紧密相连,共同承受着外界的压力。

蜘蛛丝的强韧还得益于其独特的物理结构。

蜘蛛丝通常非常纤细,但却有着出色的拉伸性能。

当受到外力拉伸时,蜘蛛丝能够发生很大程度的形变而不断裂。

这是因为蜘蛛丝具有一种被称为“超收缩”的特性。

简单来说,就是在受到拉伸时,蜘蛛丝能够通过调整自身的结构来适应外力,从而避免了断裂的发生。

想象一下,一根细细的蜘蛛丝就像是一根具有超级弹性的橡皮筋,能够在被拉长后又迅速恢复原状。

这种出色的弹性使得蜘蛛丝能够承受住来自猎物的冲击和自然界中的风吹雨打。

另外,蜘蛛丝的表面特性也对其强韧性能起到了重要作用。

蜘蛛丝的表面通常非常光滑,这减少了与外界物体的摩擦,降低了磨损的可能性。

而且,这种光滑的表面还有助于蜘蛛丝在空气中保持良好的形态,不轻易发生扭曲和缠绕。

在蜘蛛织网的过程中,它们会根据不同的位置和用途,分泌出不同类型的蜘蛛丝。

有的用于构建框架,需要更强的刚性;有的用于捕捉猎物,需要更高的弹性和粘性。

这种根据需求“定制”蜘蛛丝的能力,进一步优化了蜘蛛网的整体性能,使其更加坚固耐用。

与人类制造的许多材料相比,蜘蛛丝的强韧性能具有明显的优势。

蜘蛛丝在工业制造中的应用技术

蜘蛛丝在工业制造中的应用技术

蜘蛛丝在工业制造中的应用技术蜘蛛丝是一种天然材料,具有出色的强度和韧性,被广泛应用于工业制造领域。

本文将介绍蜘蛛丝在纺织、医疗、航空航天和材料科学领域的应用技术。

一、蜘蛛丝在纺织领域的应用技术1. 高强度纤维制造:蜘蛛丝是一种具有超强强度的纤维材料,可以替代传统的合成纤维。

目前,科学家已成功把蜘蛛丝基因导入绵蚕或大肠杆菌等生物体内,利用生物技术制造出大量蜘蛛丝纤维。

2. 织物增强:将蜘蛛丝添加到纺织品中,可以显著提高纺织品的强度和耐磨性。

蜘蛛丝纤维可以与丝绸、棉织品等其他材料结合,增强织物的性能。

3. 纺线技术改进:蜘蛛丝是一种非常细且柔软的材料,传统的纺织技术无法直接纺制。

研究人员通过改进纺线技术,成功地将蜘蛛丝纤维转变为可用于纺织的线材。

二、蜘蛛丝在医疗领域的应用技术1. 生物材料:蜘蛛丝具有良好的生物相容性和生物降解性,可以被用作医疗器械和植入材料。

蜘蛛丝纤维可以制成缝合线、人工皮肤等医疗器械,用于外科手术和伤口愈合。

2. 药物传递系统:科学家利用蜘蛛丝的结构特性,开发出一种新型的药物传递系统。

药物可以被包裹在蜘蛛丝纤维内,通过控制纤维的解析速度,实现持续释放药物的效果。

三、蜘蛛丝在航空航天领域的应用技术1. 轻质高强材料:蜘蛛丝的强度与重量比是许多工程材料难以比拟的。

在航空航天领域,利用蜘蛛丝可以制造出轻质高强的材料,用于制作飞行器的结构件和支撑结构。

2. 防护装备:蜘蛛丝的高强度和高韧性使其成为一种优秀的防护材料。

蜘蛛丝纤维可以用于制作防弹衣、防护面具等装备,为航空航天人员提供更好的安全保护。

四、蜘蛛丝在材料科学领域的应用技术1. 生物仿生材料:蜘蛛丝具有独特的力学性能和结构特征,可以作为生物仿生材料的研究对象。

通过研究蜘蛛丝的结构和制造工艺,可以为人造纤维、高性能复合材料等领域提供新的启示。

2. 纳米技术应用:蜘蛛丝具有纳米级的细小结构,其纤维直径约为几十到几百纳米。

借助纳米技术,研究人员可以改变蜘蛛丝的性质和形态,进一步扩展其在材料科学领域的应用。

科普趣事揭秘蜘蛛丝的奇妙力量

科普趣事揭秘蜘蛛丝的奇妙力量

科普趣事揭秘蜘蛛丝的奇妙力量蜘蛛丝是一种非常神奇的材料,它具有出色的强韧性和粘附性能。

许多人不禁好奇,蜘蛛丝是如何具备如此奇妙的力量呢?本文将为大家揭秘蜘蛛丝的奇妙力量,并深入探讨其在科学和工程领域的应用。

一、蜘蛛丝的组成蜘蛛丝是由蛋白质构成的,这些蛋白质被称为“蜘蛛丝蛋白”。

蜘蛛丝蛋白的结构非常特殊,由一系列重复的氨基酸组成。

根据不同的蜘蛛种类和用途,蜘蛛丝蛋白的结构也会有所不同。

二、蜘蛛丝的强韧性蜘蛛丝的强韧性是其最显著的特点之一。

研究发现,蜘蛛丝的拉伸强度比钢还要高,而且它还具有良好的韧性和柔韧性。

这是因为蜘蛛丝的分子结构呈现出一种类似于螺旋形的排列方式,使得其能够承受较大的外力而不断延伸。

蜘蛛丝的强韧性来自于蛋白质分子之间的相互作用。

蛋白质链之间通过氢键、静电力和范德华力等相互作用力紧密地连接在一起,形成了强大的结构网络。

这种结构网络能够有效地分散外部力,使蜘蛛丝具有出色的强度。

三、蜘蛛丝的粘附性除了强韧性,蜘蛛丝还具有极强的粘附性能。

这使得蜘蛛能够用丝在不同的表面上爬行,而无需担心掉落。

蜘蛛丝的粘附性来自于其中的一种蛋白质——粘蛋白。

粘蛋白能够产生极强的黏附力,使得蛛丝能够牢固地附着在各种不同的表面上。

此外,蜘蛛丝的表面形状也对其粘附性能起到重要的作用。

蜘蛛丝表面呈现出许多微观的纳米和亚微观级别的结构,这些结构提供了更大的表面积,增加了粘附力。

四、蜘蛛丝的应用蜘蛛丝的强韧性和粘附性能使之具有广泛的应用前景。

科学家们正积极研究蜘蛛丝在材料科学、生物医学和工程领域的潜在应用。

在材料科学方面,蜘蛛丝被视为一种理想的仿生材料。

许多科学家试图模仿蜘蛛丝的结构和性能,研发出具备同样强韧性和粘附性的合成材料。

这些仿生材料可以应用于制造高性能的纤维、高强度的复合材料和可降解的医用材料等。

在生物医学领域,蜘蛛丝也有着重要的应用。

蜘蛛丝蛋白具有良好的生物相容性,能够与生物体组织相互作用而不产生排异反应。

因此,蜘蛛丝蛋白可以用于制备生物医学材料、人工血管和修复组织等。

蜘蛛丝

蜘蛛丝

第三节蜘蛛丝蜘蛛丝是一种天然高分子蛋白纤维和生物材料。

纤维具有很高的强度、弹性、伸长、韧性及抗断裂性,同时还具有质轻、抗紫外线、比重小、耐低温的特点,是其它纤维所不能比拟的。

纤维初始模量高、断裂功大、韧性强,是加工特种纺织品的首选原料。

蜘蛛丝由蛋白质组成,是一种可生物降解且无污染的纤维。

蜘蛛丝纺织品的生产可追溯至18世纪,最具代表性的是1710年巴黎科学院展出的蜘蛛丝长统袜和手套,这是人类历史上第一双用蜘蛛丝织成的长统袜与手套;1864年美国制作了另外一双薄蛛丝长统袜,所用的蛛丝是从500个蜘蛛喷丝头中抽取出来的,这种长统袜由于太薄而不能穿;1900年巴黎世界博览会上展示了用2.5万只蜘蛛吐出的9.14万米长的丝织成的一块长16.46m、宽0.46m 的布,该产品花费太高,没有带来商业利润。

到1997年初,美国生物学家安妮·穆尔发现,在美国南部有一种被称为“黑寡妇”的蜘蛛,它吐出的丝比现在所知道的任何蜘蛛丝的强度都高。

蜘蛛丝特殊的结构和性能已引起世界各国的关注,并在纺织、医疗卫生和军事领域产生了极其重要的影响。

目前,国内外许多科学家已通过基因工程将蜘蛛的基因移植到其它动植物体内,从而使蜘蛛丝纤维实现工业化生产的梦想成为现实。

一、蜘蛛丝的组成蜘蛛丝产生于蜘蛛体内特殊的分泌腺,这些分泌腺因蜘蛛的种类不同而各异。

到目前为止,生物学家共发现了7种类型的分泌腺,常见的有葡萄腺、梨状腺、壶状腺、叶状腺、集合腺等。

蜘蛛的种类繁多,会吐丝结网的大约有2万多种。

按吐丝种类的多少,蜘蛛可分为古蛛亚目、原蛛亚目和新蛛亚目。

古蛛亚目的蜘蛛只能吐出一种丝;原蛛亚目的蜘蛛可吐出3种丝;新蛛亚目的蜘蛛可吐出7种丝。

一般来说,新蛛亚目所有的蜘蛛都会有7种丝腺,各种丝腺分别能吐出不同性质的蜘蛛丝(见表1-6)。

蜘蛛丝的主要成份是蛋白质,其基本组成单元为氨基酸。

蜘蛛丝中含17种左右的氨基酸,各种氨基酸的含量因蜘蛛的种类不同而存有一定的差异。

蜘蛛的丝是什么原理

蜘蛛的丝是什么原理

蜘蛛的丝是什么原理
蜘蛛丝主要由蛛丝蛋白组成,它是在蜘蛛体内特化的丝腺中合成并分泌出来的。

蜘蛛丝形成的基本原理如下:
1. 丝蛋白的合成
蜘蛛体内有专门合成丝蛋白的丝腺,丝蛋白是一种含有许多氨基酸的蛋白质。

丝腺细胞内有丝氨酸合酶,可以催化合成丝蛋白分子。

2. 丝蛋白的储存
合成后的丝蛋白被储存在丝腺中,而且丝蛋白分子之间通过离子交互作用汇聚成微晶状态,待分泌时使用。

3. 丝液的形成
当蜘蛛需要造网或吐丝时,丝腺会从储存的丝蛋白微晶中抽取丝蛋白分子,溶解在腺液中生成丝液。

4. 凝固和拉伸
丝液被压出丝腺的细孔,接触空气后丝蛋白分子中的氨基与羧基发生化学反应,丝
液快速凝固形成固体丝线。

这时蜘蛛用足齿不断拉伸丝线,使分子排列更加紧密。

5. 结晶孕育
经拉伸的丝线中,丝蛋白分子发生范德华力互相吸引,形成稳定的Beta折叠结构,大大提高丝线的机械强度。

6. 重复制丝
蜘蛛可以不断制丝、拉伸和固化,反复spinneret出连续的蛛丝,进行造网活动。

综上,蜘蛛丝的生成是丝蛋白合成、储存和凝固的复杂生物过程,其分子结构赋予了蜘蛛丝独特的性能。

蜘蛛丝的坚韧探索蜘蛛丝的强度与韧性

蜘蛛丝的坚韧探索蜘蛛丝的强度与韧性

蜘蛛丝的坚韧探索蜘蛛丝的强度与韧性蜘蛛丝的坚韧探索蜘蛛丝的强度与韧性蜘蛛丝是一种异常坚韧的物质,拥有令人惊叹的强度和韧性。

在科学界,对于蜘蛛丝的研究一直是一个备受关注的课题。

本文将深入探索蜘蛛丝的坚韧特性,探讨其强度与韧性的来源。

一、蜘蛛丝的物理结构和成分蜘蛛丝是由蜘蛛的腺体分泌而成,经过旋转和拉伸形成纤维状的物质。

蜘蛛丝的物理结构非常精细,由蛋白质组成。

不同种类的蜘蛛丝具有不同的成分和结构,导致了它们的强度和韧性差异。

二、蜘蛛丝的强度来源蜘蛛丝的强度来自于其独特的分子结构和晶体排列。

蜘蛛丝的分子链具有高度排列的有序结构,这使得蜘蛛丝具有较高的拉伸强度。

此外,一些研究还发现,蜘蛛丝中存在纳米级别的晶体,在力学性能方面起到了关键作用。

三、蜘蛛丝的韧性来源蜘蛛丝的韧性是指其在承受外力时能够保持相对稳定的形态而不断伸缩。

蜘蛛丝之所以具有出色的韧性,与其特殊的结构和分子间相互作用有关。

蜘蛛丝中的蛋白质分子链呈螺旋状排列,这导致了蜘蛛丝的柔软性和可伸展性,使其能够承受较大的变形。

四、蜘蛛丝的应用价值蜘蛛丝的独特特性使其具有广泛的应用前景。

科学家们研究蜘蛛丝的目的之一是为了开发高强度和高韧性的材料。

目前,已经有一些尝试利用蜘蛛丝制造纺织品、建筑材料和医疗器械等。

蜘蛛丝纤维的研发有望在材料科学领域带来革命性的突破。

五、蜘蛛丝研究的挑战尽管蜘蛛丝具有卓越的特性,但其研究仍然面临着一些挑战。

首先,蜘蛛丝的采集和提取相对复杂,成本较高。

其次,蜘蛛丝的分子结构和制备过程仍然不完全清楚,需要进一步深入研究。

此外,蜘蛛丝的应用还面临着规模化生产和市场推广的问题。

六、未来展望未来,随着对蜘蛛丝研究水平的提高和技术的发展,我们有望更好地理解蜘蛛丝的特性,并将其应用于更广泛的领域。

通过深入了解蜘蛛丝的制备和力学性能,我们或许能够开发出更加先进的材料,以满足人类对高性能材料的需求。

总结:蜘蛛丝的强度与韧性源于其独特的分子结构和晶体排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蜘蛛丝纤维之我见高(101)张春娟 1008093006摘要:蜘蛛丝是一种具有特殊品质的材料,迄今为止人类还无法生产出像它那样具有超强强度和弹性极强的化合物。

人类一直梦想着利用蜘蛛丝的奇特性能来造福社会大众。

关键词:蜘蛛丝,性能,应用节肢动物门(Arthropoda)蛛形纲(Arachnida)蜘蛛目(Araneida或Araneae)所有种的通称。

除南极洲以外,全世界分布[1]。

蜘蛛在整个生命过程中会产生许多不同的丝,它的柔韧性和弹性都很好,耐冲击力也很强。

无论是在干燥状态或是潮湿状态下都有很好的性能,是一种目前已知弹性和强度最高的天然动物纤维。

首先蜘蛛丝很细而强度却很高,它比人发还要细而强度比钢丝还要大。

其次它的柔韧性和弹性都很好,耐冲击力强。

无论是在干燥状态或是潮湿状态下都有很好的性能。

蜘蛛丝网还有很好的耐低温性能。

由于蜘蛛丝是由蛋白质构成,是生物可降解的,把这些优良的性能集中在同一种纤维上十分困难。

人们开始考虑,如果能够用人工的方法大量而经济地生产这种纤维,必将对纤维和纺织业的发展产生深远的影响。

目前美国、加拿大、德国和英国等发达国家已投入大量的人力和物力进行研究,并已取得相当的进展,对蜘蛛丝的研究,已成为当今纤维界的热门课题。

1 蜘蛛丝的形成原理及其性能1.1 形成原理在显微镜下,我们看到丝从蜘蛛的分泌出来,蜘蛛的腹腔里有许多丝浆,它的尾端有很小的孔眼。

结网的时候,蜘蛛便将这些丝浆喷出去。

丝浆一遇到空气,就凝结,且富有粘性和惊人的强度。

每根蜘蛛丝的抗拉强度是钢材的2倍,弹性也比人造纤维好得多。

比如,蜘蛛网可以延伸到原长的10倍,而尼龙一旦延展到原长的20%就会发生断裂无论什么飞虫,一撞到网上就别想再跑掉。

而蜘蛛的身上和脚上经常分泌出一层油质,粘丝是不粘油的。

但是,一般飞虫是没有这层油质的,所以,蜘蛛网能牢牢地粘住飞虫却粘不住蜘蛛[2]。

1.2 主要成分蜘蛛丝的主要化学成分是甘胺酸(NH2-CH2-COOH)、丙胺酸(NH2-CH(CH3)-COOH)及小部分的丝胺酸(NH2-CH(CH2OH)-COOH),加上其它胺基酸单体蛋白质分子链构成。

外观上又细又柔软的蜘蛛丝之所以具有极好的弹性和强度,其原因在于:一方面,蜘蛛丝中具有不规则的蛋白质分子链,这使蜘蛛丝具有弹性;另一方面,蜘蛛丝中还具有规则的蛋白质分子链,这又使蜘蛛丝具有强度。

1.3性能和特点蜘蛛制造的蜘蛛丝是蛋白质。

这种蛋白质蜘蛛丝是人们所知道的强度最高的纤维,并且具有优异的弹性,其特性很像高强度合成纤维芳纶1414和弹性纤维氨纶。

就强度而论,蜘蛛丝甚至优于高性能的Kevlar 纤维,虽然两种纤维都有类似的高强度水平,但Kevlar纤维在断裂之前仅能延伸其原长的4%,而蜘蛛丝的断裂伸长可达30%。

据科学家研究试验,一束由蜘蛛丝组成的绳子比同样粗细的不锈钢钢筋还要坚强有力。

它能够承受比钢筋还多5倍的重量而不会被折断。

虽然一些蜘蛛丝细如头发,但你可别轻视它的能力和作用!蜘蛛丝非常富有弹性,一条直径只有万分之一毫米的蜘蛛丝,可以伸长两倍以上才会拉断。

另蜘蛛丝由蛋白质组成,只要丝浆不完,可以想要多长就抽多长。

理论上可以边喂蜘蛛边抽蜘蛛丝。

2 蜘蛛丝结构首先让我们来看一下蛛网的结构。

虽然不同种类的蜘蛛所织的网常有差异,但是一般都有放射状的蜘蛛丝和椭圆形的蜘蛛丝两种。

蜘蛛在结网时,会先构筑放射状的骨架丝线———纵丝。

纵丝主要是支撑蜘蛛网结构的,强度大,但无黏性。

在骨架完成后,蜘蛛会接着以逆时针的方向织造螺旋状丝线,科学家称其为横丝。

如果仔细观察,就会发现横丝上有水珠似的凸起,它们被称为黏珠,其黏性让误闯入的昆虫难以脱身。

蜘蛛的高明之处就是它能吐出不同种类的丝。

蜘蛛的腹部尾端一般有6至8个纺丝器,与每个纺丝器对应的是蜘蛛身上功能各异的腺体,每个脾体能产生不同的丝线原料,蜘蛛视需要而吐出不同的原料,从而织造出黏的和不黏的两种丝线。

蜘蛛在网上活动时,会选择在没有黏性的纵丝上,避免被黏住。

3 蜘蛛丝的获取蜘蛛丝除了通过人工收集天然蜘蛛丝,惟有通过基因工程手段才能大量获取。

蜘蛛是独行动物。

具有相互蚕食的习性,不可能像家蚕那样高密度驯l养,而且蜘蛛的产丝量很少。

因此,要获得具有商业用途的低成本蜘蛛丝,惟有通过基因工程途径,先获得大量的重组蜘蛛丝蛋白,进而通过纺丝工艺制成纤维。

目前,已有通过多种不同的基因表达系统生产重组蜘蛛蛋白的报道。

譬如,Fahnestock等报道在大肠杆菌中表达了蜘蛛牵引丝蛋白,但发现大于3 kb的基因表达效率降低。

并有基因删节表达现象。

Miao等利用家蚕核多角体杆状病毒表达系统有效表达出737 kDa左右的鞭毛丝蛋白。

Lazaris等利用牛乳腺细胞和仓鼠肾细胞表达系统,成功地表达出60—140kDa的蜘蛛牵引丝蛋白,并且经过特殊工序得到了高质量的蛋白质纤维。

Scheller等将蜘蛛牵引丝蛋白基因Maspl 转化到马铃薯和烟草中,重组蛋白质分子质量高达1OOkDa、含量约占总蛋白的2%。

Yang等利用植物细胞器定位序列实现了类蜘蛛牵引丝蛋白DPIB在拟南芥转基因植株中的高水平表达。

在叶片和种子中的含量分别占总蛋白的8.5%和18%。

我国开发和使用蚕丝具有悠久的历史,茧丝生产量在世界上占据主导地位[3]。

在国F3~I",在家蚕丝腺中定点表达蜘蛛丝的研究未曾见报道,故探索在家蚕丝腺中表达蜘蛛丝。

直接利用家蚕本身的吐丝系统,越过目前仿蜘蛛丝研究中的人工纺丝的难关,创造能够吐含蜘蛛丝纤维的新型转基因家蚕,有望实现高性能蜘蛛丝的大量生物仿造。

目前在人工表达生产蛛丝蛋白方面仍然存在一些问题:(1)和天然丝蛋白相比,人工丝蛋白基因及其表达还不是争长度的;(2)表达效率还较低,而且存在表达系统的稳定性问题;(3)表达的丝蛋白一般不具有分子取向(4)还不能够模拟蜘蛛丝的纤维化过程,将人工丝蛋白制成具有天然丝纤维特性的人工丝。

这其中最为关键的因素就是因为天然蛛丝蛋白在形成丝纤维过程中,丝蛋白分子要在蜘蛛的丝腺中逐步脱水.才能排列有序成为液晶态,最终经吐丝器牵引或拉仲而成一定结构和性能的丝纤维,所以由人工表达生产蛛丝蛋白到具有天然丝纤维特性的蛛丝,这中间的加工工艺还有待研究。

4 应用前景4.1应用领域尽管有的高性能化学纤维的力学特性已经超过蜘蛛丝,但蜘蛛丝的某些特性仍是化学纤维所不可匹敌的。

在试图寻找能克服蚕丝等生物纤维的弹性不好等缺点料过程中,发现蜘蛛丝在许多力学特性上优于蚕丝。

故科学家们认为蜘蛛丝具有非常广泛的应用前景。

前面提到,蜘蛛丝有比芳纶还高的强度,计算表明,一根直径10mm 的蜘蛛丝绳可以拉住一架正在飞行的喷气式飞机,蜘蛛丝有吸收巨大能量的能力,又耐低温,同时它又是天然产品,是生物可降解的可循环再生的材料,因而被世界各国普遍看好。

在军事方面,用蜘蛛丝做的防弹背心比用芳纶做的性能还好。

也可以用于制造坦克和飞机的装甲,以及军事建筑物的“防弹衣”等。

在航空航天方面,可用于结构材料、复合材料和宇航服装等。

在建筑方面,结构材料和复合材料,用于桥梁、高层建筑和民用建筑等。

在农业和食品方面。

可用做捕捞网具,代替造成白色污染的包装塑料等。

在医学和保健方面,尤其有广泛用途。

由于蜘蛛丝是天然产品,又由蛋白质组成,和人体有良好的相容性,因而可用作高性能的生物材料,如人工筋腱、人工韧带、人工器官、组织修复、伤口处理、用于眼外科和神经外科手术等特细和超特细生物可降解外科手术缝合线。

污染的塑料等.蜘蛛纤维除具备“五大保健功能”外。

同时具备“三大服用舒适功能”的保健纤维。

三大服用舒适功能:1)热湿舒适功能:导湿快、透气好、干爽舒适。

2)接触舒适功能:手感柔软、滑爽。

没有其它化纤织物的玻璃状平滑感。

3)压感舒适功能:轻柔、膨松,织物带有毛羽,亲肤效果更佳。

蛛丝是蜘蛛赖以为生的“法宝”。

蜘蛛借助蛛丝捕捉猎物、储存食物和繁殖后代。

蛛丝由蜘蛛腹部的丝腺分泌并形成。

丝腺分泌一种胶状丝浆,而丝浆则在喷丝口与蛋白融合反应,形成蛛丝。

4.2具体实例---黑寡妇“黑寡妇”是一种毒性很强的蜘蛛,美国加州大学河滨分校的科学家14日宣布,已经辨认出“黑寡妇”蜘蛛丝两种关键蛋白质的基因和DNA序列,未来人们可以仿造这种蜘蛛丝,并制成一种超强护身盔甲。

黑寡妇蜘蛛被认为是世界上最毒的蜘蛛,最新研究成果或许有助于改变它在人们心目中的形象。

蛛丝是自然界最理想的纤维材料之一,强度竟然超过所有其他天然纤维,甚至连以坚韧著称的钢丝和凯夫拉纤维都望尘莫及,尤其以高强度、高韧性著称。

研究表明,蜘蛛可以针对不牵引丝是蜘蛛用于搭建蛛网的丝,在各种蛛丝中最为坚固[4]。

与一般蜘蛛不同,黑寡妇蜘蛛的牵引丝有着更加出众的性能,无论强度还是伸展性都更胜一筹。

这赋予了黑寡妇蛛丝承受更大拉力和形变的能力。

据记载,黑寡妇蛛丝在拉断前可以延伸27%,强度则超过普通蛛丝的2倍。

据悉,目前市场上还没有出现与蛛丝相关的产品。

但科学家认为,新发现有助于新一代高强度合成纤维工业新材料的开发。

在黑寡妇蛛丝启发下开发形成的新一代高强度合成纤维将在医药、工程、体育、军事等领域大显身手。

新一代合成纤维可以用于制造坚固而轻便的护甲,更加坚韧的手术线、人造腱、人造韧带以及各种新型运动护具等。

德国一些科学家已经证实,借助现已破译的蛛丝遗传密码,科学家可以在诸如细菌、植物或动物等不同宿主身上合成产生构成蛛丝的关键蛋白。

研究小组面临的下一个难题是,如何把合成产生的关键蛋白制造成人造蛛丝。

5 结语总之,目前这种纤维的呼声很高,特别是如果能用转基因的方法从羊奶、牛奶中大量获得蜘蛛丝蛋白,则这种转基因仿蜘蛛丝在价格上完全可与对位芳纶竞争。

据说生产这种仿蜘蛛丝的费用可降低到每公斤50 美元以下,而目前蚕丝的平均生产费用也要每公斤26~33 美元。

参考文献:[1] 陈建洪.动物百科全书[M].商务出版社,2001[2]蔡再生.纤维化学与物理[M].中国纺织出版社,2009[3]周培,邹竹荣,曹丽娟,苏裕.蜘蛛丝蛋白基因的合[4]成及其串联体在大肠杆菌中的表达[J].中国农业科技导报,2007,9.[5]赵爱春,夏庆友,鲁成向,仲怀.超级纤维蜘蛛丝的研究动向[L].蚕学通讯,2007,6。

相关文档
最新文档