2020年高考文科数学考前选择填空专项练习 (13)

合集下载

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。

2020年高考数学选择、填空题专项训练(共40套)含答案

2020年高考数学选择、填空题专项训练(共40套)含答案

2020年高考数学选择、填空题专项训练(共40套)三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

2020文科高考备考数学选择填空狂练00 专题合集-Word版含解析

2020文科高考备考数学选择填空狂练00 专题合集-Word版含解析

1.[2019·盱眙中学]已知全集{}1,2,3,4,5,6U =,集合{}235A =,,,集合{}1346B =,,,,则集合()U A B =I ð( ) A .{}3B .{}25,C .{}146,,D .{}235,, 2.[2019·洪都中学]已知全集U =R ,集合{}01234A =,,,,,{}20B x x x =><或,则图中阴影部分表示的集合为( )A .{}0,1,2B .{}1,2C .{}3,4D .{}0,3,43.[2019·八一中学]集合{}26y y x x ∈=-+∈N N ,的真子集的个数是( ) A .9B .8C .7D .64.[2019·洪都中学]已知集合{}12A x x =-≤<,{}B x x a =<,若 A B ≠∅I ,则实数a 的取值范围为( ) A .12a -<≤B .1a >-C .2a >-D .2a ≥5.[2019·唐山摸底]命题“0x ∀>,1ln 1x x≥-”的否定是( ) A .00x ∃≤,01ln 1x x ≥- B .00x ∃>,01ln 1x x <- C .00x ∃>,01ln 1x x ≥-D .00x ∃≤,01ln 1x x <-6.[2019·静宁县一中]已知a 、b 都是实数,那么>是“ln ln a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.[2019·大同中学]已知a ,b ∈R ,下列四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >-B .1a b >+C .a b >D .22a b >8.[2019·静宁县一中]下列说法错误的是( )A .对于命题:p x ∀∈R ,210x x ++>,则0:p x ⌝∃∈R ,2010x x ++≤ B .“1x =”是“2320x x -+=”的充分不必要条件 C .若命题p q ∧为假命题,则p ,q 都是假命题疯狂专练1集合与简易逻辑一、选择题D .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠” 9.[2019·甘肃模拟]{}1381x A x =≤≤,(){}22log 1B x x x -=>,则A B =I ( ) A .(]2,4B .[]2,4C .()(],00,4-∞UD .()[],10,4-∞-U10.[2019·辽宁联考]已知集合{}12A x a x a =-≤≤+,{}35B x x =<<,则能使A B ⊇成立的实数a 的取值范围是( ) A .{}34a a <≤B .{}34a a <<C .{}34a a ≤≤D .∅11.[2019·曲靖一中]命题p :“0a ∀>,不等式22log a a >成立”;命题q :“函数12log y =()221x x -+的单调递增区间是(],1-∞”,则下列复合命题是真命题的是( ) A .()()p q ⌝∨⌝B .p q ∧C .()p q ⌝∨D .()()p q ∧⌝12.[2019·长春外国语]已知集合(){} 43120,B x y x y x y **=+-<∈∈N N ,,,则B 的子集个数为( )A .3B .4C .7D .813.[2019·哈尔滨期末]{}221A x y x x ==-+,{}221B y y x x ==-+则A B =I ____________. 14.[2019·浦东三模]已知集合205x A xx ⎧-⎫=<⎨⎬+⎩⎭,{}2230,B x x x x =--≥∈R ,则A B =I _________. 15.[2019·甘谷县一中]已知集合{}121P x a x a =+≤≤+,{}2310Q x x x -=≤.若P Q Q =U ,求实数a 的取值范围__________. 16.[2019·清江中学] “2ϕπ=”是“函数()sin y x ϕ=+的图象关于y 轴对称”的__________条件(填“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”).二、填空题1.【答案】B【解析】∵{}1,2,3,4,5,6U =,{}1346B =,,,,∴{}25U B =,ð, ∵{}235A =,,,则(){}25U A B =I ,ð;故选B . 2.【答案】A【解析】∵全集U =R ,集合{}01234A =,,,,,{}20B x x x =><或, ∴{}02U B x x =≤≤ð,∴图中阴影部分表示的集合为{}012U A B =I ,,ð,故选A . 3.【答案】C【解析】0x =时,6y =;1x =时,5y =;2x =时,2y =;3x =时,3y =-; ∵函数26y x =-+在[)0+∞,上是减函数,∴当3x ≥时,0y <;{}{}262,5,6y y x x ∈=-+∈=N N ,,共3个元素, 根据公式可得其真子集的个数为3217-=个,故选C . 4.【答案】B【解析】∵{}12A x x =-≤<,{}B x x a =<, A B ≠∅I , 作出图形如下:∴1a >-,故选B . 5.【答案】B【解析】由全称命题与存在性命题的关系,可得命题“0x ∀>,1ln 1x x≥-”的否定是“00x ∃>,01ln 1x x <-”,故选B .6.【答案】B,b 有可能为0,故不能推出ln ln a b >,反过来,ln ln a b >则a b >成立, 故为必要不充分条件.故选B .答案与解析一、选择题7.【答案】A【解析】“a b >”能推出“1a b >-”,故选项A 是“a b >”的必要条件, 但“1a b >-”不能推出“a b >”,不是充分条件,满足题意;“a b >”不能推出“1a b >+”,故选项B 不是“a b >”的必要条件,不满足题意; “a b >”不能推出“a b >”,故选项C 不是“a b >”的必要条件,不满足题意; “a b >”能推出“22a b >”,且“22a b >”能推出“a b >”,故是充要条件,不满足题意; 故选A . 8.【答案】C【解析】根据全称命题的否定是特称命题知A 正确;由于1x =可得2320x x -+=,而由2320x x -+=得1x =或2x =, ∴“1x =”是“2320x x -+=”的充分不必要条件正确; 命题p q ∧为假命题,则p ,q 不一定都是假命题,故C 错; 根据逆否命题的定义可知D 正确,故选C . 9.【答案】A【解析】{}{}138104x A x x x =≤≤=≤≤,(){}{}22log 112B x x x x x x =><--=>或, 则{}24A B x x =<≤I .故选A . 10.【答案】C【解析】∵A B ⊇,∴1325a a -≤⎧⎨+≥⎩,∴34a ≤≤,故选C .11.【答案】A【解析】由题意,命题p :“0a ∀>,不等式22log a a >成立”; 根据指数函数与对数函数的图象可知是不正确的,∴命题p 为假命题;命题q :“函数()212log 21y x x =-+的单调递增区间应为()1-∞,”,∴为假命题, ∴()()p q ⌝∨⌝为真命题,故选A . 12.【答案】D 【解析】∵集合(){} 43120,B x y x y x y **=+-<∈∈N N ,,,∴()()(){}1,1,1,2,2,1B =,∴B 中含有3个元素,集合B 的子集个数有328=,故选D .13.【答案】[)0,+∞【解析】{}221A x y x x ==-+=R ,{}[)2210,B y y x x ==-+=+∞, ∴[)0,A B =+∞I . 14.【答案】(]51--,【解析】∵集合{}20525x A xx x x ⎧-⎫=<=-<<⎨⎬+⎩⎭, {}{}2230,13B x x x x x x x =--≥∈=≤-≥R 或, ∴{}51A B x x =-<≤-I ,故答案为(]51--,.15.【答案】(]2-∞,【解析】{}{}231025Q x x x x x =≤=-≤≤-, ∵P Q Q =U ,∴P Q ⊆,(1) P =∅,即121a a +>+,解得0a <, (2) P ≠∅,即12112215a a a a +≤+⎧⎪+≥-⎨⎪+≤⎩,解得02a ≤≤,综上所述,实数a 的取值范围为(]2-∞,. 故答案为(]2-∞,. 16.【答案】充分不必要【解析】若函数()sin y x ϕ=+的图象关于y 轴对称,则2k ϕπ=+π,k ∈Z . ∴必要性不成立, 若2ϕπ=,则函数()sin cos y x x ϕ=+=的图象关于y 轴对称∴充分性成立, ∴“2ϕπ=”是“函数()sin y x ϕ=+的图象关于y 轴对称”的充分不必要条件; 故答案为充分不必要.二、填空题疯狂专练2复数1.[2019·唐山一摸]设()()123z i i =-+,则z =( ) A .5B C .D .2.[2019·温州九校]已知复数z 满足()12i z i -=+,则z 的共轭复数为( ) A .3322i + B .1322i - C .3322i - D .1322i + 3.[2019·辽宁联考]复数()212miA Bi m AB i -=+∈+R 、、,且0A B +=,则m 的值是( ) A .23-B .23C D .24.[2019·青岛调研]已知复数z 满足()3425i z +=(i 为虚数单位),则z =( ) A .34i +B .34i -C .34i --D .34i -+5.[2019·南昌测试]已知复数z 满足()22z i i ⋅+=-(i 为虚数单位),则复数z 所对应的点位于复平面的( ) A .第一象限B .第二象限C .第三象限D .第四象限6.[2019·胶州一中]若复数11iz ai+=+为纯虚数,则实数a 的值为( ) A .1-B .12-C .1D .27.[2019·南昌测试]已知复数z 满足关于x 的方程()220x x b b -+=∈R ,且z 的虚部为1,则z =( ) A B C .2D8.[2019·莆田六中]设有下面四个命题,其中的真命题为( ) A .若复数12z z =,则12z z ∈RB .若复数1z ,2z 满足12z z =,则12z z =或12z z =-C .若复数z 满足2z ∈R ,则z ∈RD .若复数1z ,2z 满足12z z +∈R ,则1z ∈R ,2z ∈R9.[2019·信阳高级中学]复数()z a i a =+∈R 的共轭复数为z ,满足1z =,则复数z =( ) A .2i +B .2i -C .1i +D .i10.[2019·全国I 卷]设121iz i i-=++,则z =( ) 一、选择题A .0B .12C .1 D11.[2019·双流中学]已知i 为虚数单位,现有下面四个命题 1:p 若复数z 满足210z +=,则z i =;2:p 若复数z 满足()11i z i +=-,则 为纯虚数; 3:p 若复数1z ,2z 满足12z z ∈R ,则12z z =;4:p 复数1z a bi =+与2z a bi =-,a ,b ∈R ,在复平面内对应的点关于实轴对称.其中的真命题为( ) A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p12.[2019·哈尔滨六中]若复数23201834134i z i i i i i-=++++⋯++-,则z 的共轭复数z 的虚部为( )A .15-B .95-C .95iD .9i 5-13.[2019·浦东三模]设复数z 满足()132i z i +=-+,则z =_________. 14.[2019·桃江县一中]若复数z 满足()125z i +=,则z ________. 15.[2019·大同中学]复数122ii-+的虚部为__________. 16.[2019·仪征中学]已知2a ib i i+=+(a ,b 是实数),其中i 是虚数单位,则ab =______.二、填空题1.【答案】C【解析】由题意,复数()()12355z i i i =-+=-,∴z C .2.【答案】B【解析】()12i z i -=+,∴()()()()1121i i z i i -+=++,化为213z i =+,∴1322z i =+. 则z 的共轭复数为1322i -,故选B . 3.【答案】A 【解析】因为212miA Bi i-=++,∴()()212mi A Bi i -=++,即()222mi A B A B i -=-++, 由此可得222A B A B m -=⎧⎨+=-⎩,结合0A B +=可解之得232323A B m ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩,故选A .4.【答案】B【解析】复数z 满足()3425i z +=,()()()25342534343434i z i i i i -===-++-,故选B . 5.【答案】D 【解析】由题得:()()()()2223434222555i i i i z i i i i ----====-++-, 故z 所对应的坐标为3455⎛⎫- ⎪⎝⎭,,为第四象限;故选D .6.【答案】A 【解析】复数()()()()221111111111i ai ia a z i ai ai ai a a +-++-===+++-++为纯虚数, ∴2101a a +=+且2101aa -≠+,解得1a =-,故选A .7.【答案】A【解析】∵复数z 满足关于x 的方程()220x x b b -+=∈R ,且z 的虚部为1, ∴设复数z a i =+,则()()220a i a i b +-++=.∴()221220a a b a i --++-=,∴1a =,2b =,∴1z i =+,即z =A .答案与解析一、选择题8.【答案】A【解析】设()1,z a bi a b =+∈R ,则由12z z =,得()2z a bi a b =-∈R ,, 因此2212z z a b =+∈R ,从而A 正确;设()1,z a bi a b =+∈R ,()2z c di c d =+∈R ,,则由12z z =B 错误; 设()z a bi a b =+∈R ,,则由2z ∈R ,得22200a b abi ab a -+∈⇒=⇒=R 或0b =,因此C 错误; 设()1,z a bi a b =+∈R ,()2z c di c d =+∈R ,,则由12z z +∈R , 得()a c b d i +++∈R ,∴0b d +=,因此D 错误;故选A . 9.【答案】D【解析】根据题意可得z a i =-,∴1z ,解得0a =,∴复数z i =.故选D . 10.【答案】C【解析】∵()()()21122221112i i iz i i i i i i i ---=+=+=+=++-,∴1z =,故选C . 11.【答案】D【解析】对于1:p 由210z +=,得21z =-,则z i =±,故1p 是假命题;对于2:p 若复数z 满足()11i z i +=-,则()()()211111i iz i i i i --===-++-, 故z 为纯虚数,则2p 为真命题;对于3:p 若复数1z ,2z 满足12z z ∈R ,则12z z =,是假命题,如1z i =,2z i =-; 对于4:p 复数1z a bi =+与2z a bi =-,a ,b ∈R 的实部相等,虚部互为相反数, 则在复平面内对应的点关于实轴对称,故4p 是真命题.故选D . 12.【答案】B【解析】∵()201923201811345134134i i z i i i iiii⨯--=++++⋯++=+--- ()()()()50443153413439134341555i i i i i i ii i i -⋅+++=+=+=+--+-, ∴3955z i =-;则z 的共轭复数z 的虚部为95-.故选B .二、填空题13.【答案】13i -【解析】∵复数z 满足()132i z i +=-+,∴32123iz i i-++==+,∴13z i =+, 故而可得13z i =-,故答案为13i -.14.【解析】由题设有z =,故z =. 15.【答案】1-【解析】由复数的运算法则有:()()()()1221252225i i i i i i i i ----===-++-,则复数122ii-+的虚部为1-. 16.【答案】2- 【解析】∵()()2222a i i a i ai b i i i +-+==-=+-,∴21b a =⎧⎨-=⎩,即1a =-,2b =,∴2ab =-,故答案为2-.1.[2019·唐山一摸]已知程序框图如右图所示则该程序框图的功能是()A.求1111357+++的值B.求111113579++++的值C.求1111357-++的值D.求111113579-+++的值2.[2019·东师附中]执行如图所示的程序框图,如果输入的[]2,2x∈-,则输出的y值的取值范围是()A.52y≤-或0y≥B.223y-≤≤C.2y≤-或23y≤≤D.2y≤-或23y≥3.[2019·宝安区调研]定义某种运算:S m n⊗=⊗的运算原理如右边的流程图所示,则6547⊗-⊗=()疯狂专练3框图一、选择题A.3 B.1 C.4 D.0 4.[2019·南昌测试]某程序框图如图所示,若输出3S=,则判断框中M为()A.14?k>k≤D.15?k<B.14?k≤C.15?5.[2019·南昌联考]执行如图所示的程序框图,输出的值为()A.14 B.15 C.24 D.30 6.[2019·拉萨中学]执行如图所示的程序框图,输出的k值为()A .4B .5C .6D .77.[2019·南昌二模]执行如图所示的程序框图,输出S 的值为( )A .15B .16C .24D .258.[2019·南昌检测]根据某校10位高一同学的身高(单位:cm )画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个程序框图(图2),用()1210i A i =L ,,,表示第 个同学的身高,计算这些同学身高的方差,则程序框图①中要补充的语句是( )A .iB B A =+B .2i B B A =+C .()2i B B A A =+-D .22i B B A =+9.[2019·南昌检测]执行如图所示的程序框图,则输出的结果为( )A .1-B .0C .1D .210.[2019·哈尔滨六中]《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.” 为了计算每天良马和驽马所走的路程之和,设计框图如下图. 若输出的S 的值为350,则判断框中可填( )A .6?i >B .7?i >C .8?i >D .9?i >11.[2019·山东模拟]下面程序框图是为了求出满足321000n n ->的最小偶数n ,,那么在◇和□两个空白框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+12.[2019·银川一中]我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .7i <,1S S i=-,2i i =B .7i ≤,1S S i=-,2i i =C .7i <,2SS =,1i i =+ D .7i ≤,2SS =,1i i =+13.[2019·南昌检测]某程序框图如图所示, 则输出的结果是__________.14.[2019·中原名校]如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a ,b ,i 的值分别为8,6,1,输出a 和i 的值,若正数x ,y 满足251x y+=,则ax iy +的最小值为__________.二、填空题15.[2019·宁德质检]我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x ,y ,z ,则鸡翁、鸡母、鸡雏的数量即为方程组531003100z x y x y z ⎧++=⎪⎨⎪++=⎩的解.其解题过程可用框图表示如下图所示,则框图中正整数m 的值为 ______.16.[2019·湖北模拟]如图所示的茎叶图为高三某班54名学生的政治考试成绩,程序框图中输入的1a ,2a ,L ,54a 为茎叶图中的学生成绩,则输出的S 和n 的值分别是__________.1.【答案】C【解析】由题意,执行如图所示的程序框图可知:开始1a=,1n=,0S=;第一次循环:1S=,1a=-,3n=;第二次循环:113S=-,1a=,5n=;第三次循环:11135S=-+,1a=-,7n=;第四次循环:1111357S=-++,1a=,9n=;此时终止循环,输出结果,所以该程序框图是计算输出1111357S=-++的值,故选C.2.【答案】C【解析】由题意知,该程序的功能是求函数()021120xxxf xx xx⎧≤≤⎪⎪+=⎨⎪+-≤<⎪⎩,,的值域.①当02x≤≤时,()1111xf xx x==-++在区间[]0,2上单调递增,∴()()()02f f x f≤≤,即()23f x≤≤;②当20x-≤<时,()112f x x xx x⎛⎫=+=--+≤-⎪-⎝⎭,当且仅当1xx-=-,即1x=-时等号成立.综上输出的y值的取值范围是2y≤-或23y≤≤.故选C.3.【答案】A【解析】由流程图得()6565124⊗=⨯-=,()4774121⊗=⨯-=,∴654724213⊗-⊗=-=,故选A.4.【答案】B【解析】由框图程序可知S=++L,1S L∴13S=,解得15n=,即当15n=时程序退出,故选B.5.【答案】C【解析】结合流程图可知流程图运行过程如下:首先初始化数据:0S=,1i=,第一次循环,满足5i<,执行12i i=+=,此时不满足i为奇数,执行1222iS S S-=+=+=;第二次循环,满足5i<,执行13i i=+=,此时满足i为奇数,执行2157S S i S=+-=+=;第三次循环,满足5i<,执行14i i=+=,此时不满足i为奇数,执行12815iS S S-=+=+=;答案与解析一、选择题第四次循环,满足5i <,执行15i i =+=,此时满足i 为奇数,执行21924S S i S =+-=+=; 第五次循环,不满足5i <,跳出循环,输出S 的值为24. 故选C . 6.【答案】B【解析】模拟程序的运行,可得:1a =,1k =,不满足条件10a >,执行循环体,2a =,2k =;不满足条件10a >,执行循环体,4a =,3k =; 不满足条件10a >,执行循环体,8a =,4k =;不满足条件10a >,执行循环体,16a =,5k =; 满足条件10a >,退出循环体,输出k 的值为5,故选B . 7.【答案】B【解析】进入循环,当1i =时,15<,i 为奇数,1S =;当2i =时,25<,i 为偶数,123S =+=; 当3i =时,35<,i 为奇数,358S =+=;当4i =时,45<,i 为偶数,8816S =+=; 当5i =时,55≥,结束循环,输出16S =.故选B . 8.【答案】B 【解析】由()()()()222222212121222n n n x x x x x x x x x x x x x nx s nn-+-+⋅⋅⋅+-++⋅⋅⋅+-++⋅⋅⋅++==22222222212122n n x x x nx nx x x x x n n++⋅⋅⋅+-+++⋅⋅⋅+==-,循环退出时11i =,知221A x i ⎛⎫= ⎪-⎝⎭.∴2221210B A A A =++⋅⋅⋅+,故程序框图①中要补充的语句是2i B B A =+.故选B . 9.【答案】D【解析】由循环结构的计算原理,依次代入求得如下:1S =,1i =, ①2S =,2i =;②2S =,3i =;③1S =,4i =; ④1S =,5i =;⑤2S =,6i =;⑥2S =,7i =;⑦1S =,8i =;⑧1S =,9i =;⑨2S =,10i =;∴输出2S =.故选D . 10.【答案】B【解析】模拟程序的运行,可得0S =,1i =;执行循环体,290S =,2i =; 不满足判断框内的条件,执行循环体,300S =,3i =; 不满足判断框内的条件,执行循环体,310S =,4i =; 不满足判断框内的条件,执行循环体,320S =,5i =; 不满足判断框内的条件,执行循环体,330S =,6i =; 不满足判断框内的条件,执行循环体,340S =,7i =;不满足判断框内的条件,执行循环体,350S =,8i =;由题意,此时,应该满足判断框内的条件,退出循环,输出S 的值为350. 可得判断框中的条件为7?i >.故选B . 11.【答案】D【解析】本题考查程序框图问题.∵要求1000A >时输出,且框图中在“否”时输出,∴“◇”内不能输入“1000A >”, 又要求n 为偶数,且n 的初始值为0,∴“□”中n 依次加2可保证其为偶数, ∴D 选项满足要求,故选D . 12.【答案】D【解析】算法为循环结构,循环7次,每次对长度折半计算,也就是2S S =,因此②填2S S =, 又①填判断语句,需填7i ≤,③填1i i =+.故选D .13.【答案】3 【解析】由题意得0tan 0tan tan tan tan 21312643S ππππ=+++++=-+. 14.【答案】49【解析】输入a ,b ,i 的值分别为8,6,1;第一次循环,2i =,2a =;第二次循环,3i =,4b =;第三次循环,4i =,2b =;第四次循环,5i =,b a =; 退出循环,输出2a =,5i =,()2510102542549y xax iy x y x y x y ⎛⎫+=++=+++≥ ⎪⎝⎭, 当x y =时,等号成立,即ax iy +的最小值为49,故答案为49. 15.【答案】4【解析】由531003100z x y x y z ⎧++=⎪⎨⎪++=⎩得7254y x =-,故x 必为4的倍数, 当4x t =时,257y t =-,由2570y t =->得t 的最大值为3, 故判断框应填入的是4t <?,即4m =,故答案为4. 16.【答案】86,13【解析】S 为大于等于80分的学生的平均成绩,计算得86S =;n 表示60分以下的学生人数,由茎叶图可知13n =.二、填空题1.[2019·眉山一中]若01a <<,1b c >>,则正确的是( ) A .1ab c ⎛⎫< ⎪⎝⎭B .c a cb a b->- C .11a a c b --<D .log log c b a a <2.[2019·南昌测试]已知实数x 、y ,满足224x y +=,则xy 的取值范围是( ) A .2xy ≤B .2xy ≥C .4xy ≤D .22xy -≤≤3.[2019·张家界期末]下列不等式中,正确的是( ) A .若a b >,c d >,则a c b d +>+ B .若a b >,则a c b c +<+ C .若a b >,c d >,则ac bd > D .若a b >,c d >,则a b c d> 4.[2019·邢台二中]不等式121xx >-的解集为( ) A .1,12⎛⎫ ⎪⎝⎭B .(),1-∞C .()11,2⎛⎤-∞+∞ ⎥⎝⎦U ,D .1,22⎛⎫⎪⎝⎭5.[2019·邵阳期末]若关于x 的不等式1220x x a +--->的解集包含区间()0,1,则a 的取值范围为( ) A .7,2⎛⎤-∞ ⎥⎝⎦B .(),1-∞C .7,2⎛⎫-∞ ⎪⎝⎭D .(],1-∞6.[2019·鄂尔多斯一中]关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且2115x x -=,则a =( ) A .154B .72C .52D .1527.[2019·东师属中]直线l 过抛物线24y x =的焦点F 且与抛物线交于A ,B 两点,若线段AF ,BF 的长分别为m ,n ,则4m n +的最小值是( ) A .10B .9C .8D .78.[2019·河南一模]设函数()21f x mx mx =--,若对于[]1,3x ∈,()4f x m <-+恒成立,则实数m 的取值范围为( )A .(],0-∞B .50,7⎡⎫⎪⎢⎣⎭C .()5,00,7⎛⎫-∞ ⎪⎝⎭UD .5,7⎛⎫-∞ ⎪⎝⎭9.[2019·胶州一中]若两个正实数x ,y 满足211x y+=,且222x y m m +>+恒成立,则实数m 的取值范围是( )A .()[),24,-∞-+∞UB .][(),42,-∞-+∞UC .()4,2-D .()2,4-疯狂专练4不等式一、选择题10.[2019·上高二中]若关于x 的不等式210x kx +->在[]1,2区间上有解,则k 的取值范围是( ) A .(),0-∞B .3,02⎛⎫- ⎪⎝⎭C .3,2⎡⎫-+∞⎪⎢⎣⎭D .3,2⎛⎫-+∞ ⎪⎝⎭11.[2019·黑龙江模拟]在ABC △中,E 为AC 上一点,3AC AE =uuu r uu u r,P 为BE 上任一点,若()0,0AP mAB nAC m n =+>>uu u r uu u r uuu r ,则31m n+的最小值是( )A .9B .10C .11D .1212.[2019·衡水金卷]已知点E ,F 分别在正方形ABCD 的边BC ,CD上运动,且AB =u u u r,设CE x =,CF y =,若AF AE AB -=uu u r uu u r uu u r,则x y +的最大值为( )A .2B .4C.D.13.[2019·七宝中学]若25x y -<<<,则x y -的取值范围是________. 14.[2019·铜仁一中]已知0ab >,5a b +=,则2111a b +++的最小值为__________. 15.[2019·东北四市一模]已知角α,β满足22αβππ-<-<,0αβ<+<π,则3αβ-的取值范围是__________. 16.[2019·涟水中学]若不等式31322>-axax 对一切实数x 恒成立,则实数a 的取值范围是 .二、填空题1.【答案】D【解析】对于A ,∵1b c >>,∴1b c >,∵01a <<,则1ab c ⎛⎫> ⎪⎝⎭,故错误,对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误, 对于C ,∵01a <<,∴10a -<,∵1b c >>,则11a a c b -->,故错误, 对于D ,∵1b c >>,∴log log c b a a <,故正确.故选D . 2.【答案】D【解析】由2242x y xy +=≥,知22xy -≤≤,故选D . 3.【答案】A【解析】若a b >,则a c b c +>+,故B 错, 设3a =,1b =,1c =-,2d =-,则ac bd <,a bc d<,∴C 、D 错,故选A . 4.【答案】A【解析】原不等式等价于1021x x ->-,即()21021x x x -->-,整理得1021x x -<-,不等式等价于()()2110x x --<,解得112x <<.故选A .5.【答案】D【解析】原不等式等价于1min 122x x a +⎛⎫≤- ⎪⎝⎭,由于函数1122x x y +=-在区间()0,1上为增函数,当0x =,1y =,故1a ≤.故选D . 6.【答案】C【解析】∵()222800x ax a a --<>,∴()()()2400x a x a a +-<>,即24a x a -<<, 又1215x x -=,∴615a =,解得52a =.故选C . 7.【答案】B【解析】由抛物线焦点弦的性质可知:1121m n p +==, 则()11444559m n m n m n m n n m ⎛⎫+=++=++≥+= ⎪⎝⎭, 答案与解析一、选择题当且仅当32m =,3n =时等号成立.即4m n +的最小值是9.故选B . 8.【答案】D【解析】由题意,()4f x m <-+,可得()215m x x -+<, ∵当[]1,3x ∈时,[]211,7x x -+∈,∴不等式()0f x <等价于251m x x <-+, ∵当3x =时,251x x -+的最小值为57,∴若要不等式251m x x <-+恒成立,则必须57m <, 因此,实数m 的取值范围为5,7⎛⎫-∞ ⎪⎝⎭,故选D .9.【答案】C【解析】∵正实数x ,y 满足211x y+=,∴()212142448y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭, 当且仅当4y xx y=时,即4x =,2y =时取得最小值8, ∵222x y m m +>+恒成立,∴282m m >+, 即2280m m +-<,解得42m -<<,故选C . 10.【答案】D【解析】关于x 的不等式210x kx +->在[]1,2区间上有解, ∴21kx x >-在[]1,2x ∈上有解,即1k x x>-在[]1,2x ∈上成立; 设函数()1f x x x =-,[]1,2x ∈,∴()2110f x x'=--<恒成立,∴()f x 在[]1,2x ∈上是单调减函数,且()f x 的值域为3,02⎡⎤-⎢⎥⎣⎦,要1k x x >-在[]1,2x ∈上有解,则32k >-, 即实数k 的取值范围为3,2⎛⎫-+∞ ⎪⎝⎭.故选D .11.【答案】D【解析】由题意可知:3AP mAB nAC mAB nAE =+=+uu u r uu u r uu u r uu u r uu u r,A ,B ,E ,三点共线,则31m n +=,据此有()3131936612n m m n m n m n m n ⎛⎫+=++=++≥+ ⎪⎝⎭, 当且仅当12m =,16n =时等号成立.综上可得31m n +的最小值是12.故选D . 12.【答案】C【解析】2AB ==uu u r ,AF AE AB -=uu u r uu u r uu u r,∵2AF AE EF -==uu u r uu u r uu u r,∴224x y +=,()()22222228x y x y xy x y +=++≤+=,当且仅当x y =时取等号,∴x y +≤x y +的最大值为C .13.【答案】()7,0-【解析】∵25x y -<<<,∴25x -<<,52y -<-<,∴77x y -<-<, 又∵x y <,∴0x y -<,∴x y -的取值范围是70x y -<-<. 14. 【解析】∵0ab >,5a b +=知0a >,0b >, 又117a b +++=,∴()11117a b +++=, 而()()(21211211111133117117117b a a b a b a b a b +⎛⎫+⎛⎫+=++++=++≥+ ⎪ ⎪++++++⎝⎭⎝⎭, . 15.【答案】(),2-ππ【解析】结合题意可知:()()32αβαβαβ-=-++, 且()()2,αβ-∈-ππ,()()0,αβ+∈π,利用不等式的性质可知:3αβ-的取值范围是(),2-ππ. 16.【答案】01a ≤<【解析】根据题意,∵不等式31322>-axax对一切实数x 恒成立, 那么可知221ax ax ->-恒成立即可,即当0a =时,显然01>-恒成立, 当0a ≠时,由于二次函数开口向上,判别式小于零能满足题意, 故可知为0a >,2440a a -< ,解得01a <<, 那么综上可知满足题意的a 的范围是01a ≤<.二、填空题1.[2019·柳州高级中学]已知变量x,y满足约束条件40221x yxy--≤-≤<⎧⎪⎨⎪⎩≤,若2z x y=-,则z的取值范围是()A.[)5,6-B.[]5,6-C.()2,9D.[]5,9-2.[2019·和诚高中]实数x,y满足22202y xx yx≤++-≥⎧⎪⎨⎪⎩≤,则z x y=-的最大值是()A.2 B.4 C.6 D.83.[2019·北京一轮]由直线10x y-+=,50x y+-=和1x=所围成的三角形区域(包括边界),用不等式组可表示为()A.10501x yx yx-+≤+-≤≥⎧⎪⎨⎪⎩B.10501x yx yx-+≥+-≤≥⎧⎪⎨⎪⎩C.10501x yx yx-+≥+-≥≤⎧⎪⎨⎪⎩D.10501x yx yx-+≤+-≤≤⎧⎪⎨⎪⎩4.[2019·和诚高中]已知实数x,y满足22021020x yx yx y-+≥-+≤+-≤⎧⎪⎨⎪⎩,则()()2211z x y=-++的取值范围为()A.⎡⎣B.⎣C.16,105⎡⎤⎢⎥⎣⎦D.[]4,105.[2019·咸阳联考]已知实数x,y满足4030x yyx y+-≥-≤-≤⎧⎪⎨⎪⎩,则11yzx-=+的最大值为()A.1 B.12C.13D.26.[2019·宜昌一中]若实数x,y满足不等式组1010240x yx yx y+-≥-⎧+≥+-≤⎪⎨⎪⎩,则目标函数23x yzx-+=-的最大值是()A.1 B.13-C.12-D.35疯狂专练5线性规划一、选择题7.[2019·黑龙江模拟]已知实数x ,y 满足103101x y x y x -+≥--≤≤⎧⎪⎨⎪⎩,若z k x y =-的最小值为5-,则实数k 的值为( ) A .3- B .3或5- C .3-或5- D .3±8.[2019·名校联盟]设2z x y =+,其中x ,y 满足2000x y x y y k +≥-≤≤≤⎧⎪⎨⎪⎩,若z 的最小值是9-,则z 的最大值为( )A .9-B .9C .2D .69.[2019·莆田九中]设关于x ,y 的不等式组21000x y x m y m -+>+<->⎧⎪⎨⎪⎩,表示的平面区域内存在点()00,P x y ,满足0022x y -=,求得m 取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .5,3⎛⎫-∞- ⎪⎝⎭10.[2019·皖江八校]已知x ,y 满足202080x y x y -≥-≥+-≤⎧⎪⎨⎪⎩时,()0z ax by a b =+≥>的最大值为2,则直线10ax by +-=过定点( ) A .()3,1B .()1,3-C .()1,3D .()3,1-11.[2019·齐鲁名校]在满足条件210310 70x y x y x y --≥+-≥-≤⎧⎪⎨⎪⎩+的区域内任取一点(),M x y ,则点(),M x y 满足不等式()2211x y -+<的概率为( )A .π60B .π120C .π160-D .π1120-12.[2019·江南十校]已知x ,y 满足02323x x y x y ≥⎧+≥+≤⎪⎨⎪⎩,z xy =的最小值、最大值分别为a ,b ,且210x kx -+≥对[],x a b ∈上恒成立,则k 的取值范围为( ) A .22k -≤≤ B .2k ≤C .2k ≥-D .14572k ≤二、填空题13.[2019·哈尔滨六中]已知实数x 、y 满足约束条件2040 250x y x y x y -+≥+⎧⎪⎨-≥-≤⎪⎩-,若使得目标函数ax y +取最大值时有唯一最优解()1,3,则实数a 的取值范围是_______________(答案用区间表示).14.[2019·衡水金卷]某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共30个,生产一个遥控小车模型需10分钟,生产一个遥控飞机模型需12分钟,生产一个遥控火车模型需8分钟,已知总生产时间不超过320分钟,若生产一个遥控小车模型可获利160元,生产一个遥控飞机模型可获利180元,生产一个遥控火车模型可获利120元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元.15.[2019·吉安一中]若点(),P x y 满足202340 0x y x y y ⎧⎪⎨-≤+≥≥⎪⎩-,点()3,1A ,O 为坐标原点,则OA OP ⋅的最大值为__________.16.[2019·宜昌一中]已知函数()2f x x ax b =-++,若a ,b 都是从区间[]0,3内任取的实数,则不等式()20f >成立的概率是__________.1.【答案】A【解析】变量x,y满足约束条件40221x yxy--≤-≤<⎧⎪⎨⎪⎩≤,不等式组表示的平面区域如图所示,当直线2z x y=-过点A时,z取得最小值,由21xy=-=⎧⎨⎩,可得()2,1A-时,在y轴上截距最大,此时z取得最小值5-.当直线2z x y=-过点C时,z取得最大值,由240xx y=--=⎧⎨⎩,可得()2,2C-时,因为C不在可行域内,所以2z x y=-的最大值小于426+=,则z的取值范围是[)5,6-,故答案为A.2.【答案】B【解析】依题意画出可行域如图中阴影部分所示,令m y x=-,则m为直线:l y x m=+在y轴上的截距,由图知在点()2,6A处m取最大值4,在()2,0C处取最小值2-,所以[]2,4m∈-,所以z的最大值是4.故选B.答案与解析一、选择题3.【答案】A【解析】作出对应的三角形区域,则区域在直线10x -=的右侧,满足1x ≥,在10x y -+=的上方,满足10x y -+≤, 在50x y +-=的下方,满足50x y +-≤,故对应的不等式组为10501x y x y x -+≤+-≤≥⎧⎪⎨⎪⎩,故选A .4.【答案】C【解析】画出不等式组22021020x y x y x y -+≥-+≤+-≤⎧⎪⎨⎪⎩表示的可行域,如图阴影部分所示.由题意得,目标函数()()2211z x y =-++,可看作可行域内的点(),x y 与()1,1P -的距离的平方.结合图形可得,点()1,1P -到直线210x y -+=的距离的平方, 就是可行域内的点与()1,1P -的距离的平方的最小值,且为2165=, 点()1,1P -到()0,2C 距离的平方,就是可行域内的点与()1,1P -的距离的平方的最大值,为21310+=,所以()()2211z x y =-++的取值范围为16,105⎡⎤⎢⎥⎣⎦.故选C .5.【答案】A【解析】作出不等式组对应的平面区域如图,z 的几何意义是区域内的点到定点()1,1P -的斜率,由图象知当直线过()1,3B 时,直线斜率最大,此时直线斜率为1, 则11y z x -=+的最大值为1,故选A . 6.【答案】B【解析】画出约束条件1010240x y x y x y +-≥-⎧+≥+-≤⎪⎨⎪⎩表示的可行域,如图,由1010x y x y -+=+-=⎧⎨⎩,可得01x y ==⎧⎨⎩,即()0,1P ,将23x y z x -+=-变形为513y z x -=--,53y x --表示可行域内的点与()3,5A 连线的斜率, 由图知PA k 最小,z 最大,最大值为0121033z -+==--,故答案为13-.故选B . 7.【答案】D【解析】由103101x y x y x -+≥--≤≤⎧⎪⎨⎪⎩作出可行域如图:联立110x x y =-+=⎧⎨⎩,解得()1,2A ,联立31010x y x y --=-+=⎧⎨⎩,解得()2,1B --,化z kx y =-为y kx z =-,由图可知,当0k <时,直线过A 时在y 轴上的截距最大,z 有最小值为25k -=-,即3k =-, 当0k >时,直线过B 时在y 轴上的截距最大,z 有最小值为215k -+=-,即3k =, 综上所述,实数k 的值为3±,故选D . 8.【答案】B【解析】满足条件的点(),x y 的可行域如图,平移直线2z x y =+,由图可知,目标函数2z x y =+在点()2,k k -处取到最小值9-, 即49k k -+=-,解得3k =,平移直线2z x y =+,目标函数在(),k k ,即()3,3,处取到最大值2339⨯+=,故选B . 9.【答案】B【解析】先根据约束条件21000x y x m y m -+>+<->⎧⎪⎨⎪⎩,画出可行域,要使可行域存在,必有21m m <-+,平面区域内存在点()00,P x y ,满足0022x y -=, 等价于可行域包含直线112y x =-上的点,只要边界点(),12m m --在直线112y x =-的上方, 且(),m m -在直线112y x =-下方,故得不等式组2111212112m m m m m m <-+->--<-⎧⎪⎪⎪⎨-⎪⎪⎪⎩,解之得23m <-,m 取值范围是2,3⎛⎫-∞- ⎪⎝⎭,故选B .10.【答案】A【解析】由()0z ax by a b =+≥>,得1a z a y x b b b ⎛⎫=-+-≤- ⎪⎝⎭,画出可行域,如图所示,由数形结合可知,在点()6,2B 处取得最大值,622a b +=,即:31a b +=,直线10ax by +-=过定点()3,1.故选A . 11.【答案】B【解析】作平面区域,如图所示,()1,0A ,()5,2B ,()10,3C -,()4,2AB =,()9,3AC =-,25AB =,310AC =所以cos 22AB AC BAC AB AC∠===⋅⋅π4BAC ∠=. 可行域的面积为11sin 1522AB AC BAC ⋅⋅∠=⨯=, π4BAC ∠=,所以落在圆内的阴影部分面积为π8,易知ππ815120P ==,故选B . 12.【答案】B【解析】作出2323x x y x y ≥⎧+≥+≤⎪⎨⎪⎩表示的平面区域(如图所示),显然z xy =的最小值为0,当点(),x y 在线段()2301x y x +=≤≤上时,231312222x z xy x x x ⎛⎫==-=-+≤ ⎪⎝⎭;当点(),x y 在线段()2301x y x +=≤≤上时,()2932238z xy x x x x ==-=-+≤; 即0a =,98b =; 当0x =时,不等式2110x kx -+=≥恒成立,若210x kx -+≥对90,8x ⎛⎤∈ ⎥⎝⎦上恒成立,则1k x x ≤+在90,8⎛⎤ ⎥⎝⎦上恒成立,又1x x +在(]0,1单调递减,在91,8⎛⎤ ⎥⎝⎦上单调递增,即min 12x x ⎛⎫+= ⎪⎝⎭,即2k ≤.13.【答案】(),1-∞-【解析】作出不等式组2040 250x y x y x y -+≥+⎧⎪⎨-≥-≤⎪⎩-表示的可行域,如图所示,令z ax y =+,则可得y ax z =-+,当z 最大时,直线的纵截距最大,画出直线y ax z =-+将a 变化,二、填空题结合图象得到当1a ->时,直线经过()1,3时纵截距最大, 1a ∴<-,故答案为(),1-∞-.14.【答案】5000【解析】依题得,实数x ,y 满足线性约束条件()101283032030000x y x y x y x y ++--≤--≥⎪≥≥⎧⎪⎨⎩,,目标函数为()16018012030z x y x y =++--,化简得2403000x y x y x y +≤⎧+≤≥≥⎪⎨⎪⎩,,40603600z x y =++,作出不等式组2403000x y x y x y +≤⎧+≤≥≥⎪⎨⎪⎩,,表示的可行域(如图所示):作直线02:603l y x =--,将直线0l 向右上方平移过点P 时,直线在y 轴上的截距最大,由24030x y x y +=+=⎧⎨⎩,得2010x y ==⎧⎨⎩,所以()20,10P ,此时max 4020601036005000z =⨯+⨯+=(元),故答案为5000. 15.【答案】5【解析】因为3OA OP x y =⋅+,所以设3z x y =+,则z 的几何意义为动直线3y x z =-+在y 轴上的截距, 作出约束条件202340 0x y x y y ⎧⎪⎨-≤+≥≥⎪⎩-所表示的平面区域,如图中阴影部分所示.当动直线3y x z =-+经过点C 时,z 取得最大值.由202340x y x y -=-+=⎧⎨⎩,解得()1,2A ,则3125max z =⨯+=,即OA OP ⋅的最大值为5. 16.【答案】712【解析】(),a b 所在区域是边长为3的正方形,正方形面积为239=,()2420f a b =-++>, 满足()2420f a b =-++>的区域是梯形,()2,0A ,()3,0B ,()3,3C ,1,32D ⎛⎫⎪⎝⎭,152113224ABCD S ⎛⎫=+⨯= ⎪⎝⎭梯形,由几何概型概率公式可得不等式()20f >成立的概率是2174912=,故答案为712.1.[2019·阜阳三中]{}n a 为等差数列,且7421a a -=-,30a =,则公差d =( ) A .2-B .12-C .12D .22.[2019·阜阳三中]在等比数列{}n a 中,若37a =,前3项和321S =,则公比q 的值为( ) A .1B .12-C .1或12-D .1-或12-3.[2019·阜阳调研]已知等比数列{}n a 中有31174a a a =,数列{}n b 是等差数列,且77a b =,则59b b +=( ) A .2B .4C .8D .164.[2019·南海中学]已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值为( ) A .4B .2C .2-D .4-5.[2019·长春实验]已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( ) A .29B .30C .31D .326.[2019·琼海模拟]朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”.其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升”,在该问题中第3天共分发大米( ) A .192升B .213升C .234升D .255升7.[2019·长寿中学]在等差数列{}n a 中,满足4737a a =,且10a >,n S 是{}n a 前n 项的和,若n S 取得最大值,则n =( ) A .7B .8C .9D .108.[2019·潮南冲刺]已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S =( ) A .3 B .9 C .10 D .139.[2019·诸暨适应]等差数列{}n a 的前n 项和是n S ,公差d 不等于零,若2a ,3a ,6a 成等比,则( )疯狂专练6 等差、等比数列一、选择题。

2020年高考文科数学考前选择填空专项练习-(

2020年高考文科数学考前选择填空专项练习-(

高考选择填空练习(十一)一、选择题:1.设全集{}0,1,2,3,4,5,6U =,集合{}0 2.5A x x =∈<<Z ,集合()(){}150B x x x =∈--<Z ,则()UA B =( ).A.{}0,1,2,3,6B.{}0,5,6C.{}1,2,4D.{}045,6,,2.若复数21iz =-,其中i 为虚数单位,则z =( ). A.1i + B.1i - C.1i -- D. 1i -- 3.已知命题:0p x ∀>,总有()1e 1x x +,则p ⌝为 ( ).A.00x ∃,使得()001e 1x x +B. 00x ∃>,使得()001e 1xx +C.00x ∃>,使得()001e 1x x +<D. 0x ∀,总有()001e 1xx +4.已知()()320f x ax bx ab =++≠,若()2017f k =,则()2017f -=( ).A.kB.k -C.4k -D. 2k - 5.将函数()()sin 2f x x ϕ=+的图像向右平移8π个单位长度,得到的图像关于原点对称,则ϕ的一个可能取值为( ).A.34π B.4π C.0 D. 4π- 6.若圆()()()221,x a y b a b -+-=∈∈R R 关于直线1y x =+对称的圆的方程是()()22131x y -+-=,则a b +=( ).A.4B.2C.6D.87.设α,β是两个不同的平面, l ,m 是两条不同的直线,且l α⊂,m β⊂,下列命题正确的是( ).A.若//l β,则//αβB. 若αβ⊥,则l m ⊥C.若l β⊥,则αβ⊥D. 若//αβ,则//l m8.如图所示,程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“MOD m n ”表示m 除以n 的余数),若输入的,m n 分别为2016,612,则输出的m =( ). A .0B .36C .72D .1809.的直线与双曲线22221x y a b-=恒有两个公共点,则双曲线离心率的取值范围是( ).A.[)2+∞,B. ()2+∞,C. (D.)+∞10.已知()f x 是定义在R 上的奇函数,且当(),0x ∈-∞时,不等式()()0f x xf x '+<成立,若()a f =ππ,()()22b f =--,()1c f =,则,,a b c 的大小关系是( ).A.a b c >>B. c b a >>C. c a b >>D. a c b >>11.已知,x y 满足22110x y x y y ⎧+⎪+-⎨⎪⎩,则z x y =-的取值范围是( ).A.⎡⎤⎣⎦B. []1,1-C. ⎡⎣D. ⎡-⎣12.已知函数()21e 1xx f x x -=+,若()()12f x f x =,且12x x <,关于下列命题:()()()121f x f x >-;()()()212f x f x >-;()()()113f x f x >-;()()()224f x f x >-.正确的个数为( ).A.1个B.2个C.3个D.4个 二、填空题:13. 已知向量a 与b 的夹角为3π,1=a ,2=b ,则2-=a b . 14.数列{}n a 满足()*113n n n n a a a a n ++-=∈N ,数列{}n b 满足1n nb a =,且129+...+90b b b +=,则46______.b b ⋅= 15.已知函数()()322,f x x ax bx a a b =+++∈R 且函数()f x 在1x =处有极值10,则实数b 的值为_______.16.已知函数()y f x =是定义在R 上的偶函数,对于x ∈R ,都有()()()42f x f x f +=+成立,当[]12,0,2x x ∈且12x x ≠时,都有()()12120f x f x x x -<-,给出下列四个命题:①()20f -=;②直线4x =-是函数()y f x =的图像的一条对称轴;③函数()y f x =在[]4,6上为减函数;④函数()y f x =在(]8,6-上有四个零点. 其中所有正确命题的序号为_______.高考选择填空练习(十二)一、选择题:1.已知命题:,221xp x x ∀∈>+R ,则p ⌝( ).A.,221xx x ∀∈+R B. ,221x x x ∀∈<+R C. ,221xx x ∃∈+R D.,221x x x ∃∈>+R2.已知集合103x A x x ⎧+⎫=∈⎨⎬-⎩⎭Z,{}2|1,B y y x x A ==+∈,则集合B 的含有元素1的子集个数为( ).A. 5B. 4C. 3D. 23.若,x y 满足3040x y x y x -⎧⎪+⎨⎪⎩,则3x y +的最大值为( ).A. 0B. 2C. 4D. 64.复数()2i 3i =-( ).A.13i 5- B. 13i 5+ C. 3i 5+ D.3i5-5.已知定义在区间[]3,3-上的函数()2xf x m =+满足()26f =,在[]3,3-上随机取一个实数x ,则使得()f x 的值不小于4的概率为( ). A.56 B. 12 C. 13 D.166.执行右图所示的程序框图,如果输出a 的值大于2017,那么判断框内的条件是( ). A. 9?k >B. 9?kC. 10?k <D.11?k7.在等差数列{}n a 中,已知37,a a 是函数()243f x x x =-+的两个零点,则{}n a 的前9项和等于( ). A. 18- B. 9 C. 18 D.368.函数()133,1log ,1x x f x x x ⎧⎪=⎨>⎪⎩,则()1y f x =-的图像是( ).9.曲线()()22110x y x +-=上的点到直线10x y --=的距离的最大值为a ,最小值为b ,则a b -的值是( ).A.B. 2C.12+1 10. 如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则此几何体的表面积为( ).A. 42+B.62+C. 10D. 1211.设12,F F 是椭圆()2221024x y b b+=<<的左、右焦点,过1F 的直线l 交椭圆于A,B 两点,若22AF BF +的最大值为5,则椭圆的离心率为( ).A.D.A.12 B. C.12.已知函数()()2e 31x f x a x a x =--+,若函数()f x 在区间()0,ln3上有极值,则实数a 的取值范围是( ).A.1,2⎛⎫-∞-⎪⎝⎭ B. (),1-∞- C. 11,2⎛⎫-- ⎪⎝⎭D. ()(),20,1-∞-二、填空题:13.已知向量()()2,0,1,2==a b ,若λ-a b 与()1,2=-c 垂直,则实数λ的值为 .14.若1sin 33απ⎛⎫-=⎪⎝⎭,则cos 23απ⎛⎫+= ⎪⎝⎭.15.,则该三棱锥外接球的直径为 . 16.数列{}n a 的前n 项和为21n S n n =++,()()()*12nn n b a n =--∈N ,则数列{}n b 的前50项的和为 .限时训练(四十六)答案部分一、选择题二、填空题 13.2 14.91 15. 11- 16. ①②③④解析部分1.解析 由题意知{}1,2A =,{}2,3,4B =,{}1,2,3,4A B =,则(){}0,5,6UA B =.故选B.2.解析 ()()()21i 21i 1i 1i 1i z +===+-+-,1i z =-.故选B. 3.解析 易知0:0p x ⌝∃>,()001e 1xx +<.故选C.4.解析 由题知()()33224f x f x ax bx ax bx +-=++--+=,即()()4f x f x +-=,则()()4f x f x -=-,所以()()2017420174f f k -=-=-.故选C.5.解析 将函数()f x 的图像向右平移π8个单位长度后的函数()ππsin 284g x f x x ϕ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,所以π4k ϕ-=π,即π4k ϕ=+π.故选B. 6.解析 由题知31122311b a b a ++⎧=+⎪⎪⎨-⎪=-⎪-⎩,解得22a b =⎧⎨=⎩,则4a b +=.故选A.7.解析 对于A ,若//l β,不一定得到//αβ;对于B ,由αβ⊥,不一定得到l m ⊥;对于C ,若l β⊥,又l α⊂,所以αβ⊥,所以C 选项正确;对于D ,由//αβ不一定得到//l m .故选C.8.解析 第一次循环:180r =,612m =,180n =,继续循环; 第二次循环:72r =,180m =,72n =,继续循环; 第三次循环:36r =,72m =,36n =,继续循环; 第四次循环:0r =,36m =,0n =,继续循环; 输出36m =.故选B.9.解析由题意知b a >2222c a a ->,得c e a=>.故选D. 10.解析 构造函数()()G x xf x =,由()f x 为奇函数,则()G x 为偶函数,()()()G x f x xf x ''=+,当(),0x ∈-∞时,()0G x '<,()G x 单调递减,所以()0,x ∈+∞时,()G x 单调递增.由()a G =π,()()22b G G =-=,()1c G =,12<<π,所以c b a <<.故选A. 11.解析 由题作出x ,y 满足的可行域,如图所示.由图知,当z x y =-与圆相切时,截距最小,z最大,max z =;当z x y =-过点A 时,截距最大,z 最小,min 1z =-.故选D.12.解析 ()21e 1xx f x x -=+,()()()22223e 1x x x x f x x --+'=+,当0x >时,()0f x '<,()f x 单调递减;当0x <时,()0f x '>,()f x 单调递增.作出()f x 的图像如图所示.设()()12f x f x c ==,120x x <<,当0c →时,由图知必有12x x >,即120x x ->>,所以()()12f x f x -<,即(2)正确,(1)不正确,又()()12f x f x =,所以()()11f x f x >-,即(3)正确;由120x x ->>,所以120x x <-<,即()()12f x f x <-,即()()22f x f x <-,所以(4)正确.故选B.13.解析 由2222π24444cos44443-=-⋅+=+-=+-=a b a a b b a b a b , 可得22-=a b .故填2.14.解析 将()*113n n n n a a a a n ++-=∈N 变形为1113n n a a +-=,因为1n nb a =,所以可知数列{}n b 为等差数列. 又12990b b b +++=,所以91198939108902S b b ⨯=+⨯=+=,得12b =-, 所以4137b b d =+=,61513b b d =+=,则4671391b b ⋅=⨯=.故填91.15.解析 已知()322f x x ax bx a =+++在1x =处由极值10,所以()232f x x ax b '=++,则()1320f a b '=++=,()21110f a b a =+++=,联立以上两式,可得212032a a b a ⎧--=⎨=--⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩. ①当4a =,11b =-时,()23811f x x x '=+-,可知11,13x ⎛⎫∈-⎪⎝⎭时,()0f x '<,()1,x ∈+∞时,()0f x '>,则()f x 在1x =处有极小值成立;②当3a =-,3b =时,()2363f x x x '=-+,可知x ∈R 时,()0f x '恒成立,所以()f x 在1x =处无极值.综上可知,实数b 的值为11-,故填11-.16.解析 已知()()()42f x f x f +=+,所以()()()2422f f f -+=-+,则()20f -=,故①正确;因为()f x 为偶函数,且()20f -=,所以()20f =,则()()4f x f x +=,可知()f x 是以4为周期的周期函数,则()()4f x f x +=-,()()44f x f x +=-+,()()4f x f x -=--,所以()()44f x f x -+=--,所以直线4x =-是函数()y f x =的图像的一条对称轴故②正确;又[]12,0,2x x ∈,且12x x ≠时,都有()()12120f x f x x x -<-,所以()f x 在[]0,2上单调递减,因为()f x 为偶函数,所以()f x 在[]2,0-上单调递增,因为()f x 周期为4,则()f x 在[]4,6上单调递减,故②正确;可知函数()f x 在(]8,6-上有四个零点()2,0,()6,0,()2,0-,()6,0-.故④正确.故填①②③④.限时训练(四十二)答案部分一、选择题二、填空题13. 23- 14.79- 15. 16. 49解析部分1.解析 命题:,221xp x x ∀∈>+R ,则命题:,221xp x x ⌝∃∈+R .故选C .2.解析 由{}{}13,1,0,1,2A x x x =-<∈=-Z , 得{}1,2,5B =,则集合B 的含有元素1的子集有{}1,{}1,2,{}1,5,{}1,2,5,共4种.故选B .3.解析 画出可行域如图所示.设3z x y =+,得3y z x =-,平移直线3y z x =-.由图可知,当直线3y z x =-经过点B 时,直线3y z x =-的截距最大.由304x y x y -=⎧⎨+=⎩,得()1,3B ,此时z 最大, 3136z =⨯+=,所以3x y +的最大值为6.故选D.4.解析 复数()()()()213i 2213ii 3i 13i 13i 13i 5--===-++-.故选A. 5.解析 由已知, ()2226f m =+=,得2m =.要使得()f x 的值不小于4,则()24xf x m =+,得1x,又[]3,3x ∈-,所以[]1,3x ∈.故()f x 的值不小于4的概率为()31213363P -===--.故选C.6.解析 模拟程序框图的运行过程.已知1,1k a ==,满足循环条件,执行循环体, 6a =,3k =; 满足循环条件,执行循环体, 33a =,5k =; 满足循环条件,执行循环体, 170a =,7k =;满足循环条件,执行循环体, 857a =,9k =; 满足循环条件,执行循环体, 4294a =,11k =;由题意,此时应该不满足循环条件.退出循环.输出4294a =. 由此可根据选项知判断框内的条件为10?k <.故选C.7.解析 已知37,a a 是函数()243f x x x =-+的两个零点,所以374a a +=.又数列{}n a 为等差数列,所以{}n a 的前9项和()()19379991822a a a a S ++===.故选C . 8.解析 由已知,得()()1133,01log 1,0x x f x x x -⎧⎪-=⎨-<⎪⎩.当0x =时, 3y =.故排除选项A ,D ;可得()()13ln 3,011,01ln 3x x f x x x -⎧-⎪'-=⎨<⎪-⎩,则函数()1f x -在()0,+∞上单调递减, 在(),0-∞上单调递增.故选C.9.解析 曲线()()22110x y x +-=表示以()0,1为圆心,以1为半径的左半圆.因为圆心到直线10x y --=的距离d ==所以圆上的点到直线10x y --=的最大距离1a =,最小距离为()0,0到直线10x y --=的距离,即2b ==,则1122a b -=-=+.故选C .10.解析 如图所示,还原该几何体为四棱锥A BCDE -,将四棱锥A BCDE -放入一个棱长为2的正方体内,可知AB AC ==3AE AD ==.则此几何体的表面积21112222226222⨯+⨯+⨯⨯=+.故选B .11.解析 由题意,得22112248AB AF BF AF BF AF BF a ++=+++==,若22AF BF +的最大值为5,则AB 的最小值为3.可知当AB 过点1F 且垂直x 轴时AB 最小,为22b a,即223b a =,得23b =.又1c ===,所以离心率12c e a ==.故选A. 12.解析 已知()()2e 31xf x a x a x =--+.令()()()e 231xf x a x ag x '=--+=.由函数()f x 在区间()0,ln3上有极值,等价于在()g x 在区间()0,ln3上单调且有零点,则()()0ln30g g <,即()()3132ln3310a a a a -----<,可得210a +<,解得12a <-. 此时()e 20xg x a '=-<,所以()g x 在区间()0,ln3上单调递减,所以a 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.故选A.13.解析 因为λ-a b 与c 垂直,所以()0λ-⋅=a b c ,即()()()2,01,21,2230λλ-⋅-=--=⎡⎤⎣⎦,解得23λ=-.故填23-.14.解析 由ππ1sin sin cos 32663αααπ⎡π⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 得22π17cos 22cos 1213639ααπ⎛⎫⎛⎫⎛⎫+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故填79-.15.解析 ,则可知它一定可以放在棱长为1的正方体内,则该三棱锥的外接球即为此正方体的外接球, 故该三棱锥外接球的直径即为正方体的体对角线,..16.解析 由题知, 113a S ==,且21n S n n =++,()2211111n S n n n n -=-+-+=-+,以上两式相减,得()*122,n n n a S S n n n -=-=∈N ,则()11321b =-⨯-=-,()()()*1222,nn b n n n =--∈N ,所以5012501249698S b b b =+++=-+-+-+=()121234474849-+-+-++-+=()12244949-+-+=.故填49.。

2020届高考数学选择题填空题专项练习(文理通用)02 解三角形01(含解析)

2020届高考数学选择题填空题专项练习(文理通用)02 解三角形01(含解析)

2020届高考数学选择题填空题专项练习(文理通用)02解三角形01第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·哈尔滨市呼兰区第一中学校高三期末(理))已知ABC ∆中,2AB =,3AC =,且ABC ∆的面积为32,则BAC ∠=( ) A .150︒B .120︒C .60︒或120︒D .30︒或150︒【答案】D 【解析】【分析】由三角形面积公式即可求解.【详解】1sin 1323n 222si BAC BAC S AB AC ∠==⨯⨯⋅∠⋅=⋅Q ,1sin 2BAC =∴∠,0BAC π<∠<Q , 6BAC π∴∠=或56π,故选:D【点睛】本题主要考查了三角形的面积公式,属于容易题.2.(2020·陕西高三月考(文))在ABC ∆中,角,,A B C 的对边分别是,,a b c .若sin ,cos 22b aA C c b==,则B =( )A .112π B .512π C .112π或512π D .512π或712π 【答案】C 【解析】【分析】由余弦定理将角化边,从而求得角A ,结合三角形形状,求出角B .【详解】因为222cos 22a b c aC ab b+-==,所以b c =, 因为1sin 22b A c ==,所以6A π=或56π, 当6A π=时,由B C =,得到512B π=;当56A π=时,得到12B π=;故12B π=或512π.故选:C. 【点睛】本题考查余弦定理解三角形,涉及正、余弦定理的直接使用,属基础题.3. (2020·天津静海一中高三月考)在ABC V 中,角,,A B C 的对边分别为,,a b c ,且3a =,3A π=,sin 2sin C B =,则ABC V 的周长为( )A .3+B .3+C .3+D .3+【答案】C 【解析】【分析】根据sin 2sin C B =,得到2c b =,利用余弦定理,得到关于b 的方程,从而得到,b c 的值,得到ABC V 的周长.【详解】在ABC V 中,由正弦定理2sin sin sin a b cR A B C===,因为sin 2sin C B =,所以2c b = 因为3a =,3A π=,所以由余弦定理得2222cos a b c bc A =+-,即22194222b b b b =+-⨯⨯,解得b =2c b ==所以ABC V 的周长为3+故选C.【点睛】本题考查正弦定理的角化边,余弦定理解三角形,属于简单题.4.(2020·全国高三专题练习(文))在ABC V 中,2π3B =,3AB =,E 为AB 的中点,AEC S =△则AC 等于( ).A BCD .3【答案】A 【解析】【分析】根据题意,可求ABC V 面积,根据面积公式可得1BC =,再利用余弦定理可求AC .【详解】在ABC V 中,2π3B =,3AB =,E 为AB 的中点,AEC S =△2ABC AEC S S ==△△,又11sin 322ABC S AB BC B BC =⋅⋅=⋅⋅△1BC =,由余弦定理可得:A C ==.故选:A .【点睛】本题考查解三角形问题,根据题目的边角关系代入正弦或者余弦定理即可,考查计算能力,属于基础题.5. (2020·吉林高三月考(理))在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若2b c =,a =3A π=,则ABC ∆的面积为( ) A .1 B .3C.D【答案】D 【解析】【分析】利用余弦定理求出b 、c 的值,然后利用三角形的面积公式可求出ABC ∆的面积. 【详解】由余弦定理可得2222212cos 4222a b c bc A c c c c =+-=+-⨯⨯⨯,即236c =,解得c =则2b c ==ABC ∆的面积为11sin 222ABC S bc A ∆==⨯=故选:D. 【点睛】本题考查三角形面积的计算,同时也考查了利用余弦定理解三角形,考查计算能力,属于基础题. 6. (2020·内蒙古高三期末)已知ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,6b =,且a c +=A 的大小为( )A .25πB .27π C .512π D .12π【答案】D 【解析】【分析】根据正弦定理6sin sin sin 3a cA C π==以及a c +=sin 62A π⎛⎫+= ⎪⎝⎭,可得答案. 【详解】由正弦定理得6sin sin sin3a cA C π==2sin sin sin sin 3a c a c A C A A π++==+⎛⎫+- ⎪⎝⎭,则2sin sin 3a c A A π⎤⎛⎫+=+- ⎪⎥⎝⎭⎦1sin sin 22A A A ⎤=++⎥⎦3sin 2A A ⎤=⎥⎦112cos 12sin 26A A A π⎤⎛⎫=+=+⎥ ⎪⎝⎭⎣⎦,又∵a c +=12sin 6A π⎛⎫+= ⎪⎝⎭sin 6A π⎛⎫+= ⎪⎝⎭,于是64A ππ+=或34π(舍),故12A π=.故选:D 【点睛】本题考查了正弦定理,考查了两角和的正弦公式的逆用,属于中档题.7.(2020·全国高三专题练习(文))ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,tan 2B =已知向量(,)m a b b c =++v ,(,)n c b a =-v.若//m n v v,则ac=( ) ABCD【答案】A 【解析】【分析】由//m n u r r得()()()a b a c b b c +⋅=-⋅+,结合余弦定理求出角C ,再根据两角和的正切公式求出()tan B C +,从而得到tan A ,再由正弦定理计算可得.【详解】由//m n u r r得()()()a b a c b b c +⋅=-⋅+,即222c a b ab =++,又由余弦定理2222cos c a b ab C=+-可得1cos 2C =-,因(0,)C π∈,故23C π=.则()tan tan tan 11tan tan B C B C B C ++===--⋅ tan tan()1A B C ∴=-+=,又(0,)A π∈,4A π∴=,由正弦定理sin sin a c A C =得sin sin 3a A c C ===.【点睛】本题考查正弦定理,余弦定理的应用,两角和的正切公式的应用,属于中档题.8. (2020·云南高三(文))ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若120B =︒,sin 7C =,2c =,则ABC ∆的面积等于( )AB.CD【答案】A 【解析】【分析】先通过已知求出sin ,cos ,cos B B C ,进而根据sin sin()A B C =+求出sin A ,再利用正弦定理求出b ,则利用面积公式可求出ABC ∆的面积.【详解】120B =︒Q ,1sin 2B B ∴==-,又sin C =,C 为锐角,cos C ∴=sin sin()sin cos cos sin A B C B C B C ∴=+=+12714⎛⎫=-⨯=⎪⎝⎭,由正弦定理得sin sin b c B C=,sin s in cb B C ∴=⋅==11sin 222ABC S bc A ∴===V 【点睛】本题考查正弦定理解三角形,以及求三角形的面积,关键是对公式的灵活应用,缺什么,求什么即可,是基础题.9.(2020·江西高三期末(文))在ABC V 中,角,,A B C 的对边分别是,,a b c ,ABC V 的面积为S ,b =且)222S a c b =+-,则ABC V 的面积S 的最大值为( )A .B .6+C .6+D .9+【答案】C 【解析】【分析】由已知及余弦定理可得tan 3B =,解得6B π=,再利用基本不等式可求得12(2ac ≤,根据三角形的面积公式即可求解.【详解】因为b =)222S a c b =+-,得:)2212S a c =+-,又由余弦定理:2222cos b a c ac B =+-,即222cos 12a c ac B +-=,则222cos 12a c ac B +=+,所以)2212cos 1212)cos S a c ac B B =+-=+-=,又因为三角形面积公式1sin cos 26S ac B ac B ==,解得:cos sin 3B B =,得tan 3B =,所以6B π=.因为111sin sin 224S ac B ac B ac ===,又因为222cos 12a c ac B +-=,即2212a c +=又由基本不等式:22222,(2a c ac a c ac +≥+≥,即12(2ac ≥-,得12(2ac ≤=+.所以1112(2644S ac =≤⨯+=+,当且仅当a c =时,S 的最大值为6+故选:C.【点睛】本题考查余弦定理和三角形面积的综合,运用余弦定理和基本不等式,求得三角形面积的最值,同时还考查学生的数据处理和综合分析能力.10.(2020·湖南长郡中学高三月考(文))已知△ABC 中,三个内角,,A B C 的对边分别为,,a b c ,若△ABC 的面积为S ,且222()S a b c =+-,则tan C 等于( )A .34B .43C .43-D .34-【答案】C 【解析】【分析】根据面积公式,将222()S a b c =+-变形为222sin 2ab C ab a b c -=+-,又222cos 2a b c C ab+-=,两式结合化简可得sin cos 12C C +=,再利用二倍角公式化简得到tan 22C=,从而可求得tan C . 【详解】由222()S a b c =+-得22222S a b ab c =++-,即22212sin 22ab C a b ab c ⨯=++-,则222sin 2ab C ab a b c -=+-,又因为222sin 2sin cos 1222a b c ab C ab CC ab ab +--===-,所以sin cos 12C C +=,即22cossin cos 222C C C =,由(0,)C π∈,所以tan 22C =,即222tan2242tan 1231tan 2C C C ⨯===---.故选C. 【点睛】本题考查三角形面积公式和余弦定理的应用,也考查了三角函数的二倍角公式,熟练掌握定理和公式是解题的关键,属中档题.11. (2020·天水市第一中学高三期末(文))△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c,则C =A .π12B .π6C .π4D .π3【答案】B【解析】sinB=sin (A+C )=sinAcosC+cosAsinC ,∵sinB+sinA (sinC ﹣cosC )=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA ,∴tanA=﹣1,∵π2<A <π,∴A= 3π4,由正弦定理可得c sin sin a C A =,∵a=2,,∴sinC=sin c A a=12=22, ∵a >c ,∴C=π6,故选B .点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 12. (2020·福建省福州第一中学高三开学考试(文))在ABC ∆中,若()3cos 5cos 0A B C -+=,则tan C 的最大值为( ) A.4-B.-C .34-D .43-【答案】D 【解析】【分析】根据已知的等式展开,化简得到tan tan A B 的值,再利用基本不等式求tan tan A B +的最小值,由tan tan()C A B =-+可得tan C 的最大值。

靖远县2020届高三仿真高考冲刺文科数学试题含解析

靖远县2020届高三仿真高考冲刺文科数学试题含解析
A。 函数 的最小正周期为
B。 当 时,函数 为奇函数
C。 是函数 的一条对称轴
D。 函数 在区间 上的最小值为
【答案】C
【解析】
【分析】
根据已知条件先用二倍角公式转化 ,再利用函数 的图像变换规律,求得 的解析式,再利用余弦函数的图像和性质,判断各个选项是否正确.
【详解】将函数 的图象向右平移 个单位长度,
二、填空题
13.设实数 ,若 是纯虚数(其中 为虚数单位),则 _____.
【答案】1
【解析】
【分析】
化简复数 ,再根据纯虚数的概念,即可得答案;
【详解】 , ,
, ,
故答案为: 。
【点睛】本题考查复数中纯虚数的概念,考查运算求解能力,属于基础题。
14。若x,y满足约束条件 ,则 的最小值为______.
4. 世纪产生了著名的“ "猜想:任给一个正整数 ,如果 是偶数,就将它减半;如果 是奇数,则将它乘 加 ,不断重复这样的运算,经过有限步后,一定可以得到 .如图是验证“ ”猜想的一个程序框图,若输入正整数 的值为 ,则输出的 的值是( )
A。 B。 C. D.
【答案】C
【解析】
【分析】
列出循环的每一步,可得出输出的 的值。
7.如图所示,在边长为4的正三角形中有一封闭曲线围成的阴影区域。在正三角形中随机撒一粒豆子,它落在阴影区域内的概率为 ,则阴影区域的面积为( )
A。 B。 C. D.
【答案】C
【解析】
【分析】
由题意结合几何概型计算公式得到关于面积的方程,解方程即可求得最终结果.
【详解】解:设阴影部分的面积为S,结合几何概型公式可得: ,解得S=3 .
纵坐标不变,可得 ,

2020届高考数学选择题填空题专项练习(文理通用)10 函数零点01(含解析)

2020届高考数学选择题填空题专项练习(文理通用)10 函数零点01(含解析)

2020届高考数学选择题填空题专项练习(文理通用)10函数零点01第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·河北高三期末(文))函数131()2x f x x =-的零点所在的区间为( ) A .1(0,)4B .11(,)43C .11(,)32D .1(,1)2【答案】C 【解析】【分析】先判断出函数的单调性,结合零点存在定理即可判断出零点所在区间. 【详解】函数131()2x f x x =-,所以函数在R 上单调递增,因为1113331311111033322f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1113321211111022222f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以函数零点在11,32⎛⎫ ⎪⎝⎭故选:C【点睛】本题考查了根据零点存在定理判断零点所在区间,注意需判断函数的单调性,说明零点的唯一性,属于基础题.2.(2020·江西高三(文))方程()3sin =f x x 零点的个数是( )A .3B .4C .5D .6【答案】C【解析】大致图形如图所示,接下来比较与在处的切线斜率,,时,,即在处的切线方程为轴,又,在,因此在轴右侧图象较缓,由图象可知,共有个交点,故选C .【点晴】本题考查的是两个函数的交点个数问题.首先运用函数与方程的思想,把给定方程转化成为两个基本函数的交点问题,再通过函数的性质与比较函数在相同自变量处的函数值的大小关系画出两个基本函数图象,需要注意的是,两个函数都过点,而轴右侧的高低情况需要比较两个函数在处的切线斜率得到,为本题的易错点.3.(2019·四川高三月考(理))函数()332,0log 6,0x x f x x x ⎧->=⎨+≤⎩的零点之和为()A .-1B .1C .-2D .2【答案】A 【解析】【分析】由函数零点与方程的根的关系可得函数()332,0log 6,0x x f x x x ⎧->=⎨+≤⎩的零点即方程320x -=,3log 60x +=的根,解方程后再将两根相加即可得解.【详解】令320x -=,解得3log 2x =,令3log 60x +=,解得3log 6x =-,则函数()f x 的零点之和为3331log 2log 6log 13-==-,故选A. 【点睛】本题考查了分段函数零点的求解,重点考查了对数的运算,属基础题.4.(2020·河南高三期末(理))已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0ff x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93xf x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以令()()0f f x =,得()32log 93x f x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭.故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.5.(2020·山东枣庄八中高三月考)已知()f x 是定义在[10,10]-上的奇函数,且()(4)f x f x =-,则函数()f x 的零点个数是( )A .3B .4C .5D .6【答案】C 【解析】【分析】由定义在[10,10]-上的奇函数可知(0)0f =且零点关于原点对称,利用(0)0f =,由()(4)f x f x =-可得到部分零点【详解】()f x Q 是定义在[10,10]-上的奇函数,(0)0f ∴=,且零点关于原点对称,∴零点个数为奇数,又()(4)f x f x =-Q ,(0)(4)0f f ∴==,(4)(4)0f f -=-=,(4)(44)(8)0f f f ∴-=+==,(8)(8)0f f -=-=,()f x ∴的零点至少有0,4,±8±这5个,【点睛】本题主要考查函数的零点、函数奇偶性的应用以及抽象函数的解析式,意在考查综合应用所学知识解答问题的能力,属于中档题.6. (2020·江西高三(理))已知函数()ln(||1)cos 2f x x a x =+++只有一个零点,则a =( )A .2B .4C .3D .2-【答案】D 【解析】【分析】判断函数为偶函数,根据偶函数的对称性即可求解.【详解】因为()ln(||1)cos()2()f x x a x f x -=-++-+=,所以函数()f x 为偶函数,又函数()f x 只有一个零点, 故(0)0f =,所以2a =-.故答案为:2- 【点睛】本题主要考查了函数的奇偶性,函数的零点,属于容易题.7.(2020·湖北高三月考(理))已知函数23()123x x f x x =+-+,若()(2020)h x f x =-的零点都在(),a b 内,其中a ,b 均为整数,当b a -取最小值时,则b a +的值为( )A .4038B .2019C .4037D .4039【答案】D 【解析】【分析】求导分析23()123x x f x x =+-+的单调性,再根据零点存在定理与函数的平移分析即可.【详解】因为2'()10f x x x =-+>恒成立.故23()123x x f x x =+-+为增函数.所以()f x 有且仅有一个零点.又(0)10=>f ,115(1)110236f -=---=-<,故()f x 零点在区间()1,0-之间.又()(2020)h x f x =-为函数()f x 往右平移2020个单位,所以()(2020)h x f x =-的零点落在()2019,2020上.由题意可知, b a -取最小值时2020,2019b a ==,所以4039b a +=.故答案为:4039【点睛】本题主要考查了函数的零点存在性定理与函数平移的问题,属于基础题.8.(2020·河南南阳中学高三月考(理))已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>≤ ⎪⎝⎭,其图象与直线1y =-相邻两个交点的距离为π,若()1f x >对于任意的,123x ππ⎛⎫∈-⎪⎝⎭恒成立,则ϕ的取值范围是( ) A .,63ππ⎡⎤⎢⎥⎣⎦B .,122ππ⎡⎤⎢⎥⎣⎦C .,123ππ⎡⎤⎢⎥⎣⎦D .,62ππ⎛⎤ ⎥⎝⎦【答案】A【解析】由题意可得相邻最低点距离1个周期,T π=,2ω=,()1f x >,即()sin 20x ϕ+>,222,k x k k Z πϕππ≤+≤+∈,即,,222x k k k Z ϕϕπππ⎡⎤∈-+-++∈⎢⎥⎣⎦所以,123ππ⎛⎫- ⎪⎝⎭⊆,,222k k k Z ϕϕπππ⎡⎤-+-++∈⎢⎥⎣⎦,包含0,所以k=0, ,,222k Z ϕϕπ⎡⎤--+∈⎢⎥⎣⎦,122223πϕϕππ⎧-≥-⎪⎪⎨⎪-+≥⎪⎩,63ππϕ≤≤. 【点睛】由于三角函数是周期周期函数,所以不等式解集一般是一系列区间并集,对于恒成立时,需要令k 为几个特殊值,再与已知集合做运算.9.(2020·天津南开中学高三月考)已知函数22,2()(2),2⎧-≤=⎨->⎩x x f x x x ,函数()3(2)g x f x =--,则函数()()y f x g x =-的零点的个数为( )A .2B .3C .4D .5【答案】A【解析】由22,2()(2),2⎧-≤=⎨->⎩x x f x x x ,()3(2)g x f x =--,所以2222231,0()()231,0244155,2⎧+-+=+-≤⎪=-=--+=-<≤⎨⎪-+-+=-+>⎩x x x x x y f x g x x x x x x x x x x 所以当0x ≤时,零点为x =一个,当02x <≤时,无零点,当2x >以零点个数为2个,故选A . 考点:函数的零点个数的判断.【方法点睛】该题属于考查函数的零点个数的问题,在解题的过程中,需要先确定出函数解析式,根据题中所给的函数()f x 的解析式求得函数()g x 的解析式,从而得到()()f x g x -关于x 的分段函数,通过对每一段上的解析式进行分析,求得相应的函数的零点,注意结合自变量的取值范围进行相应的取舍,最后确定出该题的答案.10.(2020·河南鹤壁高中高三月考(文))已知函数2()cos2cos 1(0)222xxxf x ωωωω=+->的周期为π,当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()f x m =恰有两个不同的实数解1x ,2x ,则()12f x x +=( ) A .2 B .1C .﹣1D .﹣2【答案】B 【解析】【分析】对()f x 进行化简,利用周期为π,求出2ω=,根据()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象,得到12x x +的值,再求出()12f x x +的值.【详解】2()cos2cos 1222xxxf x ωωω=+-cos 2sin 6x x x πωωω⎛⎫=+=+ ⎪⎝⎭由2T ππω== ,得2ω=.()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭.作出函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知,123x x π+=,()1212sin 221362f x x ππ⎛⎫∴+=⨯+=⨯= ⎪⎝⎭.故选B 项. 【点睛】本题考查正弦型函数的化简及其图像与性质,属于简单题.11. (2020·河北工业大学附属红桥中学高三月考)已知函数32,0(),0x x x f x lnx x ⎧-=⎨->⎩…,若函数()()g x f x x a=--有3个零点,则实数a 的取值范围是( )A .[0,2)B .[0,1)C .(-∞,2]D .(-∞,1]【答案】A 【解析】【分析】本道题先绘制()f x 图像,然后将零点问题转化为交点问题,数形结合,计算a 的范围,即可. 【详解】绘制出()f x 的图像,()f x x a =+有3个零点,令()h x x a =+与()f x 有三个交点,则()h x 介于1号和2号之间,2号过原点,则0a =,1号与()f x 相切,则()2'321,1f x x x =-==-,1y =,代入()h x 中,计算出2a =,所以a 的范围为[)0,2,故选A .【点睛】本道题考查了数形结合思想和函数与函数交点个数问题,难度中等.12.(2020·湖南长沙一中高三月考(理))已知偶函数()y f x =的定义域为R ,当0x ≥时,()23sin ,01221,1x x x f x x π-⎧≤≤⎪=⎨⎪+>⎩函数()()2221g x x ax a a R =-+-∈,若函数()()y g f x =有且仅有6个零点,则实数a 的取值范围为( )A .(]1,2B .()1,2C .(]2,3D .()2,3【答案】B 【解析】【分析】画出()f x 的图像,先求解()22210g x x ax a =-+-=,再数形结合列出关于a 的不等式求解即可.【详解】由题意画出()f x 的图像如图所示,由()22210g x x ax a =-+-=解得11x a =+,21x a =-,由函数()()y g f x =有且仅有6个零点知113011a a <+<⎧⎨<-≤⎩,解得12a <<,【点睛】本题主要考查了数形结合解决函数零点个数的问题,需要根据函数图像与带参数的方程交点的个数,列出对应的不等式进行求解.属于中等题型.第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。

2020年全国统一高考数学试卷(文科)含答案

2020年全国统一高考数学试卷(文科)含答案

2020年全国统一高考数学试卷(文科)含答案一、选择题(共12小题).1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{﹣3,﹣2,2,3}C.{﹣2,0,2}D.{﹣2,2}2.(1﹣i)4=()A.﹣4B.4C.﹣4i D.4i3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位大三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.已知单位向量,的夹角为60°,则在下列向量中,与垂直的是()A.B.2+C.﹣2D.2﹣6.记S n为等比数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.执行如图的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.9.设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3210.设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.B.C.1D.12.若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选择题、填空题限时训练文科(十三)
一、 选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有 一项是符合题目要求的.
1. 已知集合{}
2
320A x x x =-+=,{}2,1,1,2B =--,则A B =I ( ).
A.{}2,1--
B.{}1,2-
C.{}1,2
D.{}2,1,1,2--
2. 下列函数中,既是奇函数又在区间()0,+∞上单调递减的是( ). A.2
2y x =-+
B.1
y x
=
C.2x
y -=
D.ln y x =
3. 在复平面内,复数()2
1+2i 对应的点位于( ).
A.第一象限
B.第二象限
C.第三象限
D.第四象限 4. 某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( ).
(锥体体积公式:1
3
V Sh =,其中S 为底面面积,h 为高)
A.3
B.2
D.1
5. 执行如图所示的程序框图,则输出s 的值为( ). A.10 B.17 C.19 D.36
6. 设a ,b 是实数,则“a b >”是“a a b b >”的( ). A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
7. 已知无穷数列{}n a 是等差数列,公差为d ,前n 项和为n S ,则(
A.当首项10,0a d ><时,数列{}n a 是递减数列且n S 有最大值
B.当首项10,0a d <<时,数列{}n a 是递减数列且n S 有最小值
C.当首项10,0a d >>时,数列{}n a 是递增数列且n S 有最大值
侧视图
俯视图
1122
2
21
1
D.当首项10,0a d <>时,数列{}n a 是递减数列且n S 有最大值
8.如图a 对应于函数()f x ,则在下列给出的四个函数中,图b 对应的函数只能是( ).
图a 图b A. ()1y f x =+
B. ()1y f
x =+ C. ()1y f x =-
D. ()
1y f x =-
二、填空题(本大题共6小题,每小题5分,共30分)
9. 双曲线2214x y m -=
的离心率为2,则m = ,其渐近线方程为 .
10. 不等式组0,
20,30x x y x y ⎧⎪
+⎨⎪-+⎩
„……所表示平面区域的面积为 .
11.
设向量)
=
a ,()2,2=-
b ,若()()λλ+⊥-a b a b ,则实数λ= .
12. 已知函数()3269f x x x x =-+,则()f x 在闭区间[]1,5-上的最小值为 , 最大值为 . 13.
已知直线:l y =
,点(),P x y 是圆()2
221x y -+=上的动点,则点P 到直线l 的距
离的最小值为 . 14. 已知函数()()π2sin 0,6f x x x ωω⎛⎫
=+
>∈ ⎪⎝

R .又()12f x =-,()20f x =且12x x - 的最小值等于π,则ω的值为 .
限时训练(十三)文科参考答案
二、填空题
9. 1 ,12y x =±
10. 3
2
11. 12. 16- ,20 13.
1 14.
1
2
解析部分
1. 解析 集合{}1,2A =,所以{}
1,2A B =I .故选C.
2.
解析 对于A
,22y x =-+是偶函数,对于C ,2x
y -=在R 上是减函数;对于D ,ln y x
=是非奇非偶函数.故选B.
3. 解析 ()2
12i 14i 434i +=+-=-+,故对应的点位于第二象限.故选B. 4. 解析 根据俯视图定底,侧视图定高可得三棱锥的底面积1
22
S =
⨯=,高h =1
13
V ==.故选D.
5. 解析 0,2,2102,3,3105,5,510S k S k S k ==<→==<→==<→
10,S =9,91019,17,1710k S k =<→==>→输出. 19S =.故选C.
6. 解析 令()f x x x =,则()22,0
,0
x x f x x x ⎧⎪=⎨-<⎪⎩….所以()f x 在R 上单调递增,
所以a b a a b b >⇔>,即“a b >”是“a a b b >”成立的充要条件.故选C.
7. 解析 对于无穷的等差数列{}n a ,当0d >时,是递增数列,当0d <时,是递减数列,故排除D ;当10a >,0d <时,n S 有最大值,故A 正确;当10a <,0d <时,n S 无最小值,故B 不正确;当10a >,0d >时,n S 无最大值,故C 不正确.故选A.
8. 解析 观察图b 与图a ,可知将图a 中的图像作出其关于y 轴对称的部分,可得()f x -的
图像,再将()f x -的图像向右平移一个单位,可得()()11f x f x --=-⎡⎤⎣⎦的图像,即为图b.故选C.
9. 解析 由双曲线的方程得2
4a =,2
b m =.
因为2c e a ==,所以2254
c a =,所以
222
5
4a b a +=,即4544m +=,所以1m =,所以双曲线的渐近线方程为12
y x =±. 10. 解析 不等式组所表示的平面区域如图所示阴影部分. 联立2030x y x y +=⎧⎨
-+=⎩,解得()1,2A -,联立0
30x x y =⎧⎨-+=⎩
,解得()0,3B ,
所以113
31222
AOB A S OB x =
=⨯⨯=△.
11. 解析 由()()λλ+⊥-a b a b ,得()()0λλ+⋅-=a b a b ,即2220λ-=a b , 故222λ=a b ,且2=a
,=b 248λ=
,解得λ=12. 解析 ()()()2
3129313f x x x x x '=-+=--[]()
1,5x ∈-,所以在区间()1,3内,
()0f x '<,()f x 单调递减,在区间()1,1-和()3,5内,()0f x '>,()f x 单调递增,所
以()f x 在区间[]1,5-的最大值为()(){}
1,5f f 的较大者,最小值为()(){}
1,3f f -的最小者.经计算比较得()()max 520f x f ==,()()min 116f x f =-=-. 13. 解析 圆心()2,0
到直线0l y -=
的距离2
d ==,所以点P 到直线l 的距
离的最小值等于1d r -=
.
14. 解析 因为()12f x =-为()f x 的最小值,所以1x x =是()f x 的一条对称轴.因为
()20f x =,所以()2,0x 是()f x 的一个对称中心.又因为12x x -的最小值为π
,所以相邻
的对称轴与对称中心的距离为π.所以=π4
T
,4πT =,所以2π12T ω=
=.。

相关文档
最新文档