初等代数研究(1)
初等数学研究课后习题答案(2020年7月整理).pdf

初等代数研究课后习题20071115033 数学院 07(1) 杨明1、证明自然数的顺序关系具有对逆性与全序性,即(1)对任何N b a ∈,,当且仅当b a <时,a b >.(2))对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立.证明:对任何N b a ∈,,设a A ==,b B ==(1)“⇒” b a <,则B B ⊂∃,,使,~B A ,A B B ~,⊃∴,a b >∴“⇐” a b >,则B B ⊂∃,,使A B ~,,B B A ⊂∴,~,b a <∴综上 对任何N b a ∈,,b a <⇔a b >(2)由(1)b a <⇔a b > b a <∴与b a >不可能同时成立,假设b a <∴与b a =同时成立,则B B ⊂∃,,使,~B A 且B A ~, ,~B B ∴与B 为有限集矛盾,b a <∴与b a =不可能同时成立,综上,对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立..2、证明自然数的加法满足交换律.证明:对任何N b a ∈,设M 为使等式a b b a +=+成立的所有b 组成的集合先证 a a +=+11,设满足此式的a 组成集合k ,显然有1+1=1+1成立φ≠∈∴k 1,设k a ∈,a a +=+11,则+++++++=+=+==+a a a a a 1)1()1()(1k a ∈∴+,N k =∴, 取定a ,则1M φ∈≠,设,b M a b b a ∈+=+,则 ()()a b a b b a b a +++++=+=+=+ ,b M M N +∴∈∴= ∴ 对任何N b a ∈,,a b b a +=+3、证明自然数的乘法是唯一存在的证明:唯一性:取定a ,反证:假设至少有两个对应关系,f g ,对b N ∀∈,有 (),()f b g b N ∈,设M 是由使()()f b g b =成立的所有的b 组成的集合,()()1f b g b a ==⋅ 1M φ∴∈≠ 设b N ∈则()()f b g b =()()f b a g b a ∴+=+ ()()f b g b ++∴=,b M +∴∈,M N ∴= 即b N ∀∈,()()f b g b =乘法是唯一的存在性:设乘法存在的所有a 组成集合K 当1a =时,b N ∀∈,111,1111b b b b ++⋅=⋅==+=⋅+ φ≠∈∴k 1,设a K ∈,b N ∀∈,有,a b 与它对应,且1a a ⋅=,ab ab a +=+,对b N ∀∈,令a b ab b +=+ 1111a a a a ++⋅=⋅+=+=1()(1)a b ab b ab a b ab b a a b a ++++++=+=+++=+++=+a K +∴∈ K N ∴= 即乘法存在p24—5、解:满足条件的A 有1{1,2}A =,2{1,2,3}A =,3{1,2,4}A =,4{1,2,5}A = 5{1,2,3,4}A =,6{1,2,3,5}A =,7{1,2,4,5}A =,8{1,2,3,4,5}A =123456782,3,4,5A A A A A A A A ========∴========基数和为23343528+⨯+⨯+= p24—6、证明:,A a B b ==,A 中的x 与B 中的y 对应 A B ab ∴⨯=,B A ba ab ∴⨯==A B ab ⨯= A B A B B A ∴⨯=⋅=⨯p24—8、证明:1)3+4=73134++== 3231(31)45++++=+=+==3332(32)56++++=+=+==3433(33)67++++=+=+==2)3412⋅= 313⋅= 32313136+⋅=⋅=⋅+=33323239+⋅=⋅=⋅+=343333312+⋅=⋅=⋅+=p24—12、证明:1)()m n m n +++++=+()1(1)m n m n m n m n +++++++=++=++=+2)()mn nm m +++=+ ()1(1)mn mn mn m nm m ++++=+=++=+p26—36、已知(,)f m n 对任何,m n N ∈满足(1,)1(1,1)(,2)(1,1)(,(1,))f n n f m f m f m n f m f m n =+⎧⎪+=⎨⎪++=+⎩求证:1)(2,)2f n n =+2)(3,)22f n n =+3)1(4,)22n f n +=−证明:1)当1n =时,(2,1)(11,1)(1,2)2112f f f =+==+=+结论成立,假设n k =时,结论成立,即(2,)2f k k =+,当1n k =+时,(2,1)(11,1)(1,(2,))(1,2)(2)1(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立2)当1n =时,(3,)(21,)(2,2)22212f n f n f =+==+=⋅+结论成立假设n k =时,结论成立,即(3,)22f k k =+当1n k =+时,(3,1)(21,1)(2,(3,))(2,22)2222(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立3)当1n =时,11(4,1)(31,1)(3,2)22222f f f +=+==⨯−=−结论成立 假设n k =时,结论成立,即1(4,)22k f k +=− 当1n k =+时,112(4,1)(3,(4,))(3,22)2(22)222k k k f k f f k f ++++==−=−+=−所以对一切自然数结论都成立p62—1、证明定理2.1证明:[,],[,]a b c d Z ∀∈,[,][,][,]a b c d a c b d +=++因为自然数加法满足交换律[,][,]a c b d c a d b ∴++=++而[,][,][,]c d a b c a d b +=++[,][,][,][,]a b c d c d a b ∴+=+[,],[,],[,]a b c d e f Z ∀∈,[,][,][,][,][,][(),()]a b c d e f a c b d e f a c e b d f ++=+++=++++以为自然数满足加法结合律([,][,])[,][,]([,][,])a b c d e f a b c d e f ∴++=++ 即整数加法满足交换律和结合律p62—2、已知[,],[,]a b c d Z ∈,求证[,][,]a b c d =的充要条件是[,][,][1,1]a b c d −= 证明:“⇒” 已知[,][,]a b c d =则a d b c +=+[,][,][,][1,1]a b c d a d b c ∴−=++=“⇐” 已知[,][,][1,1]a b c d −=则[,][1,1]a d b c ++=,a d b c +=+[,][,]a b c d ∴=p62—4、已知N b a ∈,,求证([,])[,]a b a b −−=证明:[,][,]a b b a −= ([,])[,][,]a b b a a b −−=−=p62—5、已知[,],[,]a b c d Z ∈,求证([,][,])[,][,]a b c d a b c d −−=−+证明:左边([,][,])[,][,]a b c d a d b c b c a d −−=−++=++右边[,][,][,][,][,]a b c d b a c d b c a d −+=+=++所以左边等于右边([,][,])[,][,]a b c d a b c d ∴−−=−+p62—7、已知,,a b c N ∈,求证当且仅当a d b c +<+时[,][,]a b c d <证明:“⇒” 已知a d b c +<+,[,][,][,]a b c d a d b c −=++因为 a d b c +<+ [,]a d b c ∴++是负数,[,][,]a b c d ∴<“⇐” 已知[,][,]a b c d <则[,][,][,]a b c d a d b c −=++因为[,]a d b c ++是负数,a d b c ∴+<+p62—9、已知,Z αβ∈,求证:1)αβαβ+≤+ ,2) αβαβ=证明:设[,],[,]a b c d αβ== 1)[,]a c b d αβ+=++ ()()a c b d αβ∴+=+−+而,a b c d αβ=−=−()()()()a c b d a b c d a b c d +−+=−+−≤−+−αβαβ∴+≤+2)[,]ac bd ad bc αβ=++ ()ac bd ad bc αβ∴=+−+而,a b c d αβ=−=−()()()()()ac bd ad bc a c d b d c a b c d a b c d +−+=−+−=−−=−− αβαβ∴=p63—12、n 名棋手每两个比赛一次,没有平局,若第k 名胜负的次数各为,k k a b ,1,2,........,k n =,求证:2222221212......n n a a a b b b +++=+++ 证明:对于(1,2,...,)k a k n =,必存在一个(1,2,...,)j b j n =使得k j a b =⇒22(,1,2,...,)k j a b k j n == 2222221212......n n a a a b b b ∴+++=+++p63—16、已知10p a b −,10p c d −,求证p ad bc −证明:由已知:,s t Z ∃∈使10a b ps −=,10c d pt −=⇒ 10,10b a ps d c pt =−=−10(10)()ad bc ac apt ac cps p cs at ∴−=−−−=−p ad bc ∴−p63—17、设2不整除a ,求证281a +证明:因为2不整除a ,所以存在唯一一对,q r Z ∈,使2a q r =+,其中02r <<⇒1r =,22441a q q ∴=++⇒214(1)a q q −=+ 281a ∴−p63—20、设a Z ∈,求证(1)(2)(3)1a a a a ++++是奇数的平方证明:22222(1)(2)(3)1[(1)1](1)[(2)(2)1]1[(1)(1)][(2)(2)]1(1)(2)2(1)(2)1[(1)(2)1]a a a a a a a a a a a a a a a a a a ++++=+−+++++=+−+++++=++−+++=++−1,2a a ++肯定一奇一偶(1)(2)a a ∴++肯定为偶数(1)(2)1a a ∴++−肯定为奇数p63—22、证明:前n 个自然数之和的个位数码不能是2、4、7、9证明:前n 个自然数的和为(1)2n n + 因为:n 个自然数的和仍为自然数∴ 1+n 与n 中必定一个为奇数一个为偶数若个位数码为2则1+n 与n 的个位数码只能是1,4或4,1而(1+n )- n=1 ∴个位数码不能为2若个位数码为4则1+n 与n 的个位数码只能是1,8或8,1也不可能成立若个位数码为7则1+n 与n 的个位数码有2种可能,则2,7或1,14也不可能成立,若个位数码为9则1+n 与n 的个位数码有2种可能,即2,9或1,18也不可能成立,综上,前n 个自然数和的个位数码不能是2,4,7,9p63—26、证明2.3定理1(12,,......,n a a a )=(12,,......n a a a )证明:因为:(12,,......,n a a a )是12,,......n a a a 的公因数中的最大数所以R 需考虑非负整数 ∴(12,,......,n a a a )=(12,,......n a a a ) p63—29、证明2.3定理4的推论(,)1a b =的充要条件是有,x y Z ∈使得1ax by += 证明:因为(,)1a b = ,a b ∴不全为0“⇒” 由定理4 ,x y Z ∃∈使(,)1ax by a b +==“⇐” 设(,)a b d =则,d a d b ,d ax by ∴+ 1d ∴ (,)1d a b ∴== p63—30、证明2.3定理6及其推论。
初等数学研究答案1

初等数学研究答案1习题一1答:原那么:〔1〕A ⊂B〔2〕A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且关于A 的元历来说,重新定义的运算和关系与A 中原来的意义完全分歧。
〔3〕在A 中不是总能实施的某种运算,在B 中总能实施。
(4) 在同构的意义下,B 应当是A 满足上述三原那么的最小扩展,而且由A 独一确定。
方式:〔1〕添加元素法;〔2〕结构法2证明:(1)设命题能成立的一切c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴, 假定bc ac M c =∈,即,那么M c c b b bc a ac c a ∈'∴'=+=+=', 由归结公理知M=N ,所以命题对恣意自然数c 成立。
〔2〕假定a <b ,那么bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 那么ac<bc 。
〔3〕假定a>b ,那么ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈∃即,,由,使得那么ac>bc 。
3证明:(1)用反证法:假定b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
那么a=b 。
〔2〕用反证法:假定b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
那么a <b 。
〔3〕用反证法:假定b a b,a b a =<或者,则由三分性知不大于。
当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
那么a>b 。
初等代数研究

绪言一、“代数学”的起源及几种历史观点⒈“代数学”的起源公元820年前后时,花剌子模数学家和天文学家穆罕默德·伊本·穆斯·阿里·花剌子模的著作《Kitab al jabrw’al-mugabala》,意思是“整理”和“对比”。
到14世纪,aljabr演变成了algebra,这就是拉丁文的“代数学”。
其中Algoritmi是花拉子模的拉丁译名,现代术语“算法”(Algorithm)即源于此。
代数的基础就是脱离了具体数字在一般形态上形式地加以考察的关于算术的学说。
代数的课题首要就是字母表示的式的变换和解方程的规则和方法。
所以,代数这个名称的起源完全符合这门科学本身的内容。
算术→初等代数→高等代数→近世代数。
⒉历史观点⑴Ⅰ16世纪后期,视为普遍化的算术;Ⅱ17世纪60年代,各种量的计算理论;⑵18世纪末至19世纪初,代数方程的解法;⑶19世纪至今,研究各种代数结构。
二、“代数学”的定义“代数学”的定义——初等代数学(或称古典代数学)是更古来的算术的推广和发展;抽象代数学(曾称近世代数学)则是在初等代数学的基础上发生、发展,而于20世纪形成的。
“初等代数学”——研究数字和文字的代数运算(加法、减法、乘法、除法、乘方、开方)的理论和方法;更确切点说,研究实数或复数和以它们为系数的多项式的代数运算的理论和方法。
三、为什么数应专业学生要学习本门课程中学数学教师的历史使命第一章自然数一、数系的历史发展⑴数学思维对象与实体的分离数的概念的产生和发展人类在朦胧时代就已具有识别事物多寡的能力。
在人类开始数数之前,人类是根据物体样子的差别来判断物体是多还是少。
从这种原始的“数觉”到抽象的“数”概念的形成,是一个缓慢的、渐进的过程。
原始人先是注意到一只羊与许多羊、一头狼与整群狼的区别,逐渐看到一只羊、一头狼、一条鱼之间存在着某种共通的东西,即他们的单位性。
数:一定物群所共有的抽象性质。
【7A版】《初等代数研究》教学大纲

《初等代数研究》教学大纲课程名称:初等代数研究课程编码:0702032100适用专业及层次:数学教育专业(三年制专科)课程总学时:72学时课程总学分:一、课程的性质、目的与任务1、本课程的性质:本课程是数学教育专业一门重要的专业基础课。
它是在学生掌握了一定的数学专业理论知识的基础上开设的。
本课程根据中学数学的教学目的及现行的中学代数教材,以传统内容为主,适当渗透近代数学的思想,课程内容具有广泛性和多样性,除固定意义的代数基本内容外,还安排一些其他数学分支的知识。
2、课程目的与任务:通过《初等代数研究》课程的教学使学生掌握初中数学教学所需的初等数学的基础理论、基本知识和基本技能;了解中学数学的内容和知识结构;在数学思想上得到启发,在数学方法上得到初步培训,为教好初中数学打下较坚实的基础。
另外,同过该课程的学习,可以加深学生对初中代数内容的理解,可以提高学生的初中数学解题能力及从事初中数学教学工作的能力。
二、教学内容、教学要求及教学重难点第一章数【教学内容】:本章主要讨论数的概念的形成与扩展,数的运算与性质,数的近似计算等内容。
【教学要求】:了解数系概念的发展简史;熟悉用代数结构的观点和用严格的公理体系来处理数的概念的扩展;能正确分析处理初中数学教材的有关内容。
【教学重难点】:第一节数系的扩展1.1数的发展简史1.2正整数理论1.3有理数集及其性质1.4实数集及其性质1.5复数集及其性质第二节整数的整除性2.1整除的意义及其性质2.2素数与合数2.3最大公约数与最小公倍数2.4同余第三节近似计算初步3.1近似值的截取方法3.2绝对误差与相对误差3.3有效数字与可靠数字第四节初中数的教学4.1内容分析4.2教学目标4.3教学建议本章重点:数及其运算性质、同余理论本章难点:利用同余理论研究整数的性质第二章式【教学内容】:式是数的概念的发展,也是研究函数、方程和不等式的基础。
本章着重讨论代数式和简单超越式的概念、性质和恒等变形。
初等代数研究(_绪言_第一章_数_)完整

8
§1 数系的扩展
四、复数集及其性质 集及其性质
• 性质 性质1:复数集是一个数域。 • 性质2:复数集不是有序域。 性质 • 性质 性质3:复数集内,开n次方运算总是可实施的, 任何非零复数有n个不相等的n次方根。 • 性质 性质4:复数集具有稠密性。复平面上任一区域 里,都有无限多个复数。 • 性质 性质5: 复数在复平面上的分布是连续的。
12
A
B'
B
A
A'
B
A ~B ′⊂ B 则 a<b
A ⊃ A ′~ B 则 a>b
13
作 业
习题一、 3.(1)、(2) 4.(1)
14
§2 整数的整除性
整数的整除性的概念、 一.整数的整除性的概念、性质
1. 整除的定义:对于两个整数a、b(b≠0), 整除的定义: 若存在一个整数q,使得 a=bq ① 成立,则称b整除a,或a被b整除,记作b|a。a叫 做b的倍数,b叫做a的约数(因数)。 若满足①的整数q不存在,就称a不能被b整除, 或b不能整除a,记作b ∤a, 如2|6,4 ∤ 6。
6
§1 数系的扩展
三、有理数集及其性质 集及其性质
• 性质 性质4(阿基米德性质):对于两个正有理数a, b,存在一个正整数n,使得 na>b。 • 性质 性质5(有理数的稠密性):在任意两个相异的 有理数之间,总存在无限多个有理数。 • 性质 性质6: 有理数集是一个可数集. • 可数集——可与正整数列“1,2,3,…”建立 一一对应的集合。
22
§2 整数的整除性
六、同余
今天是星期四, 天后是星期几? 例.今天是星期四,则101000天后是星期几? 今天是星期四 习题 :P73 44. 求证:5353-3333能被 整除。 求证: 能被10整除 整除。
初等代数研究课后习题答案完整版_余元希

初等代数研究课后习题完整版1、证明自然数的顺序关系具有对逆性与全序性.即(1)对任何N b a ∈,.当且仅当b a <时.a b >.(2))对任何N b a ∈,.在b a <.b a =.b a >中有且只有一个成立. 证明:对任何N b a ∈,.设a A ==.b B ==(1)“⇒” b a <.则B B ⊂∃,,使,~B A .A B B ~,⊃∴,a b >∴ “⇐” a b >.则B B ⊂∃,,使A B ~,.B B A ⊂∴,~,b a <∴综上 对任何N b a ∈,.b a <⇔a b >(2)由(1)b a <⇔a b > b a <∴与b a >不可能同时成立.假设b a <∴与b a =同时成立.则B B ⊂∃,,使,~B A 且B A ~. ,~B B ∴与B 为有限集矛盾.b a <∴与b a =不可能同时成立.综上.对任何N b a ∈,.在b a <.b a =.b a >中有且只有一个成立..2、证明自然数的加法满足交换律.证明:对任何N b a ∈,设M 为使等式a b b a +=+成立的所有b 组成的集合 先证 a a +=+11.设满足此式的a 组成集合k.显然有1+1=1+1成立 φ≠∈∴k 1.设k a ∈.a a +=+11.则+++++++=+=+==+a a a a a 1)1()1()(1k a ∈∴+.N k =∴. 取定a .则1M φ∈≠.设,b M a b b a ∈+=+.则 ()()a b a b b a b a +++++=+=+=+ ,b M M N +∴∈∴= ∴ 对任何N b a ∈,.a b b a +=+3、证明自然数的乘法是唯一存在的证明:唯一性:取定a .反证:假设至少有两个对应关系,f g .对b N ∀∈.有 (),()f b g b N ∈.设M 是由使()()f b g b =成立的所有的b 组成的集合. ()()1f b g b a ==⋅ 1M φ∴∈≠ 设b N ∈则()()f b g b =()()f b a g b a ∴+=+ ()()f b g b ++∴=.b M +∴∈.M N ∴= 即b N ∀∈.()()f b g b =乘法是唯一的存在性:设乘法存在的所有a 组成集合K 当1a =时.b N ∀∈.111,1111b b b b ++⋅=⋅==+=⋅+ φ≠∈∴k 1.设a K ∈.b N ∀∈.有,a b 与它对应.且1a a ⋅=.ab ab a +=+.对b N ∀∈.令a b ab b +=+ 1111a a a a ++⋅=⋅+=+=1()(1)a b ab b ab a b ab b a a b a ++++++=+=+++=+++=+a K +∴∈ K N ∴= 即乘法存在p24—5、解:满足条件的A 有1{1,2}A =.2{1,2,3}A =.3{1,2,4}A =.4{1,2,5}A = 5{1,2,3,4}A =.6{1,2,3,5}A =.7{1,2,4,5}A =.8{1,2,3,4,5}A =123456782,3,4,5A A A A A A A A ========∴========基数和为23343528+⨯+⨯+= p24—6、证明:,A a B b ==.A 中的x 与B 中的y 对应 A B ab ∴⨯=.B A ba ab ∴⨯==A B ab ⨯= A B A B B A ∴⨯=⋅=⨯p24—8、证明:1)3+4=73134++== 3231(31)45++++=+=+== 3332(32)56++++=+=+==3433(33)67++++=+=+==2)3412⋅= 313⋅= 32313136+⋅=⋅=⋅+=33323239+⋅=⋅=⋅+=343333312+⋅=⋅=⋅+=p24—12、证明:1)()m n m n +++++=+()1(1)m n m n m n m n +++++++=++=++=+2)()mn nm m +++=+ ()1(1)mn mn mn m nm m ++++=+=++=+p26—36、已知(,)f m n 对任何,m n N ∈满足(1,)1(1,1)(,2)(1,1)(,(1,))f n n f m f m f m n f m f m n =+⎧⎪+=⎨⎪++=+⎩求证:1)(2,)2f n n =+2)(3,)22f n n =+3)1(4,)22n f n +=-证明:1)当1n =时.(2,1)(11,1)(1,2)2112f f f =+==+=+结论成立.假设n k =时.结论成立.即(2,)2f k k =+.当1n k =+时.(2,1)(11,1)(1,(2,))(1,2)(2)1(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立2)当1n =时.(3,)(21,)(2,2)22212f n f n f =+==+=⋅+结论成立假设n k =时.结论成立.即(3,)22f k k =+当1n k =+时.(3,1)(21,1)(2,(3,))(2,22)2222(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立3)当1n =时.11(4,1)(31,1)(3,2)22222f f f +=+==⨯-=-结论成立 假设n k =时.结论成立.即1(4,)22k f k +=- 当1n k =+时.112(4,1)(3,(4,))(3,22)2(22)222k k k f k f f k f ++++==-=-+=-所以对一切自然数结论都成立p62—1、证明定理2.1证明:[,],[,]a b c d Z ∀∈.[,][,][,]a b c d a c b d +=++因为自然数加法满足交换律[,][,]a c b d c a d b ∴++=++而[,][,][,]c d a b c a d b +=++[,][,][,][,]a b c d c d a b ∴+=+[,],[,],[,]a b c d e f Z ∀∈.[,][,][,][,][,][(),()]a b c d e f a c b d e f a c e b d f ++=+++=++++以为自然数满足加法结合律([,][,])[,][,]([,][,])a b c d e f a b c d e f ∴++=++ 即整数加法满足交换律和结合律p62—2、已知[,],[,]a b c d Z ∈.求证[,][,]a b c d =的充要条件是[,][,][1,1]a b c d -= 证明:“⇒” 已知[,][,]a b c d =则a d b c +=+[,][,][,][1,1]a b c d a d b c ∴-=++=“⇐” 已知[,][,][1,1]a b c d -=则[,][1,1]a d b c ++=.a d b c +=+[,][,]a b c d ∴=p62—4、已知N b a ∈,.求证([,])[,]a b a b --=证明:[,][,]a b b a -= ([,])[,][,]a b b a a b --=-=p62—5、已知[,],[,]a b c d Z ∈.求证([,][,])[,][,]a b c d a b c d --=-+证明:左边([,][,])[,][,]a b c d a d b c b c a d --=-++=++右边[,][,][,][,][,]a b c d b a c d b c a d -+=+=++所以左边等于右边([,][,])[,][,]a b c d a b c d ∴--=-+p62—7、已知,,a b c N ∈.求证当且仅当a d b c +<+时[,][,]a b c d <证明:“⇒” 已知a d b c +<+.[,][,][,]a b c d a d b c -=++因为 a d b c +<+ [,]a d b c ∴++是负数.[,][,]a b c d ∴<“⇐” 已知[,][,]a b c d <则[,][,][,]a b c d a d b c -=++因为[,]a d b c ++是负数.a d b c ∴+<+p62—9、已知,Z αβ∈.求证:1)αβαβ+≤+ .2) αβαβ=证明:设[,],[,]a b c d αβ== 1)[,]a c b d αβ+=++ ()()a c b d αβ∴+=+-+而,a b c d αβ=-=- ()()()()a c b d a b c d a b c d +-+=-+-≤-+-αβαβ∴+≤+2)[,]ac bd ad bc αβ=++ ()ac bd ad bc αβ∴=+-+而,a b c d αβ=-=-()()()()()ac bd ad bc a c d b d c a b c d a b c d +-+=-+-=--=-- αβαβ∴=p63—12、n 名棋手每两个比赛一次.没有平局.若第k 名胜负的次数各为,k k a b .1,2,........,k n =.求证:2222221212......n n a a a b b b +++=+++ 证明:对于(1,2,...,)k a k n =.必存在一个(1,2,...,)j b j n =使得k j a b =⇒22(,1,2,...,)k j a b k j n == 2222221212......n n a a a b b b ∴+++=+++p63—16、已知10p a b -.10p c d -.求证p ad bc -证明:由已知:,s t Z ∃∈使10a b ps -=.10c d pt -=⇒ 10,10b a ps d c pt =-=-10(10)()ad bc ac apt ac cps p cs at ∴-=---=-p ad bc ∴-p63—17、设2不整除a .求证281a +证明:因为2不整除a .所以存在唯一一对,q r Z ∈.使2a q r =+.其中02r <<⇒1r =.22441a q q ∴=++⇒214(1)a q q -=+ 281a ∴-p63—20、设a Z ∈.求证(1)(2)(3)1a a a a ++++是奇数的平方证明:22222(1)(2)(3)1[(1)1](1)[(2)(2)1]1[(1)(1)][(2)(2)]1(1)(2)2(1)(2)1[(1)(2)1]a a a a a a a a a a a a a a a a a a ++++=+-+++++=+-+++++=++-+++=++- 1,2a a ++肯定一奇一偶(1)(2)a a ∴++肯定为偶数(1)(2)1a a ∴++-肯定为奇数p63—22、证明:前n 个自然数之和的个位数码不能是2、4、7、9证明:前n 个自然数的和为(1)2n n + 因为:n 个自然数的和仍为自然数∴ 1+n 与n 中必定一个为奇数一个为偶数若个位数码为2则1+n 与n 的个位数码只能是1,4或4,1而(1+n )- n=1 ∴个位数码不能为2若个位数码为4则1+n 与n 的个位数码只能是1,8或8,1也不可能成立若个位数码为7则1+n 与n 的个位数码有2种可能.则2,7或1,14也不可能成立.若个位数码为9则1+n 与n 的个位数码有2种可能.即2,9或1,18也不可能成立.综上.前n 个自然数和的个位数码不能是2,4,7,9p63—26、证明2.3定理1(12,,......,n a a a )=(12,,......n a a a )证明:因为:(12,,......,n a a a )是12,,......n a a a 的公因数中的最大数所以R 需考虑非负整数 ∴(12,,......,n a a a )=(12,,......n a a a ) p63—29、证明2.3定理4的推论(,)1a b =的充要条件是有,x y Z ∈使得1ax by += 证明:因为(,)1a b = ,a b ∴不全为0“⇒” 由定理4 ,x y Z ∃∈使(,)1ax by a b +==“⇐” 设(,)a b d =则,d a d b .d ax by ∴+ 1d ∴ (,)1d a b ∴== p63—30、证明2.3定理6及其推论。
初等代数研究__第1章_数与数系

初等代数研究__第1章_数与数系第1章数与数系数学是一门研究数与数的运算规律的科学,而数与数系是数学研究的基础。
本章将讨论数与数系的基本概念和性质。
1.1自然数与整数自然数是最基本的数,用来表示物体的个数。
自然数的集合记作N={1,2,3,…},其中1为最小的自然数。
整数是自然数的扩充,包括正整数、负整数和零。
整数的集合记作Z={…,-3,-2,-1,0,1,2,3,…}。
整数的加法运算满足交换律、结合律和闭合性,即对于任意的整数a、b和c,有(a+b)+c=a+(b+c)和a+b=b+a。
整数的减法运算也满足这些性质。
1.2有理数有理数是可以表示为两个整数的比,其中分母不为零。
有理数的集合记作Q={p/q,p∈Z,q∈Z,q≠0}。
有理数的加法、减法、乘法和除法运算都满足交换律、结合律和闭合性。
有理数的大小可以用数轴来表示,其中0位于原点。
正有理数位于0的右边,负有理数位于0的左边。
有理数可以根据大小进行比较,例如两个有理数a和b,若a>b,则称a大于b,若a<b,则称a小于b。
1.3无理数无理数是不能表示为两个整数的比的数。
无理数的集合记作I=Q'。
无理数是无限不循环小数或无限循环小数。
例如,根号2是一个无理数,其小数表示是无限不循环的。
在数轴上,无理数位于有理数之间,填补了有理数之间的空隙。
无理数与有理数一起构成了实数的集合R,即R=Q∪I。
1.4实数实数是有理数和无理数的集合,记作R=Q∪I。
实数的加法、减法、乘法和除法运算都满足交换律、结合律和闭合性。
实数的大小可以通过大小关系进行比较。
1.5数系的运算实数系具有加法和乘法运算两种基本运算。
实数的加法运算满足交换律、结合律和闭合性。
实数的乘法运算也满足这些性质。
加法运算满足零元素和负元素的存在性。
实数的运算有一些基本性质。
其中有加法的逆元素和乘法的逆元素,满足a+(-a)=0和a*1/a=1,其中a≠0。
此外,实数的运算还有分配律等性质。
初等数学研究 第1章答案

习题二答案1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +.2(略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集.为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集.4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'⊃;若d c ≥从而必存在非空有限集'C ,使得D C C ~'⊃,所以)(C A ⋃)(D B ⋃⊃所以集合C A ⋃的基数c a +大于集合D B ⋃的基数d b +,所以d b c a +>+.5(1)解:按照自然数序数理论加法定义,1555555155155)25(2535''=++=++⋅=+⋅=+⋅=⋅=⋅(2)解:按照自然数序数理论乘法定义87)6(])15[()15()25(2535'''''''''===+=+=+=+=+6证明:︒1当2=n 时,命题成立.(反证法)()()()()()()()01121,1111111,111101111111,,2,1,0111,,2,1,0)2(212122121212121212122221212122111112111212222121≥++-+⇒≥++-++≥+-+-≥++++∴≥⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛->-=-++-+-=+++++=>+=≥+++=+++=>≥=︒+++++++++++++++++k k k k k k k k k k k k k k k i k k k k k k i k k i a k a k k a k k a k k a k a a k a a a a a k a a a a a a a a a a a a a a a a a a k i a k n ka a a a a a k i a k k n ,即要证由归纳假设,得,且得,,且时,由当。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪言一、“代数学”的起源及几种历史观点⒈“代数学”的起源公元820年前后时,花剌子模数学家和天文学家穆罕默德·伊本·穆斯·阿里·花剌子模的著作《Kitab al jabrw’al-mugabala》,意思是“整理”和“对比”。
到14世纪,aljabr演变成了algebra,这就是拉丁文的“代数学”。
其中Algoritmi是花拉子模的拉丁译名,现代术语“算法”(Algorithm)即源于此。
代数的基础就是脱离了具体数字在一般形态上形式地加以考察的关于算术的学说。
代数的课题首要就是字母表示的式的变换和解方程的规则和方法。
所以,代数这个名称的起源完全符合这门科学本身的内容。
算术→初等代数→高等代数→近世代数。
⒉历史观点⑴Ⅰ16世纪后期,视为普遍化的算术;Ⅱ17世纪60年代,各种量的计算理论;⑵18世纪末至19世纪初,代数方程的解法;⑶19世纪至今,研究各种代数结构。
二、“代数学”的定义“代数学”的定义——初等代数学(或称古典代数学)是更古来的算术的推广和发展;抽象代数学(曾称近世代数学)则是在初等代数学的基础上发生、发展,而于20世纪形成的。
“初等代数学”——研究数字和文字的代数运算(加法、减法、乘法、除法、乘方、开方)的理论和方法;更确切点说,研究实数或复数和以它们为系数的多项式的代数运算的理论和方法。
三、为什么数应专业学生要学习本门课程中学数学教师的历史使命第一章自然数一、数系的历史发展⑴数学思维对象与实体的分离数的概念的产生和发展人类在朦胧时代就已具有识别事物多寡的能力。
在人类开始数数之前,人类是根据物体样子的差别来判断物体是多还是少。
从这种原始的“数觉”到抽象的“数”概念的形成,是一个缓慢的、渐进的过程。
原始人先是注意到一只羊与许多羊、一头狼与整群狼的区别,逐渐看到一只羊、一头狼、一条鱼之间存在着某种共通的东西,即他们的单位性。
数:一定物群所共有的抽象性质。
“数”概念的形成可能与火的使用一样古老,大约是在30万年以前。
Ⅰ最早是手指计数。
十进制、五进制多发于此。
Ⅱ石子计数。
但计数的石子堆很难长久保存信息。
Ⅲ结绳计数、刻痕计数。
人类刻痕计数发现的最早证据,是1937年在捷克摩拉维亚出土的幼狼胫骨,其上有55道刻痕。
历史途径扩展:*自然数{} 3,2,1→正有理数→简单的代数无理数(如32,2+等)→零(公元650年左右,印度)与负有理数→复数→严格的实数系。
逻辑扩展:自然数−−−−→−添加负数和零整数系−−−→−作分数域有理数系−−−−−→−作柯西序列等价类实数系−−−−→−次代数扩展作2复数系。
自然数是人类最早认识的数。
我们研究初等代数就从这最基本的对象开始。
二、自然数系和0⑴自然数的基数理论和序数理论 ①建立自然数理论的几种方案Ⅰ康托尔以集合论为基础,建立自然数基数理论; Ⅱ皮亚诺以公理法为基础,建立自然数序数理论; Ⅲ罗素等人试图用纯逻辑学为基础,建立自然数理论。
②自然数的基数理论 ⑴康托尔简介德国人。
1846年3月3日出生于俄国彼得堡。
康托尔曾先后就学于苏黎世大学、哥廷根大学、法兰克福大学和柏林大学,主要学习数学、物理、哲学等课程。
1867年获得柏林大学的哲学博士学位。
康托尔是集合论的创始人。
为了将有穷集合的元素个数的概念推广到无穷几何,他以一一对应为原则,提出了集合等价的概念。
康托尔在深入研究集合的势这个概念时,引进了基数与序数的理论。
⑵定义 分别给出《现代汉语词典》以及小学数学课本中对于自然数的定义:“正整数,即1,2,3,…”以及“表示物体个数的一种数”。
找出定义自然数的关键:把“物体”、“个数”这两个词形式化 物体:集合(具有某种属性的一些对象组成的一个整体) 个数:基数(等价集合在数量上所具有的共同特征)有限集的基数叫做自然数。
所有等价于{}φ的集合的基数,用符号1表示,类似地,{}{}2,=φφ {}{}{}{}3,,=φφφ…………一切自然数组成的集合,叫做自然数集,记为NⅡ顺序。
)(a 顺序定义如果有限集B A ,的基数分别为b a ,。
那么, 当B A ~时,说a 等于b ,记作b a =; 当B B A ⊂'~时,就说a 小于b ,记作b a <; 当B A A ~'⊃时,就说a 大于b ,记作b a >。
()b 顺序性质⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧)(三歧性传递性对逆性大小(全序性))、传递性(相等。
反身性、对称性与21Th Th b a c a c b b a N c b a a b b a N b a a a N a Th ===∈∀==∈∀=∈∀则若⑶则若⑵有⑴,,,,,,,,,1中有且只有一个成立。
在⑶则若⑵时,当且仅当⑴b a b a b a N b a ca cb b a Nc b a a b b a N b a Th >=<∈∀<<<∈∀><∈∀,,,,,,,,,,,2。
,即,于是,且,这就有集合,使得、。
根据定义,存在集合,都是有限集,、、⑵设。
时,;同理,当时,当即则。
则存在都是有限集。
证:⑴设c a C C C A B C C C C C B B B A C B c C b B a A C B A b a a b a b A B B B B A B B b B a A B A <⊂'⊂'''⊂'''⊂''⊂'⊂'''===<>>'⊃⊂'⊂'==~~,~,~.~,,,Ⅲ运算 ()a 运算定义加法定义:设B A ,都是有限集。
φ=⋂==B A b B a A 且,,,则B A ⋃的基数为a 加上b 的和,记作b a +。
乘法定义:若b 个有限集b A A A ,,,21 彼此之间没有公共元素,它们的基数都是a ,则称b A A A ⋃⋃⋃ 21的基数为a 乘以b 的积,记作b a ⨯。
()b 运算性质3Th 自然数的加法满足交换律和结合律。
4Th (乘法交换律)ba ab N b a =∈∀恒有,。
5Th (乘法结合律)。
恒有c ab bc a N c b a )()(,,=∈∀6Th (乘法对加法的分配律)()()。
总有ca ba a c b ac ab c b a N c b a +=++=+∈∀,,,, ()()()()()()caba c c c b b b c b c b c b a c b a a a +=+++++++++++++=+个个个=析:③自然数的序数理论 Ⅰ提出原因基数理论没有很好揭露自然数在顺序上的意义,也没有给出自然数加法、乘法运算的具体方法。
Ⅱ定义集合N 的元素叫做自然数。
如果N 的元素间有一个基本关系“后继”(用“+”表示),并满足()a N ∈1()b N a N a ∈∈∀+有唯一的, ()c 1,不是+∈∀a N a()d b a b a N b a =∈∀++相同,则与若,,()e (归纳公理)。
则有;且若N M M a M a M N M =∈∈︒∀∈︒⊆+,211, 注:归纳公理是数学归纳法的理论依据。
Ⅲ顺序)(a 顺序定义等于:b a b a N b a =∈∀++相同,则与若,,。
小于:。
,记为大于则称,使得,且存在若b a b a k b a N k N b a >+=∈∈,, ()b 顺序性质自然数的顺序关系具有对逆性、传递性和全序性。
Ⅳ运算)(a 运算定义加法:自然数的加法是一种对应关系“+”,由于它,对任何N b a ∈,,有唯一确定的N b a ∈+,并且()()++++=+=+)(2;11b a b a a a 。
乘法:自然数的乘法是一种对应关系“·”,由于它,对任何N b a ∈,,有唯一确定的N b a ∈+,并且()()a b a b a a a +⋅=⋅=⋅+2;11。
减法:设N b a ∈,,若存在N x ∈,使a x b =+,则称x 为a 减去b 的差,记作b a -,这里a 叫做被减数,b 叫做减数。
求两数差的运算叫做减法。
除法:设N b a ∈,,若存在N x ∈,使a bx =,则称x 为a 除以b 的商,记作b a |,这里a 叫做被除数,b 叫做除数。
求两数商的运算叫做除法。
例1 证明532=+54)22(2232,43)12(12223212==+=+=+∴==+=+=+=+=++++++,=证例2 证明632=⋅6242222232,42121222212=+=+⋅=⋅=⋅∴=+⋅=⋅=⋅=⋅+++,证()b 运算性质加法的唯一性、结合律、交换律;乘法的唯一性、结合律、交换律。
自然数列的离散性:任意两个相邻的自然数a 与+a 之间不存在自然数b ,使+<<a b a 。
阿基米德性:对任意N b a ∈,,必有b na N n >∍∈,。
(右分配律)对任何N c b a ∈,,,总有()bc ac c b a +=⋅+()的任意性,得证。
、又由因此,,于是,则假定。
组成的集合为有的设使上面等式成立的所证b a N M Mc bc ac b bc a ac b a bc ac b a c b a c b a M c Mb a b a b a Mc .)()()()()(1,111=∈+=+++=+++=+++=⋅+∈∈∴⋅+⋅=+=⋅+++++⑵关于自然数系的几点说明⒈定义了加法和乘法运算的自然数系统也称为算术系统。
⒉公理系统的一个基本要求是公理之间的在逻辑上的相容性,也就是说必须保证从公理出发不会推导出两个矛盾的命题。
⒊整数的算术运算系统中存在大量的数论难题。
⑶自然数和0扩大的自然数集:含0在基数理论中,把空集的基数定义为“零”,在序数理论中把“零”作为1的先行数,这样便构成了扩大的自然数集。
“自然数”这一术语首先被罗马学者波伊修斯使用。
我国数学教科书中在20世纪90年代之前一直没有把0作为自然数。
1993年《中华人民共和国国家标准》中《量和单位》311页规定自然数包括0。
从集合论的角度看,把0作为自然数比较合理。
{}{}{}{}{}{}() ,,,,,,,,φφφφφφφφ将这一系列集合所对应的基数看成自然数列数学归纳法⒈数学归纳法的几种形式⑴(第一数学归纳法)设)(n P 是关于自然数n 的命题,若Ⅰ)(n P 在1=n 时成立Ⅱ)(k P (k 是任意自然数)成立的假设下可以推出)1(+k P 成立。
则)(n P 对一切自然数n 都成立。
证明:设M 是使命题成立的所有自然数组成的集合,则由ⅠM ∈1;Ⅱ若M k ∈,则M k ∈+ 由归纳公理,得证。